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KENNETH J.W. CRAIK
1914-1945

• Cambridge (UK) philosopher and psychologist

• Pioneering “cognitive scientist”
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• In WWII worked on human operator in 
control systems

• Died in Cambridge after road accident



MAN IN THE WORLD

According to Craik,

[O]nly [an] internal model  of reality – this working model [in 
our minds] – enables us to predict events which have not yet 
occurred in the physical world, a process which saves time, 
expense, and even life.

[In other words] the nervous system is viewed as a calculating 
machine capable of modelling or paralleling external events, 
and … this process of paralleling is the basic feature of 
thought and of explanation.

- The Nature of Explanation, 1943. 3



MARK TWAIN (1835-1910)
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NAVIGATING THE MISSISSIPPI – 1850s
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“… You only learn the shape of the river; and you learn it with such absolute certainty
that  you can always steer by the shape that’s in your head, and never mind the one
that’s before your eyes.”

Mark Twain, Life on the Mississippi, 1883



OPEN-LOOP CONTROL

Tracking:

Stable first-
order plant 

Step 
Generator 

Actuator
Gain K

Reference 
Input

Control
Input

Tracking
Output

1/s K = ? a/(s+b)

Tracking error  :=  Input – Output  → 0 ,    t→∞

if and only if

K = b/a 6



ERROR FEEDBACK CONTROL

a/(s+b)1/s K
Ref 

Actuator

Output

|Final error| < ε if and only if  Ka/b  >  1/ε – 1 
Exact value of K is not critical, but needs to be large !

Error

Tracking error → 1/[1+Ka/b],  t→∞

+

_
Exosystem
= “External

World”
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ERROR FEEDBACK 
WITH (IMPLICIT) INTERNAL MODEL  -

EXOSYSTEM GENERATES STEPS

a/(s+b)1/s K
Ref 

Actuator

Output

Final error = 0   for all K, a, b > 0. 
Exact value of K is not critical,

say Ka/b    ̴ b/2 for good time response.

Error

Tracking error → 0,  t→∞

+
1/s

Internal
Model

‒
Exosystem
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ERROR FEEDBACK 
WITH (IMPLICIT) INTERNAL MODEL  -
EXOSYSTEM GENERATES SINUSOIDS

a/(s+b)1/(s2+1) Ks/(s+c)
Ref 

Actuator-
Stabilizer

Output

Final error = 0   for all K, a, b ,c > 0, 
for which system is stable.

Exact values of K and c are not critical.

Error

Tracking error → 0,  t→∞

+
1/(s2+1)

Internal
Model

‒
Exosystem
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CONCLUSIONS (PI, PID, PR ~ 1930)

• Error feedback with high loop gain reduces 
parameter sensitivity and final tracking error.

• Feedback, with (implicit) internal model of 
exosystem (PI, PID, PR control) reduces final 
error to exactly zero (perfect tracking), despite 
(reasonable) parameter perturbations.  
Requires only moderate average loop gain.

• Price: control complexity, including stabilizer.
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ADVANCES (1970s)

• For linear time-invariant multivariable systems  
with arbitrary (linear) exosystem, 

and for nonlinear systems with step inputs,

internal model made explicit.

• For such systems, internal model shown to be 
both necessary and sufficient for structurally 
stable (‘robust’) perfect tracking and 
regulation. 
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FOR GENERAL SYSTEMS, ASK

• Is error feedback necessary for structurally 
stable perfect regulation (or tracking)?

• Is an internal model necessary for structurally 
stable perfect regulation?

• If “Yes”, shouldn’t this be true for a very wide 
class of regulator systems, linear or 
nonlinear? 12



INTERNAL MODEL PRINCIPLE
(IMP)

For a very general class of systems:

1. Error feedback + Perfect regulation

⇒ Internal Model

2.   Structurally stable perfect regulation 

(regardless  of system perturbations)

⇒ Error feedback + Internal Model
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GOAL …

• Establish the IMP

in general but rudimentary

discrete-time framework, 

using just ordinary sets and functions, 

without any sophisticated 

technical or geometric assumptions.
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TOTAL SYSTEM  𝐒 =  𝐄 × C × P

Exosystem = 𝐄 = (XE, αE) = Dynamic model of outside world

Total system = 𝐒 = (X,α) = Exosystem × Controller × Plant

Exosystem  𝐄 Controller  C Plant  P
Ref +

-

Error Control Output

Feedback
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WE NEED TO DEFINE …

• (Discrete)  dynamical system 𝐒

• Internal stability

• Feedback structure

• Exosystem detectability
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DISCRETE DYNAMICAL SYSTEM  𝐒:
STATE SET  X, 

TRANSITION  FUNCTION α: X→X
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X

y

xox1=α(xo)
x2=α(x1)
x3=α(x2)

…

x1

xo

x2

x3

α α

α

α



INTERNAL STABILITY

• When driven by the Exosystem E, 

total system  𝐒 “approaches steady state” 

and behaves like E alone.  

• E.g. active orchestra (E) 

causes passive audience (C × P) 

to become  ‘entrained’ by dynamic coupling. 

• State x(t) → global attractor X∞  =: ෩XE ⊆ X as t → ∞
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INTERNAL STABILITY WITH
GLOBAL ATTRACTOR
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X

y

xo
X∞

x1=α(xo)
x2=α(x1)
x3=α(x2)

…

x1

xo

x2

x3

α α

α

α



TOTAL SYSTEM  𝐒 =  𝐄 × C × P
DRIVEN BY EXOSYSTEM 𝐄

Total system = (Exosystem, Controller, Plant) = 𝐒 = (X,α)
Exosystem = 𝐄 = (XE, αE)
Intuition: If 𝐒 is “internally stable” then 𝐄 “drives” 𝐒
to an “attractor”  X∞ =: ෩XE that is α-invariant.

Exosystem Controller Plant
Ref +

-

Error Control Output

Feedback
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INTERNAL STABILITY –
ARROW DIAGRAM

X

iE

XEXE

αE

X
α

iE

Insertion map iE injects
𝐄 =  (XE, αE) 

into 𝐒 = (X, α), to create 
global attractor

iE(XE)  = ෩XE ⊆ X
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REGULATION (TRACKING):
TARGET SUBSET  K ⊆ X

• Regulation (or tracking): 

trajectory of 𝐒

remains in a suitable target subset K ⊆ X,

where “tracking error” is “zero”.

• On target subset K, 

E and  C × P  track together 

in perfect synchrony
22



GLOBAL ATTRACTOR X∞ = ෩XE

LIES IN TARGET SUBSET K 
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y

xo

X x1

xo
x2

x3

α
α

α

α

K 

X∞



REGULATION CONDITION

• By internal stability, ෩XE is a global attractor

for the trajectories of 𝐒.  

• For (eventual) regulation we therefore require

෩XE ⊆ K

• Model K ⊆ X by an insertion κ : Kloc → X.

• Then regulation implies the existence of 

an injection jE: XE →Kloc with  κ ∘jE = iE.
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ARROW DIAGRAM FOR REGULATION

XE

XKloc

iE

κ

jE
iE = κ ∘jE

κ (Kloc) = K
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STATE SET OF CONTROLLER  C

• Let controller state set

XC = 𝛾(X) 

for suitable surjection (typically, projection)

𝛾: X = XE× XC× XP →  XC

• So we have

Total state (of S) = x ∈ X

⇒ Controller state xc (of C) = 𝛾(x) ∈ XC
26



SYSTEM ‘OBSERVED’ BY CONTROLLER

• Transition map α: X → X, Control map 𝛾: X → XC

S
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xo
x1

x2

xCo

xC1

xC2X XC

𝛾 xj = xCj

𝛾

C



FEEDBACK STRUCTURE

• Controller C is externally driven 

only when state of 𝐒 deviates from regulation 

target set K.

• Dynamics of C are autonomous:

as long as x ϵ K,  “tracking remains perfect.”

• Suppose x ϵ K, so controller state is xC = 𝛾(x).

By feedback, ‘next’ controller state xC′ = 𝛾(α(x))

depends only on xC = 𝛾(x), i.e. for x ϵ K, 𝛾∘α(x)

can be computed from 𝛾(x).  Technically,

ker(𝛾|K)  ≤ ker(𝛾∘α|K)

• [But needn’t be true that K is α-invariant!] 28



DETECTABILITY OF EXOSYSTEM 
ON GLOBAL ATTRACTOR

• Consider motion of 𝐒 on global attractor

iE(XE) =: ෩XE.   By definition, α( ෩XE) ⊆ ෩XE.

• If x(0) = xo ϵ ෩XE, then x(t) = αt(xo) ϵ ෩XE ,  t = 0,1,2,…

• Assume controller could (eventually) identify xo

from observations xC(t) = 𝛾(x(t)), t = 0,1,2,…

• This simply means:

෩XE is detectable by 𝐒 := (X,α,𝛾)

In other words

෩𝐒E := ( ෩XE, α| ෩XE, 𝛾| ෩XE) is observable. 29



THEOREM: INTERNAL MODEL 
PRINCIPLE

• With ෩XE as defined above, write
෥αE :=  α| ෩XE,   ෥𝛾E :=  𝛾| ෩XE

• Theorem:  Assume that 𝐒 satisfies internal stability, 
regulation, feedback structure, and exosystem
detectability.  Then

1.  there exists a unique mapping αC: XC→XC

determined by αC∘𝛾K =  𝛾∘α|K
2.  αC∘ ෥𝛾E =  ෥𝛾E∘ ෥αE

3.  ෥𝛾E is injective
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INTERPRETATION 

• Statement 1 defines the controller’s dynamics, 
as autonomous under the condition of 
regulation.

• Statement 2 identifies these controller 
dynamics as a copy of the dynamics of 𝐄 on 
the global attractor (i.e. exosystem dynamics).

• Statement 3 asserts that this copy is faithful, 
namely incorporates fully the exosystem 
dynamics.
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TOTAL SYSTEM  𝐒 =  𝐄 × C × P
DRIVEN BY EXOSYSTEM 𝐄

ACHIEVES PERFECT TRACKING

Total system = (Exosystem, Controller, Plant) = 𝐒 = (X,α)
Exosystem = 𝐄 = (XE, αE)
With internal model in C,  𝐄 “drives”  𝐒 to ෩XE ⊆ K,
where tracking remains  perfect, namely Error ≡ 0.
.

Exosystem

Controller
with 

internal
model 

Plant
Ref +

-

Error Control Output

Feedback
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FINAL RESULT

XE XE

XC XC

αE

αC

෥𝛾E ෥𝛾E

Internal model of exosystem in the controller 

is faithfully represented by  ( ෥𝛾E(XE),  αC| ෥𝛾E(XE))
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PROOF OF THEOREM (1)

• Statement 1. Derive controller dynamics αC

Let xC ϵ XC.  
By 𝛾(K) = XC, there is x ϵ K (so x ϵ X) with 𝛾(x) = xC.
Define αC(xC) := 𝛾∘α(x).  
The definition is unambiguous, since 

x′ϵK & 𝛾(x′) = xC ⇒ x′ ≡ x (mod ker(𝛾)), 
namely (as x, x′ ϵ K),  

x′ ≡ x (mod ker(𝛾|K)).  
By feedback,  x′ ≡ x (mod ker(𝛾∘α|K)), so
𝛾∘α(x′) = 𝛾∘α(x).  
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STATEMENT 1

Kloc XX

XCXC

X

ακ

𝛾

𝛾𝛾∘α|K

αC

κ

𝛾|K

Existence of autonomous  control dynamics,
operating while regulation  is satisfied.
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PROOF OF THEOREM (2)

• Statement 2.  Controller dynamics imitates E on K

Let x ϵ ෩XE.   
Since ෩XE ⊆ K, from Statement 1 we get 

αC∘ ෥𝛾E(x) = 𝛾∘α(x).  
But 

α(x) = ෥αE(x) and α(x) ϵ ෩XE, 
so

αC∘ ෥𝛾E(x) = ෥𝛾E∘ ෥αE(x)
as claimed.
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PROOF OF THEOREM (3)

• Statement 3.  Imitation of E by C is faithful

Let 𝜔 ϵ E(X) be the observer for (𝛾,α), and 
෥𝜔E:= 𝜔| ෩XE its restriction to ෩XE.  

By observer theory
෥𝜔E = sup{𝜔′ ϵ E( ෩XE) | 𝜔′ ≤ ker( ෥𝛾E) ⋀ (𝜔′ • ෥αE)}

= ⊥ (using detectability of ෩XE).
Also, feedback with restrictions to ෩XE implies

ker( ෥𝛾E) ≤ ker( ෥𝛾E ∘ ෥αE ) = (ker( ෥𝛾E )) • ෥αE.
Therefore ker( ෥𝛾E )  ≤ ෥𝜔E = ⊥,
namely ෥𝛾E is injective, as claimed. 
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THEOREM - IMP

Kloc XX

XCXC

X

ακ

𝛾

𝛾

αC

κ

𝛾|K

XE XE

iEiE

αE

jE

෥𝛾E := 𝛾| ෩XE = 𝛾∘iE = 𝛾∘(κ∘jE) = (𝛾∘κ)∘jE = (𝛾|K)∘jE.
Therefore αC∘ ෥𝛾E = ෥𝛾E ∘αE, as displayed before.
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WORKING IN ARROWS

• IMP has been developed solely in the 
language of arrows!

• Just sets and functions - no sophisticated or 
difficult mathematics like differential 
equations or functional analysis!

• These arrows can be generalized far beyond 
sets and functions – to things called “topoi”!

• Will this be the cybernetic language of the 
future?
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INTERNAL MODEL PRINCIPLE
(IMP)

For a very general class of systems:

1. Error feedback + Perfect regulation

⇒ Internal Model

2.   Structurally stable perfect regulation 

(i.e. regulation regardless of system perturbations)

⇒ Error feedback + Internal Model

40

✓

?



PARAMETRIZED INTERNAL STABILITY

Global attractor  iE({μ}×XE) ⊆ X
now depends on the system parameter μ ϵ M !

For all μ ϵ M,  xE ϵ XE, there holds
α(μ, iE(μ,xE))  =  iE(μ, αE(xE)) 41

M×X

M×XE
M×XE

idM×αE

M×X

idM×iEidM×iE

idM×α

M = set of static
system parameter 
elements μ



STRUCTURALLY STABLE REGULATION 

Property assumed:
For all μ ϵ M and xE ϵ XE, have iE (μ,xE) ⊆ K ⊆ X,
where K is fixed and independent of μ.  Thus
for suitable jE:M×XE→Kloc,  iE(μ,xE) ≡ κ(jE(μ,xE)).

42

M×X

M×XE
M×XE

idM×αE

M×X

idM×iEidM×iE

idM×α
M×Kloc

idM×jE

idM×κ



GLOBAL ATTRACTOR X∞ = ෩XE

LIES IN TARGET SUBSET K 
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y

xo

X x1

xo
x2

x3

α
α

α

α

K 

X∞



DEDUCING FEEDBACK STRUCTURE

HARMLESS TECHNICAL ASSUMPTIONS:

• Regulation target subset K constrains (xE,xP), but not xC

• Parameter product structure  
M = ME × MP × MC

(with component sets pairwise disjoint)
μ = (μE,  μP,  μC )

(independent components)
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ADMISSIBLE TRANSFORMATIONS
OF 𝐄, 𝐂, and 𝐏
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XE XE

XE XE

R(μ)

αE

R(μ)
αE

T(μ)

X XC

X XC

(R×S×T)(μ)

αC

αC

X XP

X XP

(R×S×T)(μ)

αP

αP(μ)
S(μ)



PERTURBATION MODEL 
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XE

XE

XE×XP×XC

XE

XE

XE×XP×XC

XE×XP×XC XE×XP×XC

αE × αP × αC

αE × αP(μ) × αC

αE

αE

R(μ)-1 R(μ)-1

idE × iP × iC idE × iP × iC

R(μ)×S(μ)×T(μ) R(μ)×S(μ)×T(μ)



RICH PARAMETER PERTURBATION 

• From arrow diagrams,

αC [R(μE )(xE), S(μP )∘iP(xE), T(μC)∘iC (xE)] = T(μC)∘iC∘αE (xE)

• Crucial assumption - Rich Parameter Perturbation:

For each fixed xE, 

as μE varies through ME and μP varies through MP,

R(μE)(xE) varies through XE and S(μP)∘iP(xE) varies through XP

• Therefore

αC [R(μE )(xE), S(μP )∘iP(xE), T(μC)∘iC (xE)] 

depends only on T(μC)∘iC (xE) 47



CONCLUSION
• For each fixed parameter value μ, 

the system 𝐒 has feedback structure
on  attractor  ෩XE(μ) 

• So for every μ, controller C is autonomous
when regulation is perfect

• As before, deduce:

C contains an Internal Model of E
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INTERNAL MODEL PRINCIPLE
(IMP)

For a very general class of systems:

1. Error feedback + Perfect regulation

⇒ Internal Model                                   

2.   Structurally stable (or “robust”) perfect regulation 

(i.e. regulation regardless  of system perturbations)

⇒ Error feedback + Internal Model

49
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BACK TO THE MISSISSIPPI – 1850s
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“… You only learn the shape of the river; and you learn it with such absolute certainty
that  you can always steer by the shape that’s in your head, and never mind the one
that’s before your eyes.”

Mark Twain, Life on the Mississippi, 1883



THINGS TO DO

• Computational examples to confirm the 
model, especially for nonlinear systems.

• Relevance to “limiting” cases like bang-bang 
and sliding-mode control systems.

• Stabilization of the feedback loop when it 
contains an internal model of the (unstable) 
exosystem.

• Topological and metric extensions.
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SPECULATION:
WHAT IS “CONSCIOUSNESS”?

COULD WE SAY THAT A CREATURE IS “CONSCIOUS” 
IF IT HAS AN INTERNAL MODEL OF ITSELF ?

TO AVOID AN INFINITE RECURSION, SUCH AN 
INTERNAL MODEL WOULD NEED TO BE AN 

ABSTRACTION OF THE SELF

OPEN PROBLEM FOR YOU TO WORK ON!
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THANK YOU


