THE INTERNAL MODEL PRINCIPLE OF CONTROL THEORY: A QUICK INTRODUCTION

W.M. Wonham Dept of Electrical & Computer Engineering University of Toronto

Nanjing University of Science and Technology (NJUST) Nanjing, CHINA 2022.09.26

KENNETH J.W. CRAIK 1914-1945

- Cambridge (UK) philosopher and psychologist
- Pioneering "cognitive scientist"

- In WWII worked on human operator in control systems
- Died in Cambridge after road accident

MAN IN THE WORLD

According to Craik,

[O]nly [an] internal model of reality – this working model [in our minds] – enables us to predict events which have not yet occurred in the physical world, a process which saves time, expense, and even life.

[In other words] the nervous system is viewed as a calculating machine capable of modelling or paralleling external events, and ... this process of paralleling is the basic feature of thought and of explanation.

- The Nature of Explanation, 1943. ³

MARK TWAIN (1835-1910)

NAVIGATING THE MISSISSIPPI – 1850s

"... You only learn *the* shape of the river; and you learn it with such absolute certainty that you can always steer by the shape that's *in your head*, and never mind the one that's before your eyes."

Mark Twain, Life on the Mississippi, 1883 5

OPEN-LOOP CONTROL

Tracking:

Tracking error := Input – Output $\rightarrow 0$, $t \rightarrow \infty$

if and only if

$$K = b/a$$
⁶

ERROR FEEDBACK CONTROL

Tracking error $\rightarrow 1/[1+Ka/b], t \rightarrow \infty$

|*Final error*| $< \varepsilon$ if and only if *Ka/b* > $1/\varepsilon - 1$ Exact value of *K* is not *critical*, but needs to be **large** !

ERROR FEEDBACK WITH (IMPLICIT) INTERNAL MODEL -EXOSYSTEM GENERATES STEPS

Tracking error $\rightarrow 0$, $t \rightarrow \infty$

Final error = 0 for all K, a, b > 0.
Exact value of K is not critical,
say Ka/b ~ b/2 for good time response.

ERROR FEEDBACK WITH (IMPLICIT) INTERNAL MODEL -EXOSYSTEM GENERATES SINUSOIDS

Tracking error $\rightarrow 0$, $t \rightarrow \infty$

Final error = 0 for all K, a, b, c > 0, for which system is stable.
Exact values of K and c are not critical.

CONCLUSIONS (PI, PID, PR ~ 1930)

- Error feedback with high loop gain reduces parameter sensitivity and final tracking error.
- Feedback, with (implicit) internal model of exosystem (PI, PID, PR control) reduces final error to exactly zero (perfect tracking), despite (reasonable) parameter perturbations. Requires only moderate average loop gain.
- Price: control complexity, including stabilizer.

ADVANCES (1970s)

- For linear time-invariant multivariable systems with arbitrary (linear) exosystem, and for nonlinear systems with step inputs, *internal model* made explicit.
- For such systems, internal model shown to be both necessary and sufficient for structurally stable (*'robust'*) perfect tracking and regulation.

FOR GENERAL SYSTEMS, ASK

- Is error feedback *necessary* for structurally stable perfect regulation (or tracking)?
- Is an internal model *necessary* for structurally stable perfect regulation?
- If "Yes", shouldn't this be true for a very wide class of regulator systems, linear or nonlinear?

INTERNAL MODEL PRINCIPLE (IMP)

For a very general class of systems:

- 1. Error feedback + Perfect regulation \Rightarrow Internal Model
- 2. Structurally stable perfect regulation
 (regardless of system perturbations)
 ⇒ Error feedback + Internal Model

GOAL ...

Establish the IMP

in *general* but *rudimentary* discrete-time framework, using just *ordinary sets and functions*, without *any* sophisticated technical or geometric assumptions.

TOTAL SYSTEM $S = E \times C \times P$

Exosystem = $\mathbf{E} = (X_E, \alpha_E)$ = Dynamic model of *outside world*

Total system = $\mathbf{S} = (X, \alpha)$ = Exosystem × Controller × Plant

WE NEED TO DEFINE ...

• (Discrete) dynamical system S

• Internal stability

• Feedback structure

• Exosystem detectability

DISCRETE DYNAMICAL SYSTEM S: STATE SET X, TRANSITION FUNCTION $\alpha: X \rightarrow X$

INTERNAL STABILITY

- When driven by the Exosystem E, total system S "approaches steady state" and behaves like E alone.
- E.g. active orchestra (E) causes passive audience (C × P) to become 'entrained' by dynamic coupling.
- State $x(t) \to global \ attractor X_{\infty} =: \widetilde{X}_{E} \subseteq X$ as $t \to \infty$

INTERNAL STABILITY WITH GLOBAL ATTRACTOR

TOTAL SYSTEM $S = E \times C \times P$ DRIVEN BY EXOSYSTEM E

Total system = (Exosystem, Controller, Plant) = $\mathbf{S} = (X, \alpha)$ Exosystem = $\mathbf{E} = (X_{E}, \alpha_{E})$ Intuition: If \mathbf{S} is "internally stable" then \mathbf{E} "drives" \mathbf{S} to an "attractor" $X_{\infty} =: \widetilde{X}_{E}$ that is α -invariant.

INTERNAL STABILITY – ARROW DIAGRAM

Insertion map i_{E} injects $\mathbf{E} = (X_{E}, \alpha_{E})$ into $\mathbf{S} = (X, \alpha)$, to create global attractor $i_{E}(X_{E}) = \widetilde{X}_{E} \subseteq X$

REGULATION (TRACKING): TARGET SUBSET $K \subseteq X$

- *Regulation* (or *tracking*):
 - trajectory of **S**

remains in a suitable *target subset* $K \subseteq X$,

where "tracking error" is "zero".

- On target subset K,
 - E and $C \times P$ track together

in perfect synchrony

GLOBAL ATTRACTOR $X_{\infty} = \widetilde{X}_{E}$ LIES IN TARGET SUBSET K

REGULATION CONDITION

- By internal stability, \widetilde{X}_{E} is a global attractor for the trajectories of **S**.
- For (eventual) regulation we therefore require $\widetilde{X_{\mathsf{E}}} \subseteq K$
- Model $K \subseteq X$ by an insertion $\kappa: K_{loc} \to X$.
- Then regulation implies the existence of an injection $j_E: X_E \to K_{loc}$ with $\kappa \circ j_E = i_E$.

ARROW DIAGRAM FOR REGULATION

STATE SET OF CONTROLLER C

• Let *controller* state set

 $X_{c} = \gamma(X)$

for suitable surjection (typically, projection)

$$\gamma: X = X_{\mathsf{E}} \times X_{\mathsf{C}} \times X_{\mathsf{P}} \to X_{\mathsf{C}}$$

• So we have

Total state (of **S**) = $x \in X$

 \Rightarrow Controller state x_c (of **C**) = $\gamma(x) \in X_c$

SYSTEM 'OBSERVED' BY CONTROLLER

• Transition map $\alpha: X \to X$, Control map $\gamma: X \to X_{c}$

FEEDBACK STRUCTURE

- Controller C is *externally* driven only when state of S *deviates* from regulation target set K.
- Dynamics of C are *autonomous:* as long as x ∈ K, "tracking remains perfect."
- Suppose $x \in K$, so controller state is $x_c = \gamma(x)$. By feedback, 'next' controller state $x_c' = \gamma(\alpha(x))$ depends only on $x_c = \gamma(x)$, i.e. for $x \in K$, $\gamma \circ \alpha(x)$ can be computed from $\gamma(x)$. Technically, $\ker(\gamma \mid K) \leq \ker(\gamma \circ \alpha \mid K)$
- [But needn't be true that *K* is α-invariant!]

DETECTABILITY OF EXOSYSTEM ON GLOBAL ATTRACTOR

Consider motion of S on global attractor

 $i_{\mathsf{E}}(X_{\mathsf{E}}) =: \widetilde{X}_{\mathsf{E}}$. By definition, $\alpha(\widetilde{X}_{\mathsf{E}}) \subseteq \widetilde{X}_{\mathsf{E}}$.

- If $x(0) = x_o \in \widetilde{X}_E$, then $x(t) = \alpha^t(x_o) \in \widetilde{X}_E$, t = 0, 1, 2, ...
- Assume controller could (eventually) identify x_o from observations $x_c(t) = \gamma(x(t)), t = 0, 1, 2, ...$
- This simply means:

 \widetilde{X}_{E} is detectable by **S** := (X, α, γ)

In other words

$$\widetilde{\mathbf{S}}_{\mathbf{E}} := (\widetilde{X}_{\mathbf{E}}, \alpha | \widetilde{X}_{\mathbf{E}}, \gamma | \widetilde{X}_{\mathbf{E}})$$
 is observable.

THEOREM: INTERNAL MODEL PRINCIPLE

- With \widetilde{X}_{E} as defined above, write $\widetilde{\alpha}_{E} := \alpha | \widetilde{X}_{E}, \ \widetilde{\gamma}_{E} := \gamma | \widetilde{X}_{E}$
- **Theorem**: Assume that **S** satisfies *internal stability*, *regulation*, *feedback structure*, and *exosystem detectability*. Then
 - 1. there exists a *unique* mapping $\alpha_c: X_c \rightarrow X_c$ determined by $\alpha_c \circ \gamma_{\kappa} = \gamma \circ \alpha | K$
 - 2. $\alpha_{c} \circ \widetilde{\gamma_{E}} = \widetilde{\gamma_{E}} \circ \widetilde{\alpha_{E}}$
 - 3. $\widetilde{\gamma}_{E}$ is injective

INTERPRETATION

- Statement 1 defines the controller's dynamics, as *autonomous* under the condition of regulation.
- Statement 2 identifies these controller dynamics as a *copy of the dynamics of* E on the global attractor (i.e. *exosystem* dynamics).
- Statement 3 asserts that this copy is *faithful*, namely incorporates fully the exosystem dynamics.

TOTAL SYSTEM $S = E \times C \times P$ DRIVEN BY EXOSYSTEM E ACHIEVES PERFECT TRACKING

Total system = (Exosystem, Controller, Plant) = $\mathbf{S} = (X, \alpha)$ Exosystem = $\mathbf{E} = (X_{\mathbf{E}}, \alpha_{\mathbf{E}})$ With internal model in \mathbf{C} , \mathbf{E} "drives" \mathbf{S} to $\widetilde{X}_{\mathbf{E}} \subseteq K$, where tracking remains perfect, namely Error $\equiv 0$.

FINAL RESULT

Internal model of exosystem in the controller is *faithfully represented* by $(\widetilde{\gamma}_{E}(X_{E}), \alpha_{C}|\widetilde{\gamma}_{E}(X_{E}))$

PROOF OF THEOREM (1)

• Statement 1. Derive controller dynamics α_c

Let $x_c \in X_c$. By $\gamma(K) = X_c$, there is $x \in K$ (so $x \in X$) with $\gamma(x) = x_c$. Define $\alpha_{c}(x_{c}) := \gamma \circ \alpha(x)$. The definition is unambiguous, since $x' \in K \& \gamma(x') = x_c \Rightarrow x' \equiv x \pmod{(x')}$ namely (as $x, x' \in K$), $x' \equiv x \pmod{\ker(\gamma \mid K)}$. By feedback, $x' \equiv x \pmod{\ker(\gamma \circ \alpha \mid K)}$, so $\gamma \circ \alpha(x') = \gamma \circ \alpha(x).$

STATEMENT 1

Existence of autonomous control dynamics, operating while regulation is satisfied.

PROOF OF THEOREM (2)

• Statement 2. Controller dynamics imitates E on K

```
Let x \in \widetilde{X}_{E}.

Since \widetilde{X}_{E} \subseteq K, from Statement 1 we get

\alpha_{C} \circ \widetilde{\gamma}_{E}(x) = \gamma \circ \alpha(x).

But

\alpha(x) = \widetilde{\alpha}_{E}(x) and \alpha(x) \in \widetilde{X}_{E},

so

\alpha_{C} \circ \widetilde{\gamma}_{E}(x) = \widetilde{\gamma}_{E} \circ \widetilde{\alpha}_{E}(x)

as claimed.
```

PROOF OF THEOREM (3)

• Statement 3. Imitation of E by C is *faithful*

Let $\omega \in \mathcal{E}(X)$ be the observer for (γ, α) , and $\widetilde{\omega}_{E} := \omega \mid \widetilde{X}_{E}$ its restriction to \widetilde{X}_{E} . By observer theory $\widetilde{\omega}_{E} = \sup\{\omega' \in \mathcal{E}(\widetilde{X}_{E}) \mid \omega' \leq \ker(\widetilde{\gamma}_{E}) \land (\omega' \bullet \widetilde{\alpha}_{E})\}$ $= \bot$ (using detectability of \widetilde{X}_{E}). Also, feedback with restrictions to \widetilde{X}_{E} implies $\ker(\widetilde{\gamma}_{E}) \leq \ker(\widetilde{\gamma}_{E} \circ \widetilde{\alpha}_{E}) = (\ker(\widetilde{\gamma}_{E})) \bullet \widetilde{\alpha}_{E}$. Therefore $\ker(\widetilde{\gamma}_{E}) \leq \widetilde{\omega}_{E} = \bot$, namely $\widetilde{\gamma}_{E}$ is injective, as claimed.

THEOREM - IMP

 $\widetilde{\gamma}_{E} := \gamma | \widetilde{X}_{E} = \gamma \circ i_{E} = \gamma \circ (\kappa \circ j_{E}) = (\gamma \circ \kappa) \circ j_{E} = (\gamma | \kappa) \circ j_{E}.$ Therefore $\alpha_{C} \circ \widetilde{\gamma}_{E} = \widetilde{\gamma}_{E} \circ \alpha_{E}$, as displayed before.

WORKING IN ARROWS

- IMP has been developed solely in the language of *arrows*!
- Just sets and functions no sophisticated or difficult mathematics like differential equations or functional analysis!
- These arrows can be generalized far beyond sets and functions – to things called "topoi"!
- Will this be the cybernetic language of the future?

INTERNAL MODEL PRINCIPLE (IMP)

For a very general class of systems:

- 1. Error feedback + Perfect regulation \Rightarrow Internal Model
- 2. Structurally stable perfect regulation

 (i.e. regulation regardless of system perturbations)
 ⇒ Error feedback + Internal Model

PARAMETRIZED INTERNAL STABILITY

Global attractor $i_{E}(\{\mu\} \times X_{E}) \subseteq X$ *now depends on the system parameter* $\mu \in M$! For all $\mu \in M$, $x_{E} \in X_{E}$, there holds $\alpha(\mu, i_{E}(\mu, x_{E})) = i_{E}(\mu, \alpha_{E}(x_{E}))$ ⁴¹

STRUCTURALLY STABLE REGULATION

Property assumed:

For all $\mu \in M$ and $x_{E} \in X_{E}$, have $i_{E}(\mu, x_{E}) \subseteq K \subseteq X$, where K is fixed and independent of μ . Thus for suitable $j_{E}:M \times X_{E} \rightarrow K_{loc}$, $i_{E}(\mu, x_{E}) \equiv \kappa(j_{E}(\mu, x_{E}))$.

GLOBAL ATTRACTOR $X_{\infty} = \widetilde{X}_{E}$ LIES IN TARGET SUBSET K

DEDUCING FEEDBACK STRUCTURE

HARMLESS TECHNICAL ASSUMPTIONS:

• Regulation target subset K constrains $(x_{\rm E}, x_{\rm P})$, but not $x_{\rm C}$

• Parameter product structure $M = M_{\rm E} \times M_{\rm P} \times M_{\rm C}$ (with component sets pairwise disjoint) $\mu = (\mu_{\rm E}, \ \mu_{\rm P}, \ \mu_{\rm C})$ (independent components)

ADMISSIBLE TRANSFORMATIONS OF **E**, **C**, and **P**

PERTURBATION MODEL α_{E} $\begin{array}{c} X_{\mathsf{E}} \\ \mathsf{R}(\mu)^{-1} \\ \\ X_{\mathsf{E}} \end{array}$ $\rightarrow X_{\rm E}$ ↓ R(μ)⁻¹ α_{E} $id_{E} \times i_{P} \times i_{C}$ $X_{E} \times X_{P} \times X_{C}$ $R(\mu) \times S(\mu) \times T(\mu)$ $\int id_{\rm E} \times i_{\rm P} \times i_{\rm C}$ $X_{\rm E} \times X_{\rm P} \times X_{\rm C}$ $\alpha_{\rm E} \times \alpha_{\rm P} \times \alpha_{\rm C}$ $\rightarrow X_{\rm E} \times X_{\rm P} \times X_{\rm C}$ $X_{\rm F} \times X_{\rm P} \times X_{\rm C} = \frac{\alpha_{\rm E} \times \alpha_{\rm P}(\mu) \times \alpha_{\rm C}}{2}$

RICH PARAMETER PERTURBATION

• From arrow diagrams,

 $\alpha_{\mathsf{C}}[\mathsf{R}(\mu_{\mathsf{E}})(x_{\mathsf{E}}), \mathsf{S}(\mu_{\mathsf{P}}) \circ i_{\mathsf{P}}(x_{\mathsf{E}}), \mathsf{T}(\mu_{\mathsf{C}}) \circ i_{\mathsf{C}}(x_{\mathsf{E}})] = \mathsf{T}(\mu_{\mathsf{C}}) \circ i_{\mathsf{C}} \circ \alpha_{\mathsf{E}}(x_{\mathsf{E}})$

Crucial assumption - Rich Parameter Perturbation:
 For each fixed x_E,

as $\mu_{\rm E}$ varies through $M_{\rm E}$ and $\mu_{\rm P}$ varies through $M_{\rm P}$,

 $R(\mu_{E})(x_{E})$ varies through X_{E} and $S(\mu_{P}) \circ i_{P}(x_{E})$ varies through X_{P}

• Therefore

 $\alpha_{c} [R(\mu_{E})(x_{E}), S(\mu_{P}) \circ i_{P}(x_{E}), T(\mu_{c}) \circ i_{C}(x_{E})]$ depends only on $T(\mu_{c}) \circ i_{C}(x_{E})$

CONCLUSION

- For each fixed parameter value μ , the system **S** has *feedback structure* on attractor $\widetilde{X}_{E}(\mu)$
- So for every μ, controller C is *autonomous* when regulation is perfect
- As before, deduce:

C contains an Internal Model of **E**

INTERNAL MODEL PRINCIPLE (IMP)

For a very general class of systems:

- 1. Error feedback + Perfect regulation \Rightarrow Internal Model
- 2. Structurally stable (or "robust") perfect regulation
 (i.e. regulation regardless of system perturbations)
 ⇒ Error feedback + Internal Model

BACK TO THE MISSISSIPPI – 1850s

"... You only learn *the* shape of the river; and you learn it with such absolute certainty that you can always steer by the shape that's *in your head*, and never mind the one that's before your eyes."

Mark Twain, Life on the Mississippi, 1883 50

THINGS TO DO

- Computational examples to confirm the model, especially for nonlinear systems.
- Relevance to "limiting" cases like bang-bang and sliding-mode control systems.
- Stabilization of the feedback loop when it contains an internal model of the (unstable) exosystem.
- Topological and metric extensions.

REFERENCES

• W.M. Wonham

Towards an Abstract Internal Model Principle, IEEE Trans. on Systems, Man, and Cybernetics SMC **6** (11), 1976, pp.735-740.

 W.M. Wonham, Kai Cai Supervisory Control of Discrete-Event Systems, in monograph series Communications and Control Engineering, Springer, 2018.

SPECULATION: WHAT IS "CONSCIOUSNESS"?

COULD WE SAY THAT A CREATURE IS "CONSCIOUS" IF IT HAS AN INTERNAL MODEL OF ITSELF ?

TO AVOID AN INFINITE RECURSION, SUCH AN INTERNAL MODEL WOULD NEED TO BE AN

ABSTRACTION OF THE SELF

OPEN PROBLEM FOR YOU TO WORK ON!

THANK YOU