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On the Synthesis of Stable Walkover Gaits for the
Acrobot

Emily Kao-Vukovich, Manfredi Maggiore

Abstract—We introduce a novel method of producing stable
walking gaits for the acrobot using virtual holonomic constraints
(VHCs). Using this method, we produce a new stable walking
motion for the acrobot, the walkover gait. In this gait, the
swing leg rotates counterclockwise up and over the stance leg,
as opposed to the standard compass gait where the swing leg
rotates clockwise and overlaps with the stance leg partway along
the motion. The walkover gait is found by searching for a
virtual holonomic constraint enjoying certain properties, among
them the requirement of producing a stable hybrid limit cycle
corresponding to walking. Key to the proposed approach is the
recently developed notion of the virtual constraint generator
(VCG), a control system on the configuration manifold of the robot
whose solutions are all possible VHCs up to reparametrization.
A systematic procedure is presented for the synthesis of VHCs
achieving the desired walking motion for the acrobot, culminating
in an optimal control problem for the VCG, solved numerically
to produce the gait. Theoretical characterizations are given for
the feasibility of the gait generation problem.

I. INTRODUCTION

THIS paper investigates the problem of gait generation us-
ing virtual holonomic constraints (VHCs) for the walking

acrobot depicted in Figure 1, an underactuated robot with two
degrees-of-freedom and one actuator at the hip. The acrobot is
the simplest bipedal robot, and there is a wealth of literature
on designing acrobot gaits. In 1990, McGeer [1] discovered
natural gaits for passive acrobots with rocker feet walking
down an incline. This work spurred significant research in
passive dynamic walking and passivity-mimicking controllers
for actuated bipeds. In [2], Garcia et al. extended McGeer’s
work to show that a simpler passive acrobot model with point
feet also exhibits stable gaits on shallow slopes. Goswami
et al. designed controllers to track characteristics of passive
gaits, such as average speed per step, to achieve stable walking
for fully actuated acrobots on flat ground or even up shallow
slopes [3]. Spong and collaborators took an energy-shaping
approach. Their control design uses controlled symmetries
to create a virtual gravitational force such that the acrobot
behaves as though it is passively walking down some desired
slope (see, e.g., [4], [5], [6]). Asano et al. took a similar
approach in [7], taking into consideration stability of the
zero moment-point. All of these control schemes require full
actuation. However, bipedal robots are often underactuated,
such as in the case of robots with point feet.
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Fig. 1: The walking acrobot.

In the early 2000s, Grizzle and collaborators introduced
the use of VHCs as a tool for bipedal motion control. This
seminal work showed that for a system with one degree
of underactuation, a judicious choice of virtual constraint
will induce a stable hybrid limit cycle corresponding to a
stable periodic gait (e.g., [8], [9], [10], [11], [12], [13]).
In particular, the authors showed that enforcing a suitable
virtual constraint condenses the stability analysis for the full-
dimensional system down to a stability analysis for a two-
dimensional system, from which one can extract conditions
for the existence and stability of a stable hybrid limit cycle.
The virtual constraint paradigm has been applied to numerous
bipedal motion applications, such as bipedal robots (e.g., [14],
[15], [16], [17], [18]), prosthetic legs (e.g., [19], [20]), and
exoskeletons (e.g., [21]). Recent work has also extended this
VHC theory to systems with higher degrees of underactuation,
such as in [22] and [23].

The central challenge in the VHC approach is to design a
constraint that not only achieves walking for one step, but
also produces a stable hybrid limit cycle. The predominant
approach is to express the virtual constraints using Bézier
polynomials whose coefficients are determined through a
nonlinear optimization procedure. Desired gait properties are
posed as optimization constraints, and the cost is generally
some measure of efficiency, such as the average sum squared
torque over a step (e.g., [9], [12], [24]).

Contributions of this paper. This paper presents a novel
gait synthesis method for the acrobot using virtual constraints.
Similarly to the literature on bipedal locomotion cited above,
we produce a desired walking motion by enforcing a virtual
holonomic constraint (VHC) inducing a stable hybrid limit
cycle. The novelty of the proposed approach is in the way
in which the VHC is synthesized. We rely on the concept of
the virtual constraint generator (VCG) recently developed by
Otsason et al. in [25] to convert the gait synthesis problem into
an optimal control problem for the VCG, which can then be
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solved numerically to obtain a VHC inducing the desired gait.
Our method allows for some degree of theoretical analysis
of feasibility, something which is currently not present in the
literature.

We introduce our novel method by way of a working
example, the walkover gait. In this gait, one leg rotates
counterclockwise up and over the other, as shown in Figure 2.
The gait resembles the walkover manoeuvre in gymnastics,
where the gymnast supports themselves on their hands and
swings their legs up and over their head, landing in a backbend
position. The walkover gait is an unusual gait that does not
resemble natural biped motion, but it serves to demonstrate
the types of complex motions that can be produced using the
gait design technique proposed in this paper. There are three
key specifications for walking.

First, the VHC curve must connect pre- and post-impact
configurations of the robot, and this is a motion planning
problem for the VCG. Proposition 1 in this paper gives
necessary and sufficient conditions for the existence of a VHC
solving the problem. In this context, we also want the curve
to be contained in a safe set where the robot has no unwanted
collisions with the ground, but we do not investigate this
requirement theoretically.

Second, the VHC must satisfy the hybrid invariance con-
ditions developed in [9] and avoid Zeno solutions in the
constrained dynamics, and this translates to a requirement for
the initial and final values of the control signal of the VCG
producing the gait. In Proposition 2, we give necessary and
sufficient conditions for the feasibility of this problem.

Finally, the VHC must induce a stable hybrid limit cycle,
for which conditions were developed in [9]. These conditions
impose a functional constraint on the trajectories of the VHC,
which we formulate as an optimal control problem that also
encompasses all other specifications. The numerical solution
of this problem gives the desired gait. The technique presented
here can be adapted to produce other gaits, for example
compass gaits.
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Fig. 2: The walkover gait.

Although the focus of this paper is on designing walkover
gaits for the acrobot, with minimal modifications the proposed
method can be used to generate different types gaits for the
acrobot. Furthermore, several ideas and results are amenable
to generalization to planar walking robots with degree of

underactuation one, and we point this out at various points
in the paper.

Comparison to existing literature. The gait synthesis
method presented in this paper follows directly from the
hybrid zero dynamics (HZD) theory of Grizzle et al. in [26].
Our method of gait synthesis, however, differs fundamentally
from that of [26]. Virtual constraints must satisfy a regularity
condition whereby, viewed as outputs of the robot, they yield
a well-defined relative degree of two. The approach of [26]
involves searching over the space of all Bézier curves of a
specified degree (e.g., [9], [12], [23]) and imposing regularity
as a constraint in the optimization process. The method pro-
posed in this paper has the regularity requirement built-in: all
solutions of the VCG are automatically regular VHCs. Existing
HZD methods rely on an a priori parametrization of the VHCs
which restricts the class of constraints that these methods
can produce. Among other things, the designer is required
to choose a so-called timing variable for the VHC which
must be monotonic along closed-loop solutions satisfying
the constraint. In contrast, the optimal control formulation
proposed in this paper searches the space of all regular VHCs
and does not require the designer to choose a timing variable.

Another difference with existing HZD methods is that the
approach proposed here is amenable to theoretical analysis.
For example, one can ask questions such as “Does there exist
a VHC connecting two configurations and guaranteeing hybrid
invariance?”. These questions can be converted to control-
theoretic questions for the VCG, and insight can be derived
from their investigation. For instance, in this paper we find
that only certain leg apertures (the angle β in Figure 2) are
compatible with walking motion. We provide a more detailed
comparison between our approach and other HZD methods in
Section XI.

In this paper we are concerned with producing a walkover
gait for the acrobot. To the best of our knowledge, the
walkover gait has not yet been proposed for the acrobot using
virtual constraints. A motion similar to the walkover gait is
investigated in [27] for an acrobot with rounded links. This
work features a similar backbending motion, however due to
the curved links the acrobot exhibits a rolling motion and so
never impacts the ground. Further, our method can be used to
produce stable walkover gaits where the acrobot walks uphill
for very shallow inclines. The walkover gait is reminiscent of
the underhand brachiating gait (e.g., [28], [29], [30]), but with
the effect of gravity reversed. The problems of the brachiating
gait and the walkover gait also differ in that the brachiating gait
is designed to reduce velocity as the swing arm approaches the
ceiling in order to minimize the effect of collisions with the
ceiling [29], [30]. In contrast, since the acrobot is walking on
the ground, we allow for collisions and instead the approach
in this paper follows the method of Grizzle and collaborators,
and uses a model of the impacts.

The work of Asano in [31] shares some similarities with
this paper. Asano finds virtual constraints as the solution to
a boundary value problem for a set of differential equations
in a modified phase variable. In this paper we also pose the
constraint design problem as the solution to a boundary value
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problem, however our approach operates in the configuration
space. Furthermore, Asano’s approach is designed to handle
gaits where the stride length changes from step to step, and
so does not require that the constraint correspond to a stable
hybrid limit cycle. Finally, Asano’s approach requires that the
acrobot legs are bent to shift their centres of mass in the
direction of the gait. In this paper we consider the case of
completely straight legs.

Paper organization. In Section II we formulate the
walkover gait generation problem. In Sections III and IV
we present the hybrid model of walking for the acrobot and
concisely review the preliminary notions needed for subse-
quent development. In Section V we outline our strategy
for gait generation. In Sections VI and VII we characterize
the existence of VHC curves connecting two points in the
configuration manifold and enjoying the hybrid invariance
property. In Section VIII we formulate an optimal control
problem for gait synthesis, and in Section IX we present
simulation results. In Section X, we discuss practical aspects
of controller implementation, in particular ways to take into
account ground reaction forces at impact. We also discuss the
generalizability of our results. In Section XI, we compare the
procedures of this paper to those presented in [12] as well
as the more recent techniques in FROST, a state-of-the-art
toolbox for generating VHCs. Concluding remarks are made
in Section XII.

Notation. We denote by S1 the unit circle in R2. If h :
Rn → Rm is a smooth function, and q ∈ Rn we denote by
dhq the Jacobian matrix of h at q. If Q is a smooth manifold
and p ∈ Q, then we denote the tangent space to Q at p by
TpQ and the tangent bundle of Q by TQ. If f is a vector field
on Rn and q ∈ Rn then Of (q) denotes the orbit of f through
q, and Φf

t (q) denotes the flow of f from q at time t. We use
the shorthand notation sq for sin(q) and cq for cos(q). For a
positive integer n, we denote by In the n×n identity matrix.
We denote by ∥v∥ the Euclidean norm of a vector v ∈ R2, and
by ⟨v, w⟩ the Euclidean inner product of vectors v, w ∈ R2.

II. PROBLEM FORMULATION

In this paper we generate stable walking gaits for the acrobot
producing the kind of walkover motion depicted in Figure 2.
This motion describes a “backbending” behaviour, where one
leg swings clockwise and over the other, in contrast with the
traditional compass gait where one leg swings counterclock-
wise and in front of the other. We assume that the two legs
are identical. We further assume that the stance foot is pinned
to the ground during the stance phase.1

The configuration variables of the acrobot are the angle q1
of its stance leg with the ground, and the relative angle q2
between the two legs, as illustrated in Figure 1. When defining
the walkover gait, we need to account for the direction and
number of revolutions performed by the legs. For this reason,

1In practice, this could be achieved via a mechanism, e.g., an electroper-
manent magnet, which locks the stance foot in place during the swing phase
and releases the stance foot when the swing foot impacts the ground. This
assumption is essential as it allows us to disregard requirements on ground
reaction forces. Inclusion of ground reaction forces as optimization constraints
is the subject of future research, as discussed in Section X.

q1

q2

S+

2π

W

S−
q−

q+

−2π

π
2

π

Fig. 3: Impact surfaces and safe set for walkover gait.

we consider the angles q1 and q2 as elements of R, and we
take the configuration manifold of the pinned acrobot to be
Q = R2, and its state space to be TQ = R2 × R2.

Impact with the ground occurs whenever the tip of the
swing leg hits the ground, and one can easily see that this
happens whenever the configuration vector q is on the pre-
impact surface S− ⊂ Q, defined as

S− := {(q1, q2) ∈ [0, π/2]× R : q2 = −2q1}. (1)

Note the restriction q1 ∈ [0, π/2] reflecting the fact that for
an appropriately designed walking gait, the swing leg impacts
the ground ahead of the stance leg. We denote by q− ∈ S−

the configuration vector when the swing leg hits the ground.
Immediately after impact, the two legs swap identity, re-

sulting in a relabelling of the configuration variables. Letting
R : Q → Q be the function mapping q to its relabelled
counterpart (this function is presented in Section III), the pre-
impact surface gets mapped via R to the post-impact surface

S+ = {(q1, q2) ∈ [π/2, π]× R : q2 = −2q1 + 2π}. (2)

The pre- and post-impact surfaces are depicted in Figure 3.
We let q+ := R(q−) ∈ S+ denote the relabelled configuration
vector at impact. In describing the gait, we take the convention
that the gait starts at the post-impact state q+ ∈ S+ and ends
at the pre-impact state q− ∈ S−, just as depicted in Figure 2.

A symmetric gait requires that the acrobot begin and end a
step with the same leg aperture, denoted β (see Figure 2). A
choice of β uniquely characterizes q+ and q− as follows:

q+ :=

[
β+π
2

π − β

]
, q− :=

[
π−β
2

β − π

]
. (3)

The walkover gait will make the robot’s configuration tran-
sition between q+ ∈ S+ and q− ∈ S− with the further
constraint that the configuration q be contained in the safe
set

W = {(q1, q2) : 0 ≤ q1 ≤ π,−2q1 ≤ q2 ≤ 2π − 2q1}, (4)

so that the stance leg remains above-ground (i.e., 0 < q1 < π)
and the swing leg stays within one counter-clockwise revolu-
tion of the stance leg (i.e., −2q1 < q2 < 2π − 2q1).

In this paper, as in much literature on bipedal locomotion,
a gait will be described by a parametric curve q = σ(θ)
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representing a virtual holonomic constraint (VHC) that will
be stabilized via feedback control. Designing a gait means
designing a VHC curve that connects q+ ∈ S+ to q− ∈ S−

and is entirely contained in the safe set W . VHCs are reviewed
in Section IV-A.

In addition to being contained in the safe set W , to
ensure that there are well-defined constrained dynamics in the
presence of impacts, the curve q = σ(θ) must have unique
intersections with S+ and S− and meet the so-called hybrid
invariance conditions presented in [9]. Additionally, we also
want the constrained dynamics to have no Zeno solutions, i.e.,
solutions where the state jumps indefinitely and time does not
progress. These notions are reviewed in Section IV-B.

Finally, the VHC curve must give rise to constrained dynam-
ics with an asymptotically stable hybrid limit cycle. These
conditions were developed in [9] (see also [12]) and are
reviewed in Section IV-B. The foregoing considerations are
summarized in the next problem statement.

Gait Generation Problem. Given a fixed impacting aperture
β, find a regular VHC curve σ : R → Q for the acrobot
meeting the following specifications (see Figure 3):

G.A Walkover motion: there exist θa, θb ∈ R, θa < θb, such
that 

σ(θa) = q+

σ(θb) = q−

σ(θ) ∈ W θ ∈ (θa, θb),

(5)

with q+ and q− given in (3).
G.B Hybrid invariance: the constraint manifold Γ induced by

the VHC curve q = σ(θ) satisfies the hybrid invariance
condition C1 reviewed in Section IV-B. Moreover, the
hybrid constrained dynamics do not have Zeno solutions.

G.C Stable hybrid limit cycle: the VHC curve q = σ(θ) in-
duces constrained dynamics with an asymptotically stable
hybrid limit cycle (see conditions in (19) of Section IV-C).

We remark that the requirement of a unique intersection of
the VHC with S+, S− is built into specification G.A.

III. WALKING ACROBOT MODEL

In this section we present the hybrid model of walking for
the acrobot of Figure 1. Each leg has length l, mass m, and
centre of mass at distance lc from the point foot, as shown in
Figure 1. We denote by Iz the moment of inertia of each leg
at its centre of mass. In modelling this robot and its impacts
with the ground, we follow the methodology presented in [12].

Swing Phase Model. During the swing phase, we assume
that the stance foot is pinned to the ground and as such the
dynamics are described by

D(q)q̈ + C(q, q̇)q̇ +∇P (q) = Bτ, (6)

where q = [q1 q2]
⊤ are the generalized coordinates as shown

in Figure 1, and

D(q) =

[
m(2l2c + l2 + 2llccq2) + 2Iz m(l2c + llccq2) + Iz

m(l2c + llccq2) + Iz ml2c + Iz

]
,

(7)

C(q, q̇) = −mllcsq2

[
q̇2 q̇1 + q̇2
−q̇1 0

]
,

P (q) = Gsq1(mlc +ml) +Gsq1+q2mlc.

The matrix B is given by B = [0 1]⊤ as the acrobot is
actuated at the hip, and so the acrobot model has two degrees
of freedom and one actuator, τ ∈ R. The state of this system is
x = [q⊤ q̇⊤]⊤ ∈ TQ. In what follows, let pv(q) denote the
height of the swing foot from the ground, given by pv(q) =
l(sq1 + sq1+q2).

Hybrid model of walking. The model of the walking
acrobot is a hybrid dynamical system{

D(q)q̈ + C(q, q̇)q̇ +∇P (q) = Bτ (q, q̇) ∈ C

(q+, q̇+) = ∆(q−, q̇−) (q, q̇) ∈ D,
(8)

whereby the swing phase model (6) is augmented with a so-
called impact map ∆ making the state jump whenever the tip
of the swing leg hits the ground. The flow and jump sets, C
and D, are defined as

C = {(q, q̇) ∈ TQ : q1 ∈ [0, π], pv(q) ≥ 0}
D = {(q, q̇) ∈ TQ : q1 ∈ [0, π], pv(q) ≤ 0}.

The restriction q1 ∈ [0, π] is made so that the stance leg
remains above the ground. The impact map reflects the fact
that when the swing foot impacts the ground, it becomes
pinned to the ground, the stance leg is released, and the
identities of the legs are swapped. Since the flow and impact
maps are smooth, and since the flow and jump sets C,D are
closed, this hybrid dynamical system satisfies the hybrid basic
conditions of [32], and is therefore well-posed.

In this paper we use the impact map and related assumptions
presented in [12]. In particular, we assume that at impact
the ground reaction forces are impulsive and there is no
instantaneous change in configuration. As in [12], we break
down the derivation of the impact map into three phases:

Pre-impact phase with state (q−, q̇−). The tip of the swing
leg has reached the ground. This occurs when q(t) hits the
pre-impact surface S− defined in (1).

Post-impact phase with state (q0, q̇0). The impulsive ground
reaction forces have caused the generalized velocity q̇ to jump
from q̇− to q̇0, while q0 = q− because the impact does not
cause the angles to change. We seek to find the map ∆1 :
S− × R2 → S− × R2, (q−, q̇−) 7→ (q0, q̇0).

Following [12], ∆1 is derived by first unpinning the stance
foot at the moment of impact. Integrating the equations of
motion over the impulsive impact event, one obtains an
equation for the variation of generalized momentum at impact.
Finally, by imposing the conditions of no slip and no rebound
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of the swing foot at impact and solving for the relation between
q̇0 and q̇−, ones arrives at the relation q̇0 = Ω(q−)q̇−, where

Ω(q−) =
[
I2 02×2

] [
I4 −D−1

e E⊤(ED−1
e E⊤)−1E

] [ I2
02×2

]
(9)

and the matrix-valued functions De and E, given in Ap-
pendix A, are evaluated at q−. In conclusion, the map ∆1

is given by ∆1(q
−, q̇−) =

(
q−,Ω(q−)q̇−

)
.

Relabelling phase with state (q+, q̇+). The identities of the
legs are swapped, and as a result the state of the acrobot is
relabelled. We seek to find the map ∆2 : S− × R2 → S+ ×
R2, (q0, q̇0) 7→ (q+, q̇+). Figure 4 illustrates the relationship
between q0 and q+, and it is easily seen that

q+ = R(q0) = −q0 +

[
π
0

]
. (10)

One can easily see that the post-impact surface presented in (2)
is given by S+ = R(S−). The map ∆2 : S−×R2 → S+×R2,
(q0, q̇0) 7→ (q+, q̇+) is given by

∆2(q
0, q̇0) =

(
R(q0), dRq0 q̇

0
)
=
(
− q0 + [π 0]⊤,−q̇0

)
.

q−1

q−2

q+1

q+2

R(q−)

Fig. 4: Effect of relabelling map on acrobot configuration
variables. The solid line represents the stance leg and the
dashed line represents the swing leg.

Impact model: The impact map ∆ is the composition of ∆1

and ∆2, ∆ := ∆2◦∆1 : S−×R2 → S+×R2, and it maps the
pre-impact state (q−, q̇−) to the post-impact, relabelled state
(q+, q̇+) as follows:

∆(q−, q̇−) =
(
R(q−),−Ω(q−)q̇−

)
, (11)

with Ω(q−) and R(q−) given in (9) and (10), respectively. This
concludes the derivation of the hybrid model of walking (8).

IV. PRELIMINARY NOTIONS

In this section we briefly review virtual holonomic con-
straints focusing on the two DOFs system (6) and its hybrid
counterpart (8). We also recall the hybrid reduced dynamics
induced by a VHC and the conditions for the existence of a
stable hybrid limit cycle originally presented in [9] (see also
the book [12]). The general theory can be found in [33], [34],
[9].

A. Virtual constraints and constrained dynamics

A regular virtual holonomic constraint (VHC) for the
mechanical system without impacts (6) is an embedded curve
C in the configuration manifold Q satisfying the transversality
condition

(∀q ∈ C) TqC ⊕ Im(D−1(q)B) = TqQ. (12)

Geometrically, the condition requires that the control input τ
imparts accelerations in a direction transversal to C.

If the curve C is expressed implicitly as a relation C = {q ∈
Q : h(q) = 0}, where h : Q → R is C2 and has nonvan-
ishing Jacobian on C, then the transversality condition (12)
amounts to requiring system (6) with output e = h(q) to
have a well-defined relative degree 2 on C. The zero dynamics
manifold ([35]),

Γ := {(q, q̇) ∈ TQ : h(q) = 0, dhq q̇ = 0},

is called the constraint manifold associated with the VHC
h(q) = 0, and it is the set where the constraint h(q) = 0
is satisfied and the velocities q̇ are tangent to C. From a
dynamical viewpoint, Γ is the largest subset of TQ that can
be made invariant via feedback control and such that solutions
(q(t), q̇(t)) satisfy h(q(t)) ≡ 0. Taking two derivatives of the
output e along solutions of (6), one obtains an expression of
the form ë = F (q, q̇) + (dhqD

−1B)τ , and since the output
e = h(q) yields relative degree 2, the coefficient dhqD

−1(q)B
is nonzero on C. The smooth feedback linearizing controller

τ⋆(q, q̇) = (dhqD
−1B)−1(−Kph(q)−Kddhq q̇ − F (q, q̇))

locally asymptotically stabilizes2 Γ.
One may also express the VHC curve C parametrically

as C = {q ∈ Q : q = σ(θ), θ ∈ R}, where σ is C2

and has nonvanishing derivative, in which case we speak
of a parametric VHC, and the transversality condition (12)
becomes

(∀θ ∈ R) span{σ′(θ)}⊕ Im(D−1(q)B)
∣∣∣
q=σ(θ)

= Tσ(θ)Q. (13)

The variable θ ∈ R parametrizing the VHC curve is called the
phase variable of the constraint. With this parametrization,
the constraint manifold is given by Γ = {(q, q̇) ∈ TQ : q =
σ(θ), q̇ = σ′(θ)θ̇, θ, θ̇ ∈ R} and, if the curve is open, the map
Σ : (θ, θ̇) ∈ R × R 7→ (σ(θ), σ′(θ)θ̇) ∈ TQ is an embedding
and its image is Γ.

The parametric description of a VHC allows us to express
the system dynamics on the constraint manifold in terms of
only the phase variable θ and its derivative, θ̇. Substituting
(q, q̇) = Σ(θ, θ̇) in (6) and premultiplying both sides of the
equation by a rank 1 left-annihilator of B, B⊥ = [−1 0], we
get the constrained dynamics

θ̈ = Ψ1(θ) + Ψ2(θ)θ̇
2, (14)

2There is an additional requirement for the stabilizability of VHCs, presented
in [33].
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where

Ψ1(θ) = −B⊥∇P

B⊥Dσ′

∣∣∣
q=σ(θ)

, (15a)

Ψ2(θ) = − 1

B⊥Dσ′

[
B⊥(Dσ′′ + C(σ, σ′)σ′)

]∣∣∣
q=σ(θ)

. (15b)

The reason why (14) is called the constrained dynamics is
this: if Γ is rendered invariant by a feedback controller, then
all solutions of the closed-loop system on Γ have the form
(q(t), q̇(t)) = Σ(θ(t), θ̇(t)), where θ(t) is a solution of (14).

It was shown in [36] that if C is an open curve (as it
is for any walking acrobot gait), then the reduced dynamics
are Euler-Lagrange, with Lagrangian L = 1

2M(θ)θ̇2 − V (θ),
where M and V are the virtual mass and virtual potential,
defined as:

M(θ) = exp

{
−2

∫ θ

θa

Ψ2(ξ)dξ

}
, (16a)

V (θ) = −
∫ θ

θa

Ψ1(ξ)M(ξ)dξ, (16b)

where θa is an arbitrary fixed parameter. In Section IV-B,
θa will represent the value of the phase variable associated
with the beginning of a step.

B. Hybrid constrained dynamics

We now consider virtual constraints in the context of the
hybrid dynamical system (8). Following [9], [12], we seek a
VHC C satisfying these two conditions:
C1 Hybrid Invariance of Γ: if q ∈ C ∩ S− and q̇ ∈ TqC,

then ∆(q, q̇) ∈ TqC. That is, if the acrobot impacts the
ground while on the constraint manifold, the impact map
keeps the state on the constraint manifold.

C2 Unique Intersection: C∩S− must be a unique point. Let
q− be this point of intersection. Then there is a unique
θb such that σ(θb) = q−.

Under these two assumptions, following the development
in [12], there is a reduced impact map on Γ represented using
(θ, θ̇) coordinates. Using the parameterization q = σ(θ), we
obtain the effect of the relabelling map on θ,

θa = σ−1(R(σ(θb))).

The jump in velocities is given by q̇+ = −Ω(q−)q̇−. Writing
this in terms of θ and solving for θ̇a, we obtain θ̇a = δθ̇b,
where

δ = −⟨σ′(θa),Ω(q
−)σ′(θb)⟩

∥σ′(θa)∥2
. (17)

Note that δ ̸= 0 since q̇+ = σ′(θa)θ̇a ̸= 0 by the
assumption that the stance leg detaches from the ground on
impact. Recalling the definition of the flow set C in Section III,
we assume without loss of generality that θa < θb and that
σ(θ) ∈ C if and only if θ ∈ [θa, θb]. Then the flow set of the
constrained dynamics is Ĉ = [θa, θb]×R, and the jump set is
D̂ =

(
(−∞, θa] ∪ [θb,∞)

)
× R.

In conclusion, if q = σ(θ) is a parametric VHC satisfying
conditions C1 and C2 then the dynamics on the constraint
manifold Γ are described by the hybrid dynamical system:{

θ̈ = Ψ1(θ) + Ψ2(θ)θ̇
2 (θ, θ̇) ∈ Ĉ

(θ, θ̇)+ = (θa, δθ̇) (θ, θ̇) ∈ D̂.
(18)

The reduced impact map is the second equation in (18). We
remark that if δ < 0, all solutions (θ(t), θ̇(t)) of (18) reaching
the line {(θ, θ̇) : θ = θb} stop flowing and jump indefinitely,
causing Zeno behaviour. The requirement δ > 0 will be built
in the design of our VHC, see Section VII.

C. Stable hybrid limit cycles

The work in [9], [12] presents the following conditions for
existence and stability of hybrid limit cycles in the constrained
dynamics3:

0 <
δ2

M(θb)
< 1, (19a)

V (θb)δ
2

M(θb)− δ2
+ Vmax < 0, (19b)

where Vmax := maxθ∈[θa,θb] V (θ). The analysis in [12] is
of Poincaré type. The authors choose the Poincaré section
{(θ, θ̇) : θ = θb}, and show that, under the conditions (19),
there is a fixed point in the section, and the eigenvalue of
the linearization of the Poincaré map at this fixed point is
δ2/M(θb). We will make use of the eigenvalue δ2/M(θb) in
Section IX.

V. BASIC IDEA FOR GAIT GENERATION

We have seen in Section II that the gait generation problem
involves finding a parametric VHC q = σ(θ) contained in
the safe set W ⊂ Q and connecting two points q+ and
q− uniquely determined by the leg aperture β as per (3).
This curve must also meet specifications G.B, G.C. One
could follow the approach in, e.g., [12], [23], and let σ(θ)
be a set of Bézier polynomials, then formulate a constrained
parameter optimization problem for these polynomials. The
constraints of this program would be the identities σ(θa) =
q+, σ(θb) = q−, the containment in W , the regularity property
in (13), and specifications G.B, G.C. While this approach
will be successful in a number of practical scenarios, it is
not amenable to theoretical analysis. Existential questions
such as “Does there exist a VHC curve connecting q+ and
q−?” cannot be easily formulated in this setup, and one is
unlikely to gain much theoretical insight on a given problem.
To illustrate, a byproduct of the development of this paper
is that the gait generation problem is unsolvable for certain
values of the leg aperture β, and there are precise conditions
ensuring the existence of a VHC curve connecting two points.
Another consideration is that the parametric space of Bézier

3Note that in [12], the authors express equations (19) and the eigenvalue of
the linearized Poincaré map using a different set of coordinates; the detailed
derivation of these conditions using the (θ, θ̇) coordinates of system (18) is
found in [37].
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polynomials can be large, and it would be desirable to restrict
the search to just the space of all regular VHC curves.

Let facr := (B⊥)⊤ =
[
− 1 0

]⊤
and gacr(q) := D−1(q)B,

and consider the single-input planar control system

dq

dθ
= facr(q) + gacr(q)u. (20)

For each q ∈ Q and u ∈ R, the vector facr(q) + gacr(q)u
is transversal to the subspace Im(D−1(q)B), and therefore
any solution q = σ(θ) of the differential equation (20) for
arbitrary C1 control signal u(θ) satisfies the transversality
condition (13). One expects, therefore, that all solution curves
of (20) should be parametric VHCs for system (6), and in fact
we have an even stronger result. In [25] it was shown that
if q = σ(θ) is a parametric VHC for system (6), then up to
reparametrization, σ(θ) is a solution of the control system (20).
Vice versa, if q = σ(θ) is a solution of (20) for a C1 control
signal u : R → R, and if it is an embedded curve, then it is a
parametric VHC for system (6). In short, the set of embedded
solutions of (20) for C1 control signals coincides, up to
reparametrization, with the set of all parametric VHCs, and
for this reason (20) is called the virtual constraint generator
(VCG) of system (6). The control input u of the VCG will be
referred to as the virtual control.

We now outline our strategy for addressing each of the
subproblems G.A through G.C. We we explore each sub-
problem in detail in Sections VI, VII, and VIII. Searching
for a gait, i.e., a parametric VHC connecting two points q+

and q− in Q, corresponds to setting q(0) = q+, and finding
a C1 virtual control signal u(θ) producing a solution of (20)
that reaches4 q− in finite time θ. Thus specification G.A is
a motion planning problem for the VCG (20). In Section VI
we investigate conditions for the existence of a solution to
this problem. As we shall see in Section VII, enforcing the
hybrid invariance requirement G.B amounts to restricting the
initial and final values of the virtual control signal u(θ).
Finally, the requirement G.C that the VHC induces a stable
hybrid limit cycle amounts to two functional constraints on
the solutions of the VCG (20). The above considerations will
lead to the formulation of an optimal control problem for the
VCG (20), the solution to which will be a gait solving the gait
generation problem. To summarize, these are the next steps of
our development:

1) Motion planning (Section VI): Find conditions under
which two points q+, q− ∈ Q can be connected by a
solution of (20).

2) Hybrid invariance (Section VII): Find requirements on
the initial and final values of virtual control inputs for the
VCG (20) to guarantee hybrid invariance of the constraints
it generates.

3) Optimal control formulation (Section VIII): Frame the
gait generation problem as an optimal control problem
for the VCG (20), and numerically determine the optimal
virtual control signal for the VCG.

4Since the orientation of the solution curve of (20) is immaterial for the
purpose of determining parametric VHCs, we simultaneously consider the
complementary problem of setting q(0) = q− and seeking to reach q+.

We remark that although the focus of this paper is on
the design of walking gaits for the acrobot, some aspects of
the discussion above are of a general nature. In particular,
the observation made earlier that the design of a VHC curve
connecting two points is mathematically equivalent to a motion
planning problem for the VCG is true for any mechanical
system with degree of underactuation one.

VI. POINT TO POINT MOTION PLANNING

In this section we investigate this motion planning problem:
find conditions for the existence of a piecewise continuous
virtual control signal u(θ) for the VCG (20) such that the
corresponding solution σ(θ) of (20) satisfies σ(θa) = q+ and
σ(θb) = q−, for some θa, θb ∈ R. Since we do not care about
the orientation of VHC curves, we do not require that θa < θb.
For q0 ∈ Q, we denote by R(q0) the set of states reachable
set from q0 in positive time by solutions of (20). The problem
above can be restated as follows. Given q+, q− ∈ R2, find
conditions under which either q− ∈ R(q+) or q+ ∈ R(q−).
For convenience, we will refer to this problem as MP.

Generally, the characterization of reachable sets of nonlinear
control systems is hard, but in the case of the VCG (20),
a control affine system on the plane in which the drift and
control vector fields are everywhere linearly independent, such
characterization can be carried out to a satisfactory conclusion.
Indeed, for control systems such as (20), [38, Theorem 2.1]
states that for each q0 ∈ Q, the boundary ∂R(q0) is the union
of orbits of gacr. Since ∥gacr∥ is bounded away from zero on
Q, all orbits of gacr are embedded curves in Q, and therefore
they are diffeomorphic to either R or S1. Since gacr has no
equilibria, the Poincaré-Bendixson theorem implies that the
orbits of gacr are diffeomorphic to R. Being embedded in Q,
each orbit Ogacr(q0) of gacr divides R2 into two disjoint open
subsets, as shown in Figure 5. Denoting these two subsets
D+(q0) and D−(q0), with the convention that f(q0) points to
the interior of D+(q0), we have

D+(q0) ∪ Ofacr(q0) ∪ D−(q0) = R2 (disjoint union).

We remark that the set D+(q0) is positively invariant for (20)
under any choice of control signal.

Ogacr(q0)

q0

q1

q2

q̂

Ogacr(q̂)

Ofacr(q0)

D+(q0) D−(q0)

Fig. 5: Example of an integral curve Ogacr(q̂) that is reachable
from q0. All points to the left of Ogacr(q0) are reachable in
positive time.

For each t > 0, letting q̂ = Φfacr
t (q0), we have that

q̂ ∈ R(q0), and therefore Ogacr(q̂) ∩ R(q0) ̸= ∅. Since R(q0)
is an open set, this latter conclusion implies, in light of [38,
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Theorem 2.1], that Ogacr(q̂) ∩ ∂R(q0) = ∅. Together, the
properties Ogacr(q̂) ∩ R(q0) ̸= ∅ and Ogacr(q̂) ∩ ∂R(q0) = ∅
imply that Ogacr(q̂) ⊂ R(q0). Since q̂ ̸= q0 is an arbitrary
point on the positive semiorbit Ofacr(q0), we have⋃

q̂=Φf
t (q

0),t>0

Ogacr(q̂) ⊂ R(q0).

Now note that facr is a constant vector field whose orbits are
straight horizontal lines, and the orbits of gacr are parallel
translations of the orbit Ogacr(q0) displayed in Figure 5. It
follows that, for each q0 ∈ Q, the orbit of facr through q0

crosses all orbits of gacr in D+ in positive time, and therefore
the set on the left-hand side of the above inclusion is the entire
D+(q0). This establishes that D+(q0) ⊂ R(q0). Since D+(q0)
is positively invariant for (20) under any control signal, we also
have R(q0) ⊂ D+(q0), and we reach the conclusion that

D+(q0) = R(q0).

We have thus reached a full characterization of the reachable
set R(q0) for the VCG (20). We now return to our motion
planning problem MP: find conditions under which either
q− ∈ R(q+) or q+ ∈ R(q−). In light of the foregoing
discussion, we have the following result.

Proposition 1. For each q+, q− ∈ Q there exists a parametric
VHC q = σ(θ) connecting q+ and q− (i.e., for some θa, θb ∈
R, σ(θa) = q+ and σ(θb) = q−) if, and only if, q+ and q−

do not belong to a common orbit of gacr, i.e., q− ̸∈ Ogacr(q+).

Proposition 1 gives a conclusive answer to whether MP is
solvable for the acrobot, and it furnishes a practical test: for
a leg aperture β, determine q+ and q− from (3). Plot the
orbit of gacr through q+. If, and only if, q− does not lie on
this orbit, then a parametric VHC exists that connects q+ and
q−. Note, however, that we also require the VHC curve to be
entirely contained in the safe set W . We do not investigate
this requirement theoretically in this paper (although we take
full account of it when investigating hybrid invariance in the
next section). Instead, we will pose it as a constraint in the
optimal control formulation of Section VIII.

VII. HYBRID INVARIANCE

In the previous section we have determined when there
exists a parametric VHC connecting two points q+, q− ∈ Q.
We now assume that for a given leg aperture β, the vectors
q+ and q− given in (3) satisfy the conditions of Proposition 1,
and we investigate the hybrid invariance specification G.B
of the gait generation problem. Recall that we also need to
avoid Zeno solutions of the hybrid constrained dynamics by
ensuring that δ > 0. We assume facr has been chosen so that
q− ∈ R(q+) (if not, we reverse the sign of facr).

Much work on bipedal locomotion uses VHCs described
by Bézier polynomials, in which case it is shown in [12]
that hybrid invariance can be enforced by means of certain
constraints on the coefficients of the polynomials. These
constraints amount to imposing requirements on the slopes
of the VHC curve at its endpoints. In this section we explore
this idea further for generic parametric VHCs, and we show

that hybrid invariance can be enforced by fixing the initial and
final values of the virtual control signal in the VCG.

We start from the hybrid invariance condition C1 which
requires that when (q−, q̇−) ∈ Γ, we must have ∆(q−, q̇−) ∈
Γ, or

q+ = R(q−)

q̇+ = −Ω(q−)q̇−.

The first condition is met by construction: we have built it
into our problem statement (specification G.A), and we have
given necessary and sufficient conditions for its feasibility in
Proposition 1. As for the second identity, using the fact that
Σ : (θ, θ̇) 7→ (σ(θ), σ′(θ)θ̇) is a diffeomorphism R× R → Γ,
we rewrite the identity as

σ′(θa)θ̇a = −Ω(q−)σ′(θb)θ̇b. (21)

The matrix −Ω(q−) is fixed by the choice of β, and the
unknowns are the tangent vectors to the VHC curve at its
endpoints, σ′(θa) and σ′(θb). Once these are determined, the
ratio θ̇a/θ̇b is the nonzero constant δ defined in (17).

Let t(θ) denote the unit tangent vector to the curve q =
σ(θ), i.e., t(θ) := σ′(θ)/∥σ′(θ)∥. From (21) we deduce that
t(θa) = −λΩ(q−)t(θb)/∥Ω(q−)t(θb)∥, where λ ∈ {+1,−1}
is the sign of the ratio δ = θ̇a/θ̇b. Specification G.B requires
δ > 0, so we impose λ = 1, which gives

t(θa) = Θ(t(θb)) := − Ω(q−)t(θb)

∥Ω(q−)t(θb)∥
. (22)

We have found t(θa) in terms of t(θb). Next, we need to
determine t(θb). There are two restrictions on this quantity.

First, both tangent vectors t(θb) and t(θa) = Θ(t(θb)) must
satisfy the transversality requirement (13) of a regular VHC,
i.e., be transversal to the subspace Im(D−1B). Further, since
σ(θ) is a solution of the VCG, the tangent vectors to this curve
must point to the same side of the line Im(D−1B) as facr does.
In other words, letting5 µ := sign

(
det
[
facr gacr

])
, we require

the vectors t(θb) and t(θa) = Θ(t(θb)) to satisfy

µdet
[
t(θb) D−1(q−)B

]
> 0 (23a)

µdet
[
Θ(t(θb)) D−1(q+)B

]
> 0. (23b)

Second, the curve q = σ(θ) must be compatible with the
safe set W at its endpoints. By this we mean, referring to
Figure 3, that the tangent vector t(θb) should point to the
exterior of the safe set W , and the vector t(θa) should point
to the interior of W . Letting n = −

[
2 1

]⊤
be the normal

vector to the boundary lines q2 = −2q1 and q2 = −2q1 +2π,
the compatibility requirement translates to the conditions

⟨t(θb), n⟩ ≥ 0, ⟨Θ(t(θb)), n⟩ ≥ 0. (24)

Now we bring in the VCG (20), and characterize specifica-
tion G.B in terms of the virtual control values ua = u(θa),
ub = u(θb) at the beginning and end of the step. Imposing
that σ(θ) be a solution of (20), we have

σ′(θb) = facr + gacr(q
−)ub =

[
facr gacr(q

−)
] [ 1

ub

]
. (25)

5The function µ is constant on Q because facr, gacr are everywhere
transversal.
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The matrix in (25) is invertible. Expressing the left-hand side
of the above identity as σ′(θb) = ∥σ′(θb)∥t(θb), we solve
equation (25) as follows:

1

∥σ′(θb)∥

[
1
ub

]
=
[
facr gacr(q

−)
]−1

t(θb). (26)

This identity gives ∥σ′(θb)∥ and ub in terms of t(θb). Us-
ing (22) and repeating the foregoing considerations for the
vector σ′(θa), we get ∥σ′(θa)∥ and ua:

1

∥σ′(θa)∥

[
1
ua

]
=
[
facr gacr(q

+)
]−1

Θ(t(θb)). (27)

We summarize the development so far. Given a leg aperture
β, we compute q+, q− using (3). We select t(θb) ∈ S1 such
that conditions (23) and (24) hold. This choice in particular
implies that the constant δ = θ̇a/θ̇b is positive, avoiding Zeno
solutions. If there is no choice of t(θb) ∈ S1 satisfying (23)
and (24), then the gait generation problem is unsolvable for
the given leg aperture β, and we must select a different β. If
instead there is a choice of t(θb) ∈ S1 satisfying (23)-(24),
then we compute t(θa) from (22), and ua, and ub from (26)
and (27). Any solution q = σ(θ) of the VCG connecting q+

and q− will give rise to a parametric VHC satisfying the hybrid
invariance conditions provided that the initial and final values
of the virtual control signal are ua and ub, respectively. These
considerations are summarized in the next result.

Proposition 2. Let q+, q− ∈ Q satisfy the hypothesis of
Proposition 1 and suppose that q− ∈ R(q+). Then there exists
a parametric VHC q = σ(θ) that connects q+ and q−, satisfies
the hybrid invariance specification G.B, and is compatible at
its endpoints with the safe set W if, and only if, there exists
t(θb) ∈ S1 satisfying conditions (23) and (24). Moreover, this
VHC can be generated as a solution of the VCG (20) provided
the initial and final values of the virtual control input signal
are the ones given in (26) and (27).

Although Proposition 2 concerns the acrobot, the result
can be generalized to planar walking robots with degree of
underactuation one and its essence would remain unchanged.
Namely, imposing hybrid invariance for a VHC is mathemati-
cally equivalent to imposing conditions on the initial and final
values of the virtual control signal of the VCG generating the
VHC in question.

VIII. OPTIMAL CONTROL FORMULATION

Having given theoretical characterizations of the feasibility
of specifications G.A and G.B in the gait generation problem
(with the exception of the safety requirement in G.A), we are
ready to synthesize walking gaits.

Recall that the set of embedded curves that are solutions of
the VCG (20) coincides with the set of all parametric VHCs
modulo reparametrization so designing a walking gait amounts
to designing a controller for the VCG. In this section we
formulate an optimal control problem for the VCG with an
objective functional of the form J(θb, σ, u), where θb > θa
is the variable time horizon of the problem (we pick θa = 0
for simplicity), and σ(·) is a solution of the VCG (20) with
control input signal u(·) ∈ U , the set of twice differentiable

control signals [θa, θb] → R. The optimal control signal u(·)
is subject to these constraints:
(a) For some6 θb > 0, σ(θb) = q−.
(b) The VHC curve q = σ(θ) is contained in the region W

as defined in G.A for θ ∈ (θa, θb).
(c) The virtual mass and potential induced by the VHC satisfy

the existence and stability conditions (19b):

0 <
δ2

M(θb)
< 1,

V (θb)δ
2

M(θb)− δ2
+ Vmax < 0.

While requirements (a) and (b) can be readily formulated
as constraints in an optimal control problem for the VCG,
requirement (c) and possibly the objective functional are not
ready for the formulation because they have not yet been
connected to the VCG. More precisely, we need to express
M(θb), V (θb), and Vmax in terms of the VCG state and virtual
control input. To this end, we note that the virtual mass and
potential induced by a parametric VHC q = σ(θ) depend on
the functions Ψ1,Ψ2 in (15), which in turn depend on σ, σ′,
and σ′′. Since σ(θ) is a solution of (20), we have, omitting
the argument θ,

σ′ = facr + gacr(σ)u

σ′′ = (dgacr)σ σ
′u+ gacr(σ)u

′.

Substituting the expression of σ′ from the first identity into
the second identity we get

σ′′ = (dgacr)σ
(
facr + gacr(σ)u

)
u+ gacr(σ)u

′.

We see that the derivatives σ′ and σ′′ can be expressed in terms
of σ, u, and u′, and that u′ appears in σ′′ only. Moreover, σ′′

affects the function Ψ2 in (15b) via the term B⊥Dσ′′, and
since gacr = D−1B, B⊥Dσ′′ is independent of u′. Similarly,
the terms B⊥Dσ′ in Ψ1 and Ψ2 are independent of u.

In conclusion, substituting the expressions for σ′ and σ′′

above in the definitions of Ψ1,Ψ2 in (15), we obtain a function
Ψ1 parametrized by σ, and a function Ψ2 parametrized by σ
and u. We will denote these functions by Ψσ

1 (θ) and Ψσ,u
2 (θ),

respectively. Using Ψσ
1 and Ψσ,u

2 in (16), we obtain expressions
for the virtual mass and potential parametrized by σ and u, and
denoted Mσ,u(θ), V σ,u(θ), respectively. We may now express
the constraint (19) for existence and stability of a hybrid limit
cycle in terms of the VCG solution σ(θ) and input signal u(θ).
Similarly, in the objective functional J we may use terms
dependent on the virtual mass and potential M and V because
these can be expressed in terms of σ(θ) and u(θ).

We now formally pose the finite horizon optimal control
problem with variable terminal time θb (and θa = 0). We
select a leg aperture β so that the assumptions of Proposi-
tions 1 and 2 hold. We compute q+ and q− from (3), and
ub, ua from (26)-(27) after having chosen t(θb) satisfying
conditions (23) and (24). Using (26)-(27) and (22), we also
get the vectors σ′(θa) (where θa = 0) and σ′(θb). Finally,
from (17) we get δ. We express the safe set W in (4) as
W = {q ∈ Q : Ij(q) ≤ 0, j = 1, . . . , 4}, with

I1(q) = q2 + 2q1 − 2π, I2(q) = −2q1 − q2

I3(q) = −q1, I4(q) = q1 − π.

6By our choice of facr, q− is contained in the set of points reachable from
q+ in positive time and so θb > 0.
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OPTIMAL CONTROL PROBLEM.

minimize
(θb,u)∈(θa,∞)×U

J(θb, u) (28)

subject to
dσ

dθ
= facr(σ(θ)) + gacr(σ(θ))u(θ) (29)

σ(θa) = q+ (30)
σ(θb) = q− (31)
u(θa) = ua (32)
u(θb) = ub (33)

δ2V σ,u(θb)/
(
Mσ,u(θb)− δ2

)
+ max

θ∈[0,θb]
V σ < −ε (34)

ε1 < δ2/Mσ,u(θb) < 1− ε2 (35)
Ij(σ(θ)) ≤ 0, θ ∈ (0, θb), j = 1, . . . , 4, (36)

where ε, ε1, ε2 > 0 are small design parameters and θa = 0.
This problem seeks a solution of the VCG minimizing the
objective functional under a number of constraints. Iden-
tity (30) is the initial state of the VCG, while (31) is the
target state. Identities (32) and (33) impose initial and final
values for the virtual control guaranteeing hybrid invariance.
Inequalities (34)-(35) ensure the existence and stability of a
hybrid limit cycle, while the inequalities (36) ensure that the
solution remains in the safe set W .

The well-posedness of this optimal control problem has
been partially addressed in Propositions 1 and 2. The parts
we have not characterized theoretically are the existence of
a solution meeting (34) and (36). In the next section, we
solve the optimal control problem numerically using the direct
collocation method of [39].

We emphasize that the leg aperture β and the endpoint tan-
gent vector t(θb) could be included in the set of optimization
parameters, as opposed to being fixed a priori.

IX. SIMULATION RESULTS

In this section we provide a high-level description of the
numerical procedure stemming out of the optimal control
formulation of Section VIII, and present the resulting walkover
gait. Throughout this section, we assume that there is a
holonomic constraint keeping the stance foot pinned during the
swing phase, such as the mechanism discussed at the beginning
of Section II.
NUMERICAL GAIT SYNTHESIS PROCEDURE

1. Select a leg aperture β ∈ (0, π) and compute q+, q−

according to (3).
2. Using Proposition 1, verify that there exists a VHC curve

connecting q+ and q−. This amounts to verifying that q+

and q− are not on a common orbit of gacr. If the verification
gives a negative result, stop. The gait generation problem is
unsolvable for the given β.

3. Compute7 the time it takes for the solution of facr through
q+ to reach the orbit of gacr through q−. The result of this

7One can check that [facr, gacr] = 0, and by Theorem 1 in Appendix B, this
implies that the time it takes for solutions of the VCG to transition between
any two orbits of gacr is independent of the choice of virtual control u. To
compute θb, set u(θ) ≡ 0 and find the time θ̄ it takes for the solution of the
VCG (i.e., the integral curve of facr) initialized at q(0) = q+ to reach the
orbit of gacr through q−, Ogacr (q−); then set θb = θ̄.

computation is an initialization for the variable θb. If θb < 0,
replace facr by −facr, replace θb by its absolute value, and
continue.

4. Select a unit vector t(θb) satisfying (23) and (24). If
no such quantity exists, stop. The gait generation problem is
unsolvable for the given β.

5. Using (22), compute t(θa), and using (26) and (27), com-
pute ∥σ′(θb)∥, ∥σ′(θa)∥, ua, ub. Set σ′(θb) = ∥σ′(θb)∥t(θb)
and σ′(θa) = ∥σ′(θa)∥t(θa), then compute δ using (17).

6. Set up the optimal control problem of Section VIII using
direct collocation. Initialize it with θb from step 3 and a
constant control signal ū ∈ U found by performing a 1-
dimensional search over constant controls for a solution of
the VCG connecting q+ to q−. (This search is guaranteed
to terminate successfully [37], and the constant control is
unique).

7. The output of the direct collocation algorithm is a piece-
wise constant control signal u(θ). Find the resulting solution8,
σ(θ), of the VCG. The curve q = σ(θ) is a parametric
VHC for the acrobot inducing a stable hybrid limit cycle that
corresponds to a stable walkover gait.

TABLE I: Acrobot parameters

Parameter

m 0.3 kg
lc 0.5 m
l 1 m
Iz 0.025 kg·m2

In our simulations, we explored a variety of objective
functionals J(θb, σ, u). We present results for two functionals
of the form J(θb, σ, u) = Ji(θb, σ, u) + γ Jreg(u), where

J1(θb, σ, u) =

∫ θb

θa

∥σ′(θ)∥dθ

J2(θb, σ, u) = 1/Mσ,u(θb)

Jreg(u) =

(∫ θb

θa

∥u′′(θ)∥2dθ

)1/2

,

and γ > 0 is a design parameter.
The functional J1 represents the length of the VHC curve.

Minimizing it gives VHC curves that are not too far from the
straight line segment connecting q+ and q−. This has the effect
of avoiding kicking behaviours in the gait. The functional J2
is proportional9 to the absolute value of the eigenvalue of the
linearized Poincaré map of the hybrid constrained dynamics,∣∣δ2/M(θb)

∣∣. Minimizing it gives VHC curves that induce faster
convergence to the hybrid limit cycle. The functional Jreg(u)
in both costs is a regularizing term that smooths out the control

8More precisely, the function σ is found through spline interpolation of the
samples of the numerical solution of the VCG with initial condition σ(0) =
q+ and piecewise continuous control signal u(θ). Some care must be taken
with the spline interpolation to ensure that the resulting σ respects hybrid
invariance. In MATLAB this can be done by providing the initial and final
slopes found in step 5, σ′(θa) and σ′(θb), to the spline() command.

9We recall that the function Mσ,u in the definition of J2 is the virtual
mass expressed in terms of the VCG state and control input, presented in
Section VIII.
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signal by weighing the L2 norm of the second derivative of
u.

Fig. 6: VHC curves resulting from optimization of the ob-
jective functionals J1 + Jreg (path length, shown in red) and
J2 + Jreg (eigenvalue of the linearized Poincaré map, shown
in blue) with leg aperture β = π/4. A video of the dynamic
simulation of the gait corresponding to J1 is available at
https://play.library.utoronto.ca/watch/fb4086187d812b92edac9b39c98761bb

Fig. 7: Vertical ground reaction forces for the gait correspond-
ing to the red constraint in Figure 6. The system is initialized
off the constraint and converges to the stable hybrid limit
cycle. A negative ground reaction force indicates that the
stance foot would lift from the ground, causing the acrobot
to jump.

Using the model parameters summarized in Table I (close
to those used in [13]), we find that a leg aperture β = π/4 is
feasible. Following the procedure above for the two objective

Fig. 8: Acrobot configurations along the VHC of Figure 6
corresponding to the objective functional J1+Jreg (path length)
for β = π/4. The blue line represents the stance leg, while
the black line represents the swing leg. The red lines show the
path of the hip and swing foot over the step.

Fig. 9: Phase portrait of the reduced walkover dynamics
induced by the red constraint in Figure 6. The portrait shows
convergence to the stable hybrid limit cycle. The dashed lines
indicate state jumps due to ground impacts.

functions J1 and J2, we get the constraint curves depicted in
Figure 6. These constraints meet all specifications of the gait
generation problem and produce stable hybrid limit cycles for
the walkover gait.

The configurations of the acrobot on the constraint set for
the objective function J1 are displayed in Figure 8. Near the
beginning of the step, the VCG inputs for hybrid invariance
keep the swing foot motion relatively close to the floor.
During the middle portion of the step, the swing leg swings
up and over the stance leg. Partway through this swingover
motion, the hip flicks backwards to bring the swing foot down.
The motion on the constraint manifold Γ for the constraint
associated with the objective function J1 is shown in Figure 9,
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Fig. 10: Effects of a sudden disturbance applied from t = 5.9 s
to t = 6.35 s during step 6, using the VHC associated with
J1 in Figure 6. The first subplot shows the projection of
the state trajectory on the constraint manifold, while the
second subplot shows the VHC error signal e(t) = h(q(t)).
In both subplots, red lines correspond to the solution be-
fore the disturbance is applied (t < 5.9 s), while blue
lines correspond to times after the disturbance has appeared
(t ≥ 6.35 s). Following the disturbance, during step 7 the
signal θ̇(t) gets close to zero (see point ⋆ in the figure)
meaning that the robot comes temporarily to a halt. The
robot then recovers and quickly converges to the stable hybrid
limit cycle. The video of this simulation is available at
https://play.library.utoronto.ca/watch/2ff9e40ae60ba9c2318b2d846338b219.

along with a sample solution showing convergence to the
hybrid limit cycle over multiple steps. Results for the cost
J2 are similar. Note that smoothing the final constraint, as
in Figure 6, may result in slight variations in Mσ,u(θb),
V σ,u(θb), and Vmax. It is therefore necessary to check that
the existence and stability conditions continue to be satisfied
for the smoothed constraint.

It should be noted that the optimal control formulation
used in our simulations does not impose any requirements on
the ground reaction forces at the stance foot. As such, gaits
produced with the current formulation are not guaranteed to
keep the stance foot pinned to the ground. The constraints
in Figure 6 and Figure 11 all induce gaits for which the
ground reaction forces point downwards at some point during
the step. In other words, without a mechanism in place to
keep the stance foot pinned, the stance foot would lift from
the ground. In fact, for the orange constraint in Figure 11
corresponding to β = π/3, it is possible for the method
above to produce a constraint such that the ground reaction
forces point downwards for the entire duration of the step.
Such a constraint is therefore not feasible without a method
of pinning the stance foot to the ground. In Section X, we
discuss a method of augmenting the current formulation to
enforce ground reaction forces, which will be the subject of
future work.

Figure 10 shows how the acrobot recovers from the effects

Fig. 11: VHC curves resulting from the optimization of the
objective functional J1 + Jreg for different values of the leg
aperture β.

of a sudden disturbance of finite duration acting during step
6 between t = 5.9 s and t = 6.35 s, and bringing the robot
almost to a halt during step 7. The VHC used in this simulation
is the one depicted in Figure 6 associated with the objective
functional J1. The disturbance causes the robot’s state to leave
the constraint manifold, but the robot quickly recovers and
converges again to the hybrid limit cycle. This simulation is
in line with observations conducted by other researchers using
VHCs to control biped robots, e.g., the robot Atrias in [22].

Figure 11 depicts constraints obtained with the objective
function J1 for different values of β. All these constraints
induce stable walkover gaits, but not all of them produce
ground reaction forces keeping the stance foot pinned to the
ground.

Finally, the method developed in this paper produces stable
walking gaits for uphill walking, a particularly challenging
problem in the literature, especially for a robot with just two
DOFs. Figure 12 presents a VHC obtained when the ground
has an uphill slope of 2 degrees. The objective function is J1
and the leg aperture is π/4.

In our simulations we noticed some sensitivity to the choice
of t(θb): for the same set of acrobot parameters and choice
of β, some choices for t(θb) produced stable gaits while
others produced infeasible constraint curves. This may also
be a consequence of using direct collocation to perform the
optimization.10

10The constraints in Figure 11 took between 36 and 120 seconds to generate
on a computer with a 3.4 GHz Intel i7 CPU. Note that the code used to
generate these constraints is not optimized, and utilizes our own implemen-
tation of direct collocation using the MATLAB function fmincon(). Note
also the time needed to generate a constraint varies with the acrobot and
gait parameters, the guess used to initialize fmincon(), and the choice of
fmincon() algorithm.
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Fig. 12: VHC curve resulting from the optimization
of the objective functional J1 + Jreg and β = π/4
when the ground has an uphill slope of 2 degrees.
The video of this simulation is available at
https://play.library.utoronto.ca/watch/eac6339518d0ea2a8847bd5dc96b5e14

X. PRACTICAL CONSIDERATIONS

In this section we discuss practical details related to the
numerical implementation of the VCG-based gait design algo-
rithm presented in Sections VIII and IX.

Numerical integration. The optimal control problem posed
in Section VIII requires the numerical integration of the VCG.
For the evaluation of the virtual mass and potential functions,
Mσ,u and V σ , used in the optimization constraints (34)
and (35) and in the cost functional J2, one can augment the
state of the VCG with two states, M and V , obtaining the
augmented VCG dynamics

dσ

dθ
= facr(σ(θ)) + gacr(σ(θ))u(θ)

dM

dθ
= −2Ψσ,u

2 (θ)M(θ)

dV

dθ
= −Ψσ

1 (θ)M(θ),

(37)

where Ψσ
1 and Ψσ,u

2 are the functions presented in Sec-
tion VIII. System (37) has n + 2 states, where n is the
number of DOFs of the robot (n = 2 for the acrobot). The
direct collocation method discretizes the dynamics in (37)
and the control input u, giving optimization parameters
(σ(θi),M(θi), V (θi), u(θi))i=1,...,N ∈ RN(n+3) (where N is
the number of collocation points), subject to constraints arising
from the discretization of the optimization constraints in (29).

Taking into account ground reaction forces. There are
two types of ground reaction forces: the one acting on the
stance foot during the swing phase and the impulsive reaction
force at the swing foot during the impact phase. From a
practical perspective, there are requirements on these forces.
The reaction force at the stance foot must not make the foot lift

off the ground or slip, while the impulsive reaction force at the
swing foot must satisfy the no slip and no rebound assumption
used in the modelling. As explained in the book [12], these
two requirements can be expressed in terms of inequality
constraints involving the signals (q(t), q̇(t), q̈(t)) when the
robot state is on the hybrid limit cycle. These signals are
available in our optimal control formulation provided the VCG
is dynamically extended with n− 1 parallel integrators at the
input side:

dσ

dθ
= facr(σ(θ)) + gacr(σ(θ))ξ(θ)

dξ

dθ
= v(θ),

(38)

where v ∈ Rn−1 is the new control input.
More in detail, we return to the reasoning of Section VIII.

If (q(t), q̇(t)) ∈ Γ for all t ≥ 0, then q(t) = σ(θ(t)). Using
the fact that σ(θ) is a solution of the VCG (20), we showed in
Section VIII that (q(t), q̇(t), q̈(t)) can be expressed in terms
of (σ(θ), u(θ), u′(θ)). In terms of the extended VCG (38),
we have (σ(θ), u(θ), u′(θ)) = ((σ(θ), ξ(θ), v(θ))). By using
system (38) in place of the VCG in the optimal control
formulation (29), one can include optimization constraints
imposing requirements on the ground reaction forces.

Constraint implicitization. Our VCG-based gait design pro-
duces parametric VHCs q = σ(θ) resulting from a search in the
space of all regular VHCs. This is a feature that distinguishes it
from other approaches in the literature, and we will return to it
in Section XI. To implement the controller τ⋆ in Section IV-A,
one needs to express the VHC q = σ(θ) in implicit form as
h(q) = 0. There are two ways to do this. The simplest way
is to attempt to express the curve q = σ(θ) as the graph of a
function in Q after an appropriate coordinate transformation.
This is what we do in all our simulations. If this approach is
not viable, then one can use polynomial approximations of the
function σ and the implicitization algorithm presented in [40,
Ch.4].

Implementation using servomotors. Many small robots
are actuated via servomotors, in which case neither the motor
terminal voltages nor the armature currents are available as
control inputs because the motors have PID control loops
within. The control inputs in this case are the reference signals
for the joint variables. The simplest approach to enforce the
VHC h(q) = 0 is to express it as the graph of a function
(q2, . . . , qn) = ϕ(q1), after a suitable relabelling of the
configuration variables. If joints 2, . . . , n are actuated, then
the input sent to the servomotors is simply ϕ(q1). This is the
approach used, e.g., in [41]. For the acrobot, this amounts to
expressing the VHC as q2 = ϕ(q1) and letting this expression
be the control input sent to the servomotor. Some of the
constraints presented in Section IX cannot be expressed as
graphs of functions q2 = ϕ(q1), but the configuration plane
Q can be partitioned into two or three regions Qi ⊂ Q over
which one has a relationship q2 = ϕi(q1). The controller gets
(q1, q2) from the sensors, determines the region Qi that q is
in, and commands the servomotor to the setpoint q2 = ϕi(q1).

Generality of the proposed approach. The optimal control
formulation in Section VIII was developed for the acrobot
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example, but is in fact generalizable to planar bipedal robots
with point feet and degree of underactuation one. In this more
general setting, the VCG is a control system on Q, an n-
dimensional configuration manifold, with n−1 control inputs.
Hybrid invariance still amounts to imposing restrictions on the
initial and final values of the virtual control input signal, u(θa)
and u(θb). The optimal control formulation in (29) remains
substantially unchanged. The idea presented in the earlier
paragraph of extending the VCG so as to impose requirements
on ground reaction forces is generally applicable and not
restricted to the acrobot.

From a theoretical perspective, the generalization of Propo-
sitions 1 and 2 requires significant research, but the line of
attack of dividing the gait generation problem into the sub-
problems G.A, G.B, and G.C would remain unchanged.

XI. COMPARISON TO STATE-OF-THE-ART

In this section we compare our gait design philosophy
(henceforth referred to as the VCG approach) with the ap-
proach presented in the book [12] (henceforth referred to as
the WESGRI approach after the last names of the first two
authors) as well as the more recent approach of the FROST
toolbox developed by Hereid and Ames [42]. We will refer to
this latter as the FROST approach.

Both WESGRI and FROST consider a specific class of
parametric VHCs expressed by the relation

h(q) := h0(q)− hd(τ(q), α) = 0. (39)

In the above, h0(q) is an output function, and hd is a
polynomial (typically a Bézier polynomial)11 with parameter
vector α. The function τ(q) is what in this paper we call the
phase variable θ, and it represents a configuration-dependent
timing variable that is desired to be monotonic along steady-
state solutions. The problem of enforcing the VHC (39) can be
interpreted as that of making the output h0(q) asymptotically
track the reference “signal” hd. In WESGRI and FROST,
designing a VHC amounts to finding the parameter vector α.

In WESGRI, one poses a constrained optimization problem
with an objective function J(α) subject to a variety of con-
straints the most important of which are:

(i) The VHC (39) must satisfy the regularity condition (12),
i.e, the output h(q) must yield relative vector degree
{2, · · · , 2} on h−1(0).

(ii) The constraint must induce virtual mass and potentials
meeting the conditions in (34), (35) for the existence of
stable hybrid limit cycles.

(iii) Along the hybrid limit cycle, the ground reaction forces at
impact must be consistent with the hypothesis of impact
with no slip and no rebound.

(iv) Along the hybrid limit cycle, the ground reaction forces
must be such that the stance leg remains pinned to the
ground.

To evaluate the constraints, the nonlinear optimizer must
compute for each α the virtual mass and virtual potential
functions, the parameter δ of the reduced impact map, an initial

11Note that FROST allows for several other classes of curves in addition to
polynomials.

condition on the hybrid limit cycle, and the feedback τ(q, q̇)
enforcing the VHC. Then, the optimizer must simulate the 2n
dimensional model of the pinned robot (where n is the number
of DOFs of the robot) to get the signals (q(t), q̇(t), q̈(t))
needed to compute the ground reaction forces. All in all,
WESGRI involves the simulation of a 2n + 2-dimensional
dynamical system, the model of the pinned robot plus two
differential equations for the computation of the virtual mass
and potential.

The costs J(α) proposed in [12] rely on the computation
of the control input when the robot is on the limit cycle.
From a theoretical perspective, this means that the cost is
undefined outside the constraint set, and in particular when
the optimization constraint (ii) is violated. This could pose
a problem numerically because typical nonlinear optimizers
need to violate the constraint during the search.

In FROST, the constrained optimization problem is formu-
lated for the model of the unpinned robot which has dimension
2n+2 in the case of planar robots. FROST, however, deals with
general 3D robots, and allows for much more general problem
formulations then either the WESGRI or VCG approaches.
In contrast to WESGRI and similarly to the VCG approach,
FROST formulates an optimal control problem for the unpinned
robot, using direct collocation for its numerical solution. Like
WESGRI, FROST includes the optimization constraints (i)-
(iv) in its formulation. From a theoretical perspective, the
objective function in FROST is well-defined even when the
optimization constraint (ii) is violated, therefore obviating the
aforementioned numerical issue present in WESGRI.

Just like WESGRI and FROST, the VCG approach allows
one to take into account the optimization constraints (i)-(iv)
above (see Section X), although in our simulations we do not
impose constraints (iii)-(iv).

Now we come to the main differences between the VCG
approach proposed in this paper and either WESGRI or FROST.
We emphasize that the VCG approach of this paper is in its
infancy and is presently only applicable to robots with degree
of underactuation one. It cannot handle the general classes of
problems that FROST does. For instance, a robot with non-
point feet has multi-foot contact behaviours that FROST can
handle while the VCG approach cannot.

In the VCG approach, the constraints are solutions of an n+2
dimensional dynamical system, the VCG augmented with two
differential equations for the computation of the virtual mass
and potential. If ground reaction forces are to be taken into
account in the optimization, then as discussed in Section X
the dynamical system is 2n+ 1 dimensional.

In the VCG approach, the optimization is performed over
the space U of twice differentiable virtual control signals
(which is then discretized when setting up direct collocation).
Searching the space U is equivalent to searching the space of
all regular parametric VHCs for the given mechanical system.
On the other hand, both WESGRI and FROST perform the
optimization over the set of parameters12 of the polynomials
hd in (39). The regularity condition (12) is not built-in, and

12FROST optimizes not just over the polynomial parameters, but many other
parameters not directly related to the geometry of the VHC curve and arising
from direct collocation.
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it is imposed as an inequality constraint for the nonlinear
program. More importantly, searching the parameter space of
the polynomials in WESGRI and FROST does not correspond
to searching the space of all possible regular VHCs. While
WESGRI and FROST require the designer to choose an output
function h0(q) and a timing variable τ(q), the VCG approach
does not impose any such restriction, and the timing variable,
θ in our framework, is found automatically by the algorithm
as the parameter of the VHC curve. This feature could be
useful when hunting for gaits for which not enough intuition
is available to fix h0(q) and τ(q) a priori. The walkover gait
is such an example.

To further elaborate on the point above, the VCG approach
produces parametric constraints of the form q = σ(θ). There is
no restriction on the structure of the function σ, other than the
regularity requirement (12). On the other hand, WESGRI and
FROST produce parametric constraints of the form (39) (FROST
also considers relative degree one constraints used to impose
speed specifications). It is clear that these constraints have a
predetermined structure, and the phase variable θ = τ(q) is
chosen a priori.

Finally, in WESGRI and FROST hybrid invariance is en-
forced by imposing relationships between the coefficients of
the Bézier polynomials parametrizing the constraint, whereas
in this paper hybrid invariance is translated into a requirement
for the initial and final values of the virtual control inputs.

XII. CONCLUSION

We have presented a procedure to generate virtual holo-
nomic constraints inducing a stable walking gait for the
acrobot corresponding to a walkover gait on flat ground and
for shallow inclines. The ideas presented in this paper can
be adapted to investigate other walking gaits for the acrobot,
including but not limited to compass gaits. To illustrate, one
could imagine gaits where the swing leg performs a fixed
number of revolutions around the stance leg before impacting
the ground. Future research will be devoted to generalizing the
ideas of this paper to planar walking robots. It would also be
desirable to compare from a computational viewpoint the gait
generation method proposed in this paper to the other existing
methods reviewed in Section XI.

APPENDIX A
IMPACT MAP QUANTITIES

Below are the matrices for the map ∆1 in Section III.

De =

 D
d13 d14
d23 d24

d13 d23
d14 d24

2mI2


d13 = (−lm− lcm)sq1 − lcmsq1+q2

d14 = (lm+ lcm)cq1 + lcmcq1+q2

d23 = −lcmsq1+q2

d24 = lcmcq1+q2

E =

[
−lsq1+q2 − lsq1 −lsq1+q2 1 0
lcq1+q2 + lcq1 lcq1+q2 0 1

]
.

APPENDIX B
A PROPERTY OF COMMUTING VECTOR FIELDS

Theorem 1. Consider the planar single-input control system
on the plane

q̇ = f(q) + g(q)u(t), (40)

where f, g : R2 → TR2 are C1 vector fields such that [f, g] =
0. Let q0 ∈ R2 be arbitrary, and let Φf+g u(t)

t (q0) denote the
unique solution of (40) with initial condition q(0) = q0 and
a piecewise continuous control signal u : R → R. Assume
that for each piecewise continuous u : R → R, this solution
is defined for all t ≥ 0. Then for each T ≥ 0 and any
two piecewise continuous control signals u1(t) and u2(t), the
points Φ

f+g u1(t)
T (q0) and Φ

f+g u2(t)
T (q0) belong to the same

orbit of g, i.e.,

(∀T > 0)(∀u1, u2 : R → R piecewise continuous)(∃τ ∈ R)

Φ
f+g u1(t)
T (q0) = Φg

τ ◦ Φf+g u2(t)
T (q0).

Proof. Let u1, u2 : R → R be piecewise continuous. Since
[f, g] = 0, [f, g ui(t)] = 0 as well for i = 1, 2, which in turn
implies that

Φ
f+g ui(t)
t (q0) = Φ

g ui(t)
t ◦ Φf

t (q
0), i = 1, 2.

Letting q1 := Φf
t (q

0), we have

Φ
f+g ui(t)
t (q0) = Φ

g ui(t)
t (q1), i = 1, 2.

Denoting U i(t) :=
∫ t

0
ui(τ)dτ , we have

Φ
g ui(t)
t (q1) = Φg

Ui(t)(q
1), i = 1, 2,

and thus

Φ
f+g u1(t)
t (q0) = Φg

U1(t)(q
1) = Φg

U1(t)−U2(t) ◦ Φ
g
U2(t)(q

1)

= Φg
U1(t)−U2(t)

◦ Φf+g u2(t)
t (q0).

Setting τ = U1(t)− U2(t) concludes the proof.
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