Instructions: Duration 1 hour
Please answer all questions.
All questions have equal value.
A one-page aid sheet is allowed.

1. (a) The state equations of a multivariable 2 input, 2 output system are given by:

\[\begin{align*}
 x_1 &= x_2 + u_1 \\
 x_2 &= -x_1 - 6x_2 + u_2 \\
 y_1 &= x_1 \\
 y_2 &= x_2 + u_1
\end{align*} \]

The initial state is \(x(0) = [3, 2] \), and a unit step function input of \((u_1, u_2) = (1, 1) \) is applied at \(t = 0 \). Determine the steady-state output response of the system as \(t \to \infty \).

(Hint: there is a "fast" way of doing this.)

(b) Consider the following systems:

\[\begin{align*}
 \hat{x} &= \begin{bmatrix} \cos \omega & \sin \omega \\
 -\sin \omega & \cos \omega \end{bmatrix} x + \begin{bmatrix} 0 \\
 1 \end{bmatrix} u \\
 y &= \begin{bmatrix} 0 & 0 \\
 1 & 0 \end{bmatrix} x
\end{align*} \]

where the voltage \(e(t) \) can be considered as the input to the system. Let \(x = \begin{bmatrix} x_1 \\
 x_2 \end{bmatrix} \) be the state of the system. Find conditions on \(R, L, C \) so that the system is controllable.

2. (a) Given a system described by:

\[\begin{align*}
 \dot{x} &= \begin{bmatrix} -a_1 + \sin x_1 & \cos x_1 \\
 \cos x_1 & -a_2 + \sin x_2 \end{bmatrix} x + \begin{bmatrix} 0 \\
 1 \end{bmatrix} \begin{bmatrix} 0 \\
 0 \end{bmatrix} u \\
 y &= \begin{bmatrix} 0 & 0 \\
 1 & 0 \end{bmatrix} x
\end{align*} \]

for what values of \(a_1, a_2 \) is the system locally asymptotically stable about the origin?

(b) Consider the following system:

\[\begin{align*}
 \dot{x} &= \begin{bmatrix} a_1 & a_2 & a_3 \\
 a_4 & a_5 & a_6 \\
 a_7 & a_8 & a_9 \end{bmatrix} x + \begin{bmatrix} 0 \\
 0 \\
 0 \end{bmatrix} u \\
 y &= \begin{bmatrix} 0 & 0 & 0 \\
 1 & 0 & 0 \end{bmatrix} x
\end{align*} \]

For what values of \(a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9 \) is this system minimum phase?

3. Consider the following system:

\[\begin{align*}
 \begin{align*}
 u_1 &
 \end{align*}
 \begin{align*}
 u_2 &
 \end{align*}
 \begin{align*}
 + &
 \end{align*}
 \begin{align*}
 y_1 &
 \end{align*}
 \begin{align*}
 y_2 &
 \end{align*}
\end{align*} \]

(a) Find a state space model of the system.
(b) Assume that \(\theta \neq -1, 1, 2 \). Find the minimal realization of the system obtained in (a).
(c) The following unstable system

\[\begin{align*}
 \dot{x} &= \begin{bmatrix} 2 & 1 \\
 0 & \theta \end{bmatrix} x + \begin{bmatrix} 2 \\
 0 \end{bmatrix} u \\
 y &= \begin{bmatrix} 12 & 20 \end{bmatrix} x
\end{align*} \]

where \(\theta \) is unknown, can be stabilized by using the controller \(u = (-12, -13)x \) to produce closed loop eigenvalues \(-1, -2\). Determine if the resultant closed loop system obtained by applying \(u = (-12, -13)x \) to the system is observable.