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Abstract.

Given a control-affine system and a controlled invariant submanifold, we present necessary and
sufficient conditions for local feedback equivalence to a system whose dynamics transversal to the
submanifold are linear and controllable. A key ingredient used in the analysis is the new notion of
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1. Introduction. Ever since Poincaré’s seminal work [22], the problem of equiv-
alence of vector fields has been a central question in the field of dynamics. In his 1879
work, Poincaré found sufficient conditions for an analytic vector field to be locally
equivalent to a linear one by means of an analytic transformation. Poincaré’s key
insight in formulating this problem was that, rather than trying to solve a differential
equation, it is convenient to seek a coordinate transformation reducing the associ-
ated vector field to its “simplest” form, the normal form. In control theory, the
problem of equivalence of a control system to a linear controllable system by means
of smooth coordinate transformations was first formulated by Krener in 1973, [13].
In 1978, Brockett [3] formulated and solved the feedback linearization problem for
single-input, single-output systems, whereby the equivalence to a linear controllable
system is established by means of a smooth coordinate transformation and a regular
feedback transformation; this is referred to as feedback equivalence. The multi-input
multi-output extension of Brockett’s work was carried out by Jakubczyk and Re-
spondek in [12] and, independently, by Hunt, Su, and Meyer in [8]; see also [26].
When a control system is not feedback linearizable, it is natural to ask whether it
admits a feedback linearizable subsystem. This problem, first posed by Isidori and
Krener in [11], is referred to as partial feedback linearization. For single-input systems,
Krener, Isidori, and Respondek [14] investigated partial feedback linearization yield-
ing a linear subsystem of maximal dimension. This result was extended by Marino
in [15] to the multi-input case; see also [16], [23]. For systems with outputs, Xu and
Hunt [30], [31], consider a similar problem.

In [2], Banaszuk and Hauser formulated and solved the transverse feedback lin-
earization problem (TFLP) for periodic orbits of single-input control-affine systems.
If Γ⋆ is a periodic orbit of the open loop system, the problem entails finding condi-
tions for feedback equivalence to a control system whose dynamics transversal to Γ⋆

are linear, and controllable. In [19], we generalized Banaszuk and Hauser’s results to
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the case when Γ⋆ is an arbitrary controlled invariant embedded submanifold of the
state space. In this paper we present the complete solution to the local TFLP for
multi-input systems, relying on a mild regularity assumption. A key ingredient used
in the analysis of the problem is the new notion of transverse controllability indices
of a control system with respect to a set. The transverse controllability indices are
an adaptation of those introduced by Marino [15].

When the set Γ⋆ is an equilibrium point, the problem considered in this paper
(see Section 3) reduces to the classical state-space exact linearization problem. In
this special case our conditions coincide with those of the classical results on feed-
back equivalence to linear, time-invariant, controllable systems [8, 12], and the trans-
verse controllability indices coincide with the controllability indices introduced by
Marino [15].

We now discuss some of the applications of transverse feedback linearization
(TFL). While classical feedback linearization is used to stabilize equilibria of non-
linear systems, TFL is applicable to the more general set stabilization problem. In-
deed, if a system is transversely feedback linearizable with respect to a controlled
invariant manifold Γ⋆, then designing a controller that locally stabilizes Γ⋆ amounts
to designing a stabilizer for the origin of a linear time-invariant system and so the
set stabilization problem is greatly simplified (see Section 3 for a more precise discus-
sion). In light of the above, TFL is relevant to all those problems where the control
objective is the stabilization of a manifold, rather than an equilibrium. Consider,
for instance, the simplest synchronization (or state agreement) problem: make the
states of two coupled dynamical systems converge to one another. This is equivalent
to stabilizing the diagonal subspace. In the more general case when one wants to
make the outputs of several coupled dynamical systems converge to one another then,
generally, the set to be stabilized is a manifold. As other relevant applications of TFL
we mention path following (make the output of a dynamical system approach and
follow a path) [2, 18, 19], and the stabilization of virtual constraints in mechanical
systems [24].

Another important application of our main result is the solution of the following
zero dynamics assignment problem with relative degree. Given a control-affine system
and a controlled invariant manifold Γ⋆, does there exist an output function yielding
a well-defined vector relative degree whose associated zero dynamics manifold locally
coincides with Γ⋆? Our main result in Theorem 3.2 gives checkable necessary and
sufficient conditions that completely answer this question.

This paper is organized as follows: Section 2 contains mathematical preliminaries.
Section 3 presents the formal problem statement, the statement of our main result,
Theorem 3.2, and a comparison of our result to the solution of the classical state-space
exact linearization problem [8, 12]. A relationship to the partial feedback lineariza-
tion problem is established in Theorem 3.5. In Section 4 we introduce the notion
of transverse indices, compare them to the controllability indices of Marino [15] in
Lemma 4.1 and establish their feedback invariance. The proof of the main result is
presented in Section 5 and Section 6 contains concluding remarks.

2. Preliminaries. Consider a control system Σ modeled by equations of the
form

Σ : ẋ = f(x) +

m
∑

i=1

gi(x)ui =: f(x) + g(x)u. (2.1)
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Here x ∈ R
n is the state, and u = (u1, . . . , um) ∈ R

m is the control input. The vector
fields f, g1, . . . , gm : R

n −→ TR
n are smooth (C∞). We assume throughout this paper

that g1, . . . , gm are linearly independent.
When we talk of a manifold M , we mean a smooth manifold without boundary.

By a submanifold is meant an embedded submanifold. All objects are presumed to
be smooth. In this paper we consider submanifolds of R

n, where R
n is identified with

Euclidean n-space.

2.1. Notation. If k is a positive integer, k denotes the set of integers {0, 1, . . . ,
k − 1}. We let col(x1, . . . , xk) := [x1 . . . xn]⊤ and, given two column vectors a and
b, we let col(a, b) := [a⊤ b⊤]⊤. If U is an open set of R

n, let Diff(U) denote the
collection of diffeomorphisms from U to some open set Ũ ⊂ R

n. If F : M → N is
a map between manifolds then dFx : TxM → TF (x)N denotes its differential. If M
and N are vector spaces, then use dFx to denote the Jacobian matrix of F at x. If
F : M → N is a diffeomorphism between two manifolds, and if v is a vector field on
M , then the differential of F can be used to define a vector field on N by means of
the push-forward map F⋆, defined as F⋆v(q) = (dFpv(p))

∣

∣

p=F−1(q)
. This corresponds

to the usual change of coordinates in a differential equation. We denote by Im the
m×m identity matrix. The direct sum of two matrices A and B is the block diagonal
matrix

A ⊕ B =

[

A 0
0 B

]

where the zeros denote matrices of suitable size. Given two subspaces V and W of
the same vector space, the notation V ⊕W (internal direct sum) is used to represent
the subspace V + W when V and W are linearly independent.

Definition 2.1. Given an open set U ⊆ R
n, a regular static feedback, denoted

(α, β), on U for the control system (2.1) is a relation

u = α(x) + β(x)v

where u = (u1, . . . , um) and α : U → R
m, β : U −→ GL(m, R) are smooth mappings.

We denote by f̃ := f + gα and g̃ := gβ the vector fields obtained after the application
of (α, β).

Definition 2.2. Two control systems Σ : ẋ = f(x) + g(x)u and Σ̂ : ˙̂x = f̂ + ĝû,
are feedback equivalent on an open set U ⊆ R

n if there exist a regular static feedback
(α, β) defined on U and a diffeomorphism Ξ ∈ Diff(U) such that

f̂ = Ξ⋆(f + gα), ĝ = Ξ⋆(gβ)

on U .
On a manifold M , V(M) will denote the set of all smooth vector fields on M

and C∞(M) the ring of smooth real-valued functions on M . Given v ∈ V(M), φv
t (p)

denotes the solution of ẋ = v(x) with initial condition x(0) = p at time t. A closed
connected set N ⊂ M is said to be invariant for f ∈ V(M) if

(p0 ∈ N) ⇒ (∀t ∈ R)(φf
t (p0) ∈ N).

A closed connected set N ⊂ R
n is called controlled invariant for (2.1) if there exists

a smooth feedback smooth u : N → R
m making N an invariant set for the closed-

loop system. Following [28], we denote the class of closed, connected, embedded
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submanifolds of R
n which are controlled invariant for (2.1) by I (f, g, Rn). If N ∈

I (f, g, Rn), we write F (f, g, N) for the collection of maps that render N controlled
invariant, i.e. maps u : N → R

m such that f + gu is tangent to N , i.e.,

(f + gu)|N : N → TN.

If f ∈ V(M) and λ ∈ C∞(M) then

Lfλ(p) = lim
h→0

1

h

[

λ(φf
h(p)) − λ(p)

]

is the Lie derivative of λ with respect to f at p, it is also an element of C∞(M). If
f, g ∈ V(M) then the Lie bracket of f and g is defined by the following relation

L[f,g]λ = Lf (Lgλ) − Lg(Lfλ), ∀λ ∈ C∞(M).

We will use the standard notation for iterated Lie derivatives and Lie brackets

LgLfλ := Lg(Lfλ),

L0
gλ := λ, Lk

gλ := Lg(L
k−1
g λ)

ad0
fg := g, adk

fg :=
[

f, adk−1
f g

]

, k ≥ 1.

The set V(M) can be equipped with different algebraic structures. For our purposes
it suffices to consider V(M) as either (i) a vector space (infinite dimensional) over R

which, when endowed with the Lie bracket [ , ] : V(M) × V(M) → V(M), becomes a
Lie algebra, or (ii) a module over the ring C∞(M). Given a Lie algebra g, a subset
h ⊂ g is called a subalgebra if h1, h2 ∈ h implies [h1, h2] ∈ h.

Finally, if A ⊂ M is any subset, then a smooth map r : M → A such that
r|A = 1A, where 1A is the identity map on A, is called a smooth retraction of M
onto A. The following lemma regarding retractions is a simpler, local version, of the
Tubular Neighborhood Theorem [5].

Lemma 2.3. Let N ⊂ R
n be an n⋆-dimensional submanifold of R

n. Then,
for every p ∈ N there exist a neighborhood U of p in R

n and a smooth retraction
r : U → N ∩ U .

2.2. Vector Bundles. The discussion, terminology and notation of this section
is standard and can be found in [6] or [25]. A smooth n-dimensional vector bundle
(or n-plane bundle) ξ = (π, E, B) can be thought of as1 a family {Ep}p∈B of disjoint
n-dimensional vector spaces parameterized by a space B. The union of these vector
spaces is the space E and B is called the base space. The map π : E → B, Ep 7→ p is
a smooth surjective submersion and is called the vector bundle projection. Moreover,
ξ is “locally trivial” in the sense that, locally (with respect to B), E looks like a
product with R

n: for each p ∈ B, there is a neighborhood U of p and a diffeomorphism
t : π−1(U) → U × R

n, vq 7→ (t1(q), t2(q)v), which is an isomorphism from each fibre
π−1(q) onto q × R

n for each q ∈ U . This property is exhibited by the commutative
diagram below where π̃(q, v) = q.

π−1(U)
t

//

π

��

U × R
n

π̃
yyss

s
s
s
s
s
s
s
s
s

U

1The discussion here is informal. In particular we define a vector bundle as a triple (π, E, B)
where more formally one defines a vector bundle as a 5-tuple by augmenting the above triple with
two operations ⊕ and ⊗. See [6], [25] for more details.
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The pair
(

π−1(U), t
)

is called a vector bundle chart with domain U and dimension
n. The collection of all vector bundle charts of ξ is a vector bundle atlas. A vector
bundle is a manifold in its own right with an atlas of compatible vector bundle charts.
We will usually refer to a vector bundle as simply ξ, or π : E → B or even denote the
bundle by E alone.

If A ⊂ B is any subset and ξ = (π, E, B), then we denote π−1(A) by E|A the
restriction of ξ to A. It is a well-defined vector bundle. A subbundle of the bundle
ξ = (π, E, B) is a bundle ξ0 = (π0, E0, B), over the same base space B such that
E0 ⊂ E, and π|E0

= π0. Additionally, there must exist a vector bundle atlas Φ for ξ

such that if
(

π−1(U), t
)

∈ Φ, the following diagrams commute

π−1(U)
t
//

π

��

U × R
k × R

n−k

π̃
wwnn

n
n
n
n
n
n
n
n
n
n
n

U

π−1
0 (U)

t
//

π0

��

U × R
k × {0}

π̃
wwoo

o
o
o
o
o
o
o
o
o
o

U

The prime example of a vector bundle is the tangent bundle π : TM → M of a
manifold M . If N ⊂ M is a submanifold of M , then TN is a subbundle of TM |N

TN = {vx ∈ TM |N : v(x) ∈ TxN}.

The algebraic normal bundle of N in M is the subbundle over N whose fibres are the
quotient spaces TxM/TxN . It is denoted TM |N /TN .

Let ξ = (π, E, B) be a smooth vector bundle. A C∞ inner product or orthogonal
structure on ξ is a family {αp}p∈B where each αp is an inner product on Ep and the
map (p, y, z) 7→ αp(y, z) defined on {(p, y, z) ∈ B × E × E : p = π(y) = π(z)} is
C∞. The pair (ξ, α) is called an orthogonal vector bundle. If M is a manifold, a C∞

orthogonal structure on TM is called a Riemannian metric. In this paper, orthogonal
structures will always arise in subbundles of TR

n|V , where V is a submanifold of R
n,

whereby the standard inner product on R
n is used. Suppose (ξ, α) is an orthogonal

vector bundle. If y, z are in the same fibre Ep, we write 〈y, z〉 or 〈y, z〉p for αp(y, z).

If ξ = (π0, E0, B) ⊂ η = (π, E, B) is a subbundle, the orthogonal complement ξ⊥ ⊂ η
is the subbundle defined fibre-wise as

(ξ⊥)p = (ξp)
⊥ = {y ∈ Ep : 〈y, z〉 = 0, z ∈ E0

p}.

Note that ξ⊥ is isomorphic to η/ξ. Of particular interest to us will be the case when
N ⊂ M is a submanifold and M has a Riemannian metric. In this case TN⊥ ⊂ TM |N
is called the geometric normal bundle of N in M .

2.3. Distributions. A smooth distribution D on a manifold M is an assignment
to each p ∈ M of a subspace D(p) ⊆ TpM which varies smoothly as p varies. Locally, a
smooth distribution is spanned by a collection of smooth vector fields which are called
local generators. A point p ∈ M is a regular point of D if there exists a neighborhood
U containing p for which dim (D(q)) is constant for all q ∈ U . In this case D is said to
be non-singular on U . If p is a regular point of a distribution D with dim D(p) = d,
then there exist an open neighborhood U0 of p and d smooth local generators f1, . . . , fd

defined on U0 such that for each q ∈ U0, D(q) = span{f1(q), . . . , fd(q)}. We will write
D = span{f1, . . . , fd} when such a finite set of local generators exist.

A non-singular distribution can be viewed as a subbundle of TM . As such,
when TM has an orthogonal structure, we will use the notation D⊥ to indicate the
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orthogonal complement of D in TM . This stands in contrast to the notation ann(D)
which we use to denote the annihilator of D contained in TM⋆, the cotangent bundle.
If D is a distribution defined on a manifold M and N ⊂ M is a submanifold we will
at times consider the subbundles TN + D and TN ∩ D of TM |N defined fibre-wise,
for each p ∈ N , by TpN + D(p) and TpN ∩ D(p), respectively. The following fact is
used in the sequel.

Lemma 2.4. Let N ⊂ M be a C∞-submanifold of the C∞-manifold M . Let
p ∈ N be a regular point of a C∞-distribution D on M . Suppose there exists an open
neighborhood V in N such that dim(TpN ∩ D(p)) is constant for all p ∈ V . Then

there exists a neighborhood U of p in V such that TN ∩D and (TN ∩ D)
⊥

are smooth
in U .

Given a smooth distribution D on M , we denote by D̄ the involutive closure of
D, i.e., the intersection of all involutive distributions containing D. We denote by
Lie(D) the smallest subalgebra of V(M) containing the vector fields in D. We will use
LieC∞(M)(D) to denote the smooth distribution spanned by vector fields in Lie(D).
Then, LieC∞(M)(D) ⊆ D̄ and generally the inclusion is proper.

If ∆ and Λ are distributions and f is a vector field, then we use the following
notation

[∆, Λ] = span{[X, Y ] : X ∈ ∆, Y ∈ Λ}

[f, ∆] = span{[f, τ ] : τ ∈ ∆}.

A smooth distribution ∆ is invariant under a vector field f if [f, ∆] ⊆ ∆. A dis-
tribution ∆ defined on an open set U is called locally controlled invariant for the
dynamics (2.1) if for each x0 ∈ U there exist a neighborhood U0 of x0 and a regular
static feedback (α, β) on U0 such that

[

f̃ , ∆
]

⊆ ∆

[g̃i, ∆] ⊆ ∆, i ∈ {1, . . . , m},

where f̃ = f + gα and g̃ = gβ.
Theorem 2.5 ([7], [9], [10], [20], [21]). Let ∆ be an involutive distribution. Sup-

pose ∆, and ∆+span{g1, . . . , gm} are nonsingular on U . Then ∆ is locally controlled
invariant for the dynamics (2.1) if and only if

[f, ∆] ⊆ ∆ + span{g1, . . . , gm}

[gi, ∆] ⊆ ∆ + span{g1, . . . , gm}, i ∈ {1, . . . , m}.

3. Local Transverse Feedback Linearization Problem and Solution. In
this section we present the main problem studied in this paper. Suppose we are given
a pair (Γ⋆, u⋆), where Γ⋆ ∈ I (f, g, Rn), dimΓ⋆ = n⋆, and u⋆ ∈ F (f, g, Γ⋆). In
this presentation we consider the controlled invariant set Γ⋆ as a given data. For
example in a mechanical system this might correspond to a motion planning task
being solved in order to obtain the shortest path between two given points. In most
situations, however, one is given a set Γ, perhaps defined by virtual constraints or
design goals, and then one must pare away pieces of Γ until all which remains is
the largest controlled invariant submanifold Γ⋆ contained in Γ. Various tools in the
literature exist for this purpose (see for instance the zero dynamics algorithm [9] or
the constrained dynamics algorithm [21]). Generally, the existing tools generate a
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local characterization of Γ⋆ about the initialization point of the algorithms. In some
cases, viability theory [1] can be used to obtain global characterizations of invariant
sets for dynamical systems. The main problem investigated in this paper, stated next,
concerns the decomposition of the system dynamics into a subsystem describing the
motion on Γ⋆ and one describing the motion transversal to Γ⋆, with the essential
requirement that the transversal subsystem be feedback linearizable.

Local Transverse Feedback Linearization Problem (LTFLP): Given a pair
(Γ⋆, u⋆) ∈ I (f, g, Rn)×F (f, g, Rn) and a point p0 ∈ Γ⋆ find, if possible, a neighbor-
hood U of p0 in R

n, a transformation Ξ ∈ Diff(U), Ξ : U → R
n⋆

×R
n−n⋆

, x 7→ (z, ξ),
and a feedback transformation (α, β), such that (2.1) is feedback equivalent on U to

ż = f0(z, ξ) + g1(z, ξ)v1 + g2(z, ξ)v2

ξ̇ = Aξ + Bv1

(3.1)

where v = col(v1, v2) ∈ R
m, B is full rank, the pair (A, B) is controllable, and

Ξ(Γ⋆ ∩ U) = {(z, ξ) ∈ R
n⋆

× R
n−n⋆

: ξ = 0}.
In words, we seek to characterize conditions under which (2.1) is feedback equiv-

alent to a system whose dynamics transversal to the set Γ⋆ are linear, time-invariant
and controllable. LTFLP asks for a coordinate and feedback transformation valid
on U which generates a normal form with two types of decompositions. On the one
hand, system dynamics near Γ⋆ ∩U are decomposed into a tangential subsystem, the
z-dynamics and a transversal subsystem, the ξ-dynamics. On the other hand, the
original m control inputs are decomposed into transversal and tangential components
v1 and v2, respectively.

The terminology “transverse feedback linearization” should not be mistaken for
“transverse linearization,” a technique consisting in the Jacobian linearization of the
dynamics transversal to a periodic orbit. In the special case when Γ⋆ is a periodic
orbit, the notions of “transverse feedback linearization” and “transverse linearization”
differ similarly to the way that “feedback linearization” around an equilibrium differs
from “linearization” around the equilibrium.

Transverse feedback linearization finds application in the stabilization of Γ⋆. For,
if a transversal controller v1 is designed that stabilizes ξ = 0, and the trajectories
of the closed loop system are bounded, then the controller stabilizes Γ⋆ in original
coordinates. If, on the other hand, the trajectories of the closed-loop system are not
all bounded, then stabilization of ξ = 0 implies the stabilization of Γ⋆ in original
coordinates if there exists a class-K function α such that ‖ξ(x)‖ ≥ α(‖x‖Γ⋆), where
‖x‖Γ⋆ is the point-to-set distance of a point x to the set Γ⋆, defined as ‖x‖Γ⋆ :=
infp∈Γ⋆ ‖x− p‖. Hereafter, we assume that the preliminary regular feedback (u⋆, Im)
is applied to (2.1) so that f |Γ⋆ is tangent to Γ⋆. Next, we present a technical result
which is useful in proving the main theorem.

Theorem 3.1. LTFLP is solvable if and only if there exist ρ0 smooth R-valued
functions α1, . . . , αρ0 , defined on an open neighborhood U of p0 in R

n, such that
(1) U ∩ Γ⋆ ⊂ {x ∈ U : αi(x) = 0, i = 1, . . . , ρ0}
(2) The system

ẋ = f(x) +
m
∑

i=1

gi(x)ui

y′ = col(α1(x), . . . , αρ0(x))

(3.2)

has vector relative degree {k1, . . . , kρ0} with k1 + · · · + kρ0 = n − n⋆ at p0.
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Moreover, the zero dynamics Z⋆ of (3.2) coincide with Γ⋆ on U : Z⋆ ∩ U = Γ⋆ ∩ U .
We omit the proof of Theorem 3.1 and instead refer the reader to [19, Theorem 4.1]
whose proof is identical. System (3.2) has m inputs and ρ0 outputs and hence is not
square. The notion of vector relative degree of a non-square system is the same as
that of a square system given in Section 5.1 of [9], with the difference that the ρ0 ×m
decoupling matrix A(x) with components aij(x) = Lgj L

ki−1
f αi(x) is assumed to be

full-rank, rather than non-singular, at p0.
In Section 4 we give the coordinate-free definition of transverse controllability

indices. It turns out (see Lemma 4.3) that {k1, . . . , kρ0} in Theorem 3.1 are precisely
the transverse controllability indices of (2.1) with respect to Γ⋆.

Theorem 3.1 characterizes the solvability of LTFLP in terms of the existence of
a virtual output function α : U → R

ρ0 satisfying (1) and (2). Once the output
function is known, a coordinate and feedback transformation yielding (3.1) is found
constructively using [9, Proposition 5.1.2] and additional elementary manipulations.
The theorem also shows that LTFLP is equivalent to the zero dynamics assignment
problem with relative degree mentioned in the introduction. For, the theorem states
that LTFLP is solvable if and only if Γ⋆ can be made into the zero dynamics manifold
of (2.1) induced by a suitable output yielding a well-defined vector relative degree.
On the other hand, Theorem 3.1 does not give any way of finding the output function
or even to determine whether it exists. Hence, it has limited value for constructing
the coordinate and feedback transformation.

Consider the distributions

Gi := span{adj
fgk : 0 ≤ j ≤ i, 1 ≤ k ≤ m}, (3.3)

and recall from Section 2 that Ḡi denotes the involutive closure of Gi. Now the main
result of this paper.

Theorem 3.2 (Main Result). Suppose that Ḡi, i ∈ n− n⋆ − 1 are regular at
p0 ∈ Γ⋆. Then, LTFLP is solvable at p0 if and only if

(a) dim (Tp0Γ
⋆ + Gn−n⋆−1(p0)) = n

and there exists an open neighborhood U of p0 in R
n such that for all i ∈ n − n⋆ − 1

(b) (∀p ∈ Γ⋆ ∩ U) dim(TpΓ
⋆ + Gi(p)) = dim(TpΓ

⋆ + Ḡi(p)) = constant.
It is useful to specialize Theorem 3.2 to the case when Γ⋆ is an equilibrium,

because in this special case LTFLP coincides with the state-space exact linearization
problem whose solution was given in [8, 12].

Corollary 3.3. Assume that Γ⋆ = {p0} is an equilibrium point of the open-loop
system ẋ = f(x) and that Ḡi , i ∈ n − 1, are regular at p0. Then, LTFLP is solvable
at p0 if and only if

(a) dimGn−1(p0) = n
(b′) Gi, i ∈ n − 1, are involutive and regular at p0.
Proof. It suffices to show that, under the assumption that the distributions Ḡi

are regular, (b′) is equivalent to condition (b) in Theorem 3.2. Assume that (b) holds,
i.e., Gi(p0) = Ḡi(p0). For all p in a neighborhood of p0, one has

dim(Gi(p0)) ≤ dim(Gi(p)) ≤ dim(Ḡi(p)) = dim(Ḡi(p0)) = dim(Gi(p0)),

and so all inequalities above are equalities. Therefore, dim(Gi(p)) = dim(Gi(p0)) and
dim(Gi(p)) = dim(Ḡi(p)), proving that (b) =⇒ (b′). The converse implication is
obvious.

We recall the classical result
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Theorem 3.4 (State-Space Exact Linearization [8, 12]). Assume that Γ⋆ = {p0}
is an equilibrium point of the open-loop system ẋ = f(x). Then, LTFLP is solvable
at p0 if and only if conditions (a) and (b′) in Corollary 3.3 hold.

Note that conditions (a) and (b′) in Corollary 3.3 imply that the distributions
Ḡi, i ∈ n − 1, are regular at p0. Thus, in the special case when Γ⋆ is an equilibrium
point, the conditions of our main result coincide with those of the state-space exact
linearization problem. The difference between Corollary 3.3 and Theorem 3.4 is that
the former relies on the preliminary assumption that the distributions Ḡi are regular
at p0, while the latter shows that regularity of Ḡi at p0 is actually necessary for
the solvability of LTFLP, and hence there is no need to impose it as preliminary
requirement.

The assumptions of Theorem 3.2 are checkable, however its proof does not pro-
vide a constructive procedure for finding the virtual outputs described in Theorem 3.1.
The next result sheds additional light on LTFLP by relating it to the partial feed-
back linearization problem. The result isn’t a viable solution to LTFLP because its
assumptions are not checkable. On the other hand, the theorem provides guidelines
for finding the output function in Theorem 3.1, as discussed below.

Theorem 3.5. Suppose that Ḡi, i ∈ n− n⋆ − 1 are regular at p0 ∈ Γ⋆. Then,
LTFLP is solvable at p0 if and only if there exist a neighborhood U of p0 and a smooth,
involutive, and regular distribution ∆ on U such that

(i) ∆|Γ⋆ = TΓ⋆.
(ii) ∆ is locally controlled invariant under (2.1).
(iii) (∀ p ∈ Γ⋆ ∩ U) dim (TpΓ

⋆ + Gn−n⋆−1(p)) = n.
(iv) (∀ i ∈ n − n⋆ − 1) ∆ + Gi is regular and involutive on U .
Proof. Suppose that LTFLP is solvable at p0. The necessity of conditions (i) -

(iv) can be easily shown by considering the normal form (3.1) and taking

∆ = span

{

∂

∂z1
, . . . ,

∂

∂zn⋆

}

. (3.4)

Conversely, suppose conditions (i)-(iv) hold. These conditions imply the conditions
of [11, Theorem 2.1]. In particular, condition (iv) implies conditions (a) and (b) of [11,
Theorem 2.1]. Therefore, by [11, Theorem 2.1] we obtain a system whose dynamics in
transformed coordinates is given by (3.1) and where ∆ is given by (3.4). The integral
submanifolds of ∆ foliate a neighborhood U of p0 and are locally given by the sets
{(z, ξ) : ξ = ξ0 = constant}. Condition (i) means that one of the leaves of the foliation
is precisely Γ⋆ ∩ U . Without loss of generality this leaf is taken as the zero level set
{(z, ξ) : ξ = 0}.

Note that the distribution ∆ in Theorem 3.5 is not unique. Also note that this
theorem involves an interaction between the concepts of controlled invariant distri-
butions and controlled invariant manifolds. Together, Theorems 3.1, 3.2 and 3.5 can
be used to find solutions to LTFLP. The following steps outline the typical procedure
one may follow in searching for the output function.

1. Represent Γ⋆ in a neighborhood of p0 as the zero level set of n−n⋆
R-valued

functions. Using Theorem 3.1, check if there exists a subset of ρ0 of these
functions, with ρ0 defined in (4.1), yielding the correct vector relative degree.

2. If the above step fails, check the conditions of Theorem 3.2 to verify whether
or not the problem is solvable. In simple cases, the procedure described in
the proof of Theorem 3.2 may yield the desired output functions.

3. If Theorem 3.2 establishes that the problem is solvable, then there exists a
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distribution ∆ satisfying the conditions in Theorem 3.5. If ∆ is found then, af-
ter computing the controllability indices defined in (4.2), the output functions
are obtained by finding those exact one-forms that span the codistributions
ann (∆ + Gi), i = 0, . . . , k1 − 2, and arranging them in the order illustrated
below, with the integers ρi defined in (4.1).

ann (∆ + Gk1−2) dα1

...
...

ann (∆ + Gk1−2−j) dLj
fα1

...
...

ann (∆ + Gk2−2) dLk1−k2

f α1 dα2

...
...

...

ann (∆ + Gk2−2−j) dLk1−k2+j
f α1 dLj

fα2

...
...

...

ann (∆ + Gk3−2) dLk1−k3

f α1 dLk2−k3

f α2 dα3

...
...

...
...

ann
(

∆ + Gkρ0−2

)

dL
k1−kρ0

f α1 dL
k2−kρ0

f α2 · · · dαρ0

...
...

...
...

ann (∆ + G0) dLk1−2
f α1 dLk2−2

f α2 · · · dL
kρ0−2

f αρ0 .

In each row of the above table, the codistribution in the left column is locally
spanned by all of the differentials in that row plus all the differentials in the
rows above. For example, locally we have that

ann (∆ + Gk2−2) = span{dα1, dLfα1, . . . , dLk1−k2

f α1, dα2}.

The functions α1, . . . , αρ0 , resulting from the integration of the exact one
forms dα1, . . . , dαρ0 along the diagonal of the table, are the required outputs.

Next we present an example to illustrate the use of Theorems 3.1, 3.2 and 3.5.

Example. Consider the system

ẋ =









−x2

x1

x3x4

0









+









0
0
x3

1









u1 +









−x2

x1

0
0









u2

along with the pair (Γ⋆, u⋆) ∈ I (f, g, R4) × F (f, g, R4)

Γ⋆ =
{

x ∈ R
4 : x2

1 + x2
2 − x3 = x4 = 0

}

u⋆ = col(0, 0).

The set Γ⋆ is an elliptic paraboloid embedded in the subspace {x ∈ R
4 : x4 = 0}.

We want to perform transverse feedback linearization of (3) with respect to Γ⋆ near
p0 = col(4, 0, 2, 0). In this example n = 4 and n⋆ = 2 so we seek to feedback linearize
a subsystem of dimension n − n⋆ = 2. The natural approach to solving this problem
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is to check if one of the two constraints which define Γ⋆ satisfy the conditions of
Theorem 3.1. In this case, both constraints, taken individually as scalar outputs, yield
a well-defined relative degree near p0 of 1 which does not equal n−n⋆. Taken together,
as a vector output, the constraints do not yield a well-defined vector relative degree.
In both cases, the conditions of Theorem 3.1 are not satisfied by these constraints.
Next, we check whether or not LTFLP is solvable for (3) using Theorem 3.2. Checking
condition (a) one finds

dim (Tp0Γ
⋆ + G1(p0)) = 4.

Also, since [g1, g2] = 0, it follows that G0 = Ḡ0 everywhere. It is then an easy matter
to check that for any p ∈ Γ⋆, dim (TpΓ

⋆ + G0(p)) = 3. Thus condition (b) holds and
LTFLP is solvable despite the fact that the constraints which locally define Γ⋆ do not
satisfy Theorem 3.1.

The fact that Theorem 3.2 holds for this system implies that there exists a dis-
tribution ∆ satisfying Theorem 3.5. After some trial and error, one finds that the
distribution

∆ = span























−x2

x1

0
0









,









x1

x2

2x3

0























satisfies the conditions of Theorem 3.5. Then, by Frobenius theorem, there exists an
exact one-form dα which spans ann(∆ + G0). The corresponding function α is given
by

α(x) = ln

(

x3

x2
1 + x2

2

)

− x4

which yields a well-defined relative degree of 2 at p0 and satisfies Theorem 3.1. As a re-
sult, the coordinate transformation Ξ : x 7→ col(z1, z2, ξ1, ξ2) defined as z1 = x1, z2 =
x2, ξ1 = α, ξ2 = Lfα = x4, directly yields the normal form (3.1), with v1 = u1 and
v2 = u2. The coordinate transformation Ξ(x) is valid on R

4\
(

{x ∈ R
4 : x1 = x2 = 0}

∪{x ∈ R
4 : x3 = 0}

)

.

4. Transverse Controllability Indices and Preliminary Results. In lin-
ear systems theory, controllability indices, see [4] and [29], describe certain proper-
ties which are invariant under coordinate and nonsingular feedback transformations
and serve to categorize controllable linear systems. Controllability indices have been
ported to the nonlinear setting. They have been used to characterize the largest feed-
back linearizable subsystem of a nonlinear system [15], and conditions under which
a system is feedback linearizable, see [17], [21]. Here, we adapt these ideas to the
framework of transverse feedback linearization. Let V be an open subset of Γ⋆. For
each p ∈ V , let

ρ0(p) := dim(TpΓ
⋆ + G0(p)) − n⋆

ρi(p) := dim(TpΓ
⋆ + Ḡi−1(p) + adi

fG0(p)) − dim(TpΓ
⋆ + Ḡi−1(p)),

(4.1)

i = 1, 2, . . ., where Gi are defined in (3.3), and

adi
fG0 = span{adi

fX : X ∈ G0}, i = 0, 1, . . . .

11



Geometrically, at each p ∈ Γ⋆, the integers ρi(p) represent the number of linearly
independent vectors in adi

fG0(p) which are not in TpΓ
⋆ + Ḡi−1(p). Associated to the

list {ρ0(p), . . . , ρi(p), . . .} is a set of ρ0(p) integers, {k1(p), . . . , kρ0(p)}, which we refer
to as the transverse controllability indices of (2.1) with respect to Γ⋆, defined as (we
omit the argument p)

ki := card {ρj ≥ i, j ≥ 0} , i ∈ {1, . . . , ρ0}. (4.2)

Note that k1 ≥ k2 ≥ · · · ≥ kρ0 . We show in Corollary 4.2 that the transverse
controllability indices are invariant under coordinate and feedback transformations.

Condition (b) of Theorem 3.2 implies that ρ0, ρ1, . . . , ρn−n⋆−2 = constant while
condition (a) implies that

∑

i ρi = n−n⋆. In the special case when Γ⋆ is an equilibrium
point, it is useful to compare our definition of controllability indices with the definition
by Marino in [15]. Marino’s definition relies on the distributions

Gf = f + G0 = {f + g : g ∈ G0}

Gi = Gi−1 + [Gf , Gi−1], G0 = G0, i = 1, 2, . . . ,

Si = Ḡi−1 + adi
fG0, S0 = G0, i = 1, 2, . . . .

and uses the integers

r0 = dimG0

ri = dimSi − dim Ḡi−1

in place of the integers ρi in the definition of controllability indices. We now show that,
when Γ⋆ is an equilibrium point, the integers ρi and ri are identical and thus the notion
of transverse controllability indices reduces to the classical notion of controllability
indices.

Lemma 4.1. For all non-negative integers i, Ḡi = Ḡi. Thus, when Γ⋆ = {p0} is
an equilibrium point, ρi = ri.

Proof. By definition, G0 = G0 so the lemma trivially holds for i = 0. We now
show that Ḡi ⊆ Ḡi for all i ∈ N. By definition,

Gi = Gi−1 + [Gf , Gi−1] .

Since f ∈ Gf , it follows that Gi ⊆ Gi for all nonnegative integers i, which implies
Ḡi ⊆ Ḡi.

Next, we show that Gi ⊆ Ḡi for all i ∈ N which implies Ḡi ⊆ Ḡi. To this end,
it suffices to prove that Gi ⊆ LieC∞(Rn)(Gi) since LieC∞(Rn)(Gi) ⊆ Ḡi. It is obvious
that G0 ⊆ LieC∞(Rn)(G0) and

G1 = G0 + [Gf , G0]

= span{g1, . . . , gm, adfg1, . . . , adfgm, [g, g1], . . . , [g, gm] : g ∈ G0}

⊆ LieC∞(Rn)(G1).

For the induction, assume that, for some positive integer I ≥ 2,

Gi−1 ⊆ LieC∞(Rn)(Gi−1), i ∈ {2, . . . , I}.

We must show that Gi = Gi−1 + [Gf , Gi−1] ⊆ LieC∞(Rn)(Gi) for i ∈ {2, . . . , I}. It is
enough to prove that [Gf , Gi−1] = [f, Gi−1] + [G0, Gi−1] ⊆ LieC∞(Rn)(Gi). However,
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since [G0, Gi−1] ⊆ LieC∞(Rn)(Gi−1) ⊆ LieC∞(Rn)(Gi), all we are left to show is that
[f, Gi−1] ⊆ LieC∞(Rn)(Gi).

Let τ1 = g1, τ2 = g2, . . . , τim−1 = adi−1
f gm−1, τim = adi−1

f gm. Then a general
vector field in LieC∞(Rn)(Gi−1) is a C∞(Rn)-linear combination of vector fields of the
form

ϑ =
[

τjk
,
[

τjk−1
, · · · , [τj2 , τj1 ]

]]

, (4.3)

1 ≤ jk ≤ im, 1 ≤ k < ∞. By assumption, any vector field in Gi−1 can also be
expressed in this way. Take any vector field h ∈ Gi−1 and consider

[f, h] = [f,
∑

i∈I

ciϑi] =
∑

i∈I

[f, ciϑi]

where I is some finite index set, ci ∈ C∞(Rn), and ϑi are of the form (4.3). Each
term in the above summation can be expressed as [f, ciϑi] = ci[f, ϑi] + (Lfci)ϑi, so
it is enough to show that [f, ϑ] ∈ LieC∞(Rn)(Gi) where ϑ is of the form (4.3).

When k = 1, i.e. ϑ = τj1 , then [f, τj1 ] ∈ Gi ⊆ LieC∞(Rn)(Gi). Next assume that

ϑ =
[

τjk−1
,
[

τjk−2
, · · · , [τ2, τ1]

]]

is such that [f, ϑ] ∈ LieC∞(Rn)(Gi). We will show that [f, [τjk
, ϑ]] ∈ LieC∞(Rn)(Gi).

Clearly, [τjk
, ϑ] ∈ LieC∞(Rn)(Gi−1) for any 1 ≤ jk ≤ im. By the Jacobi identity

[f, [τjk
, ϑ]] = [[ϑ, f ] , τjk

] + [[f, τjk
] , ϑ] ,

and since [ϑ, f ] ∈ LieC∞(Rn)(Gi) and τjk
∈ Gi−1, it follows that [[ϑ, f ] , τjk

] ∈
LieC∞(Rn)(Gi). Also, [f, τjk

] ∈ Gi so that [[f, τjk
] , ϑ] ∈ LieC∞(Rn)(Gi). This in-

duction argument shows that [f, Gi−1] ⊆ LieC∞(Rn)(Gi) ⊆ Ḡi as required.
Corollary 4.2. The transverse controllability indices of system (2.1) with re-

spect to a set Γ⋆ are invariant under coordinate and feedback transformations.
Proof. The push forward map F⋆ associated with any F ∈ Diff(U) is an isomor-

phism at each p ∈ Γ⋆ ∩ U . It follows from the definition of the integers ρ0, . . . , ρi, . . .
that they do not change under coordinate transformations. By Lemma 4.1,

ρi(p) = dim(TpΓ
⋆ + Si(p)) − dim(TpΓ

⋆ + Ḡi−1(p)).

In [15, Proposition 2] it is shown that Si and Ḡi−1 are feedback-invariant, and so the
integers ρ0, . . . , ρi, . . . are also invariant under feedback transformations.

Lemma 4.3. Suppose that LTFLP is solvable at p0 ∈ Γ⋆. Then the transverse
controllability indices of (2.1) with respect to Γ⋆ coincide with the controllability in-
dices of (A, B) in (3.1).

Proof. This lemma will be proved by direct calculation of the integers ρi in (z, ξ)
coordinates. Let V = Ξ(Γ⋆ ∩U). By the properties of the normal form (3.1), for any
p̃ ∈ Γ⋆ ∩ U , Ξ(p̃) = col(p, 0). Hence, in (z, ξ) coordinates we have that for any p ∈ V
and any i ∈ n − n⋆

TpV + Gi(col(p, 0)) = Im

([

In⋆ ⋆ ⋆ . . . ⋆
0n−n⋆×n⋆ B AB . . . AiB

])

. (4.4)

In (z, ξ) coordinates, consider the collection of constant distributions ∆i, i ∈ n − n⋆,
given by

∆i = Im
(

In⋆ ⊕
[

B AB · · ·AiB
])

.
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At each p ∈ V , ∆i(p) = TpV + Gi(col(p, 0)). Furthermore, since each ∆i is (trivially)
involutive and Gi|V ⊂ ∆i, it follows that Ḡi

∣

∣

V
⊆ ∆i. This shows that for all i ∈

n− n⋆

TV + Ḡi ⊆ ∆i = TV + Gi.

On the other hand, TV + Gi ⊆ TV + Ḡi always holds, and so we have shown that
∆i = TV + Gi = TV + Ḡi. Calculating the integers ρi we have

ρi(p) = dim(TpΓ
⋆ + Ḡi−1(p) + adi

fG0(p)) − dim(TpΓ
⋆ + Ḡi−1(p))

= dim(TpΓ
⋆ + Gi−1(p) + adi

fG0(p)) − dim(TpΓ
⋆ + Gi−1(p))

= dim(TpΓ
⋆ + Gi(p)) − dim(TpΓ

⋆ + Gi−1(p))

= rank(∆i) − rank(∆i−1)

= rank([B · · · AiB]) − rank([B · · ·Ai−1B]).

The claim follows from the definition of the integers {k1, . . . , kρ0}.
When the transverse controllability indices are constant on an open subset of Γ⋆

and the distributions Ḡi are regular, the next two lemmas establish the existence of a
feedback transformation yielding a particularly useful set of local generators for each
Ḡi.

Lemma 4.4. Let Ũ be an open subset of R
n such that Ṽ := Ũ ∩ Γ⋆ 6= ∅. Assume

that, for all i ∈ n− n⋆,

(∀p ∈ Ṽ ) dim(TpΓ
⋆ + Gi(p)) = dim(TpΓ

⋆ + Ḡi(p)) = constant

(∀p ∈ Ũ) dim(Ḡi(p)) = νi = constant.

Then, ρ0 ≥ ρ1 ≥ · · · ≥ ρn−n⋆−1 and there exist an open set U ⊆ Ũ and a regular
static feedback (α, β) on U such that, letting V := U ∩ Γ⋆, for all p ∈ V and for all
i ∈ n − n⋆ the following holds

TpΓ
⋆ + Ḡi(p) = TpΓ

⋆ ⊕





i
⊕

j=0

span{adj

f̃
g̃k : 1 ≤ k ≤ ρj}(p)



 . (4.5)

Proof. Choose an open set U ⊆ Ũ such that V := U ∩ Γ⋆ 6= ∅ and such that V
is covered by a coordinate chart in the atlas of Γ⋆. Apply the preliminary feedback
transformation (u⋆, Im) defined on V . Let f̃ = f + gu⋆. On V , define the distribution
(i.e. a subbundle of TR

n|V defined using the natural orthogonal structure on R
n)

G0 = [Ḡ0 ∩ TV ]⊥ ∩ Ḡ0.

On V , Ḡ0 ∩ TV is constant dimensional since

dim(Ḡ0 ∩ TV ) = dim(TV ) + dim(Ḡ0) − dim(TV + Ḡ0).

Since Ḡ0 and TV are regular distributions and their intersection is constant dimen-
sional, it follows from Lemma 2.4 that, by possibly shrinking U (and hence V ), Ḡ0∩TV
is smooth and so too is [Ḡ0 ∩ TV ]⊥. Thus, G0 is the intersection of smooth, regular
distributions. Furthermore, G0 has constant dimension on V since, for each p ∈ V ,

dim(G0(p))

= n − dim(Ḡ0(p) ∩ TpV ) + dim(Ḡ0(p)) − dim
(

[Ḡ0(p) ∩ TpV ]⊥ + Ḡ0(p)
)

= dim(Ḡ0(p)) − dim(Ḡ0(p) ∩ TpV )

= ρ0.
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Since G0 ⊆ Ḡ0 and G0 ∩ TV = (Ḡ⊥
0 + TV ⊥) ∩ (Ḡ⊥

0 + TV ⊥)⊥ = 0 we have

(∀p ∈ V ) TpV ⊕ G0(p) = TpV + Ḡ0(p) = TpV + G0(p).

By construction, V is covered by a coordinate chart, so there exist n⋆ vector fields
on V such that at each p ∈ V , TpV = span{v1, . . . , vn⋆}(p). Moreover, by possibly
shrinking U (and hence V ), there exist ρ0 vector fields w1, . . . , wρ0 : V → TR

n|V such
that G0 = span{w1, . . . , wρ0} so that, on V ,

TV ⊕ G0 = span{v1, . . . , vn⋆} ⊕ span{w1, . . . , wρ0}.

Using the fact that G0 ⊂ TV + G0, we write

wj =
n⋆
∑

k=1

αj
kvk +

m
∑

k=1

βj
kgk, j = 1, . . . , ρ0, (4.6)

where αj
k : V → R, βj

k : V → R are C∞(V ) functions. Let β0 be the m × ρ0 matrix

of real-valued functions whose (k, j)-th element is βj
k and let

[

g̃1 · · · g̃ρ0

]

=
[

g1 · · · gm

]

β0.

We now show that g̃1, . . . , g̃ρ0 are linearly independent which implies that β0 is full
rank. Suppose there exist ρ0 functions ci ∈ C∞(V ) such that

∑ρ0

i=1 cig̃i = 0. Then,
by (4.6),

∑ρ0

i=1 ciwi ∈ TV which implies ci = 0, i = 1, . . . , ρ0, since G0∩TV = 0. Note
that this argument also shows that span{g̃1, . . . , g̃ρ0}∩TV = 0. For, if this were false,
then there would exist a linear combination of the wi’s in (4.6) which, point-wise,
belongs to TpV .

Next, we seek m − ρ0 vector fields g̃ρ0+1, . . . , g̃m which belong to TV and such
that, on V , span{g̃1, . . . , g̃m} = G0. By possibly shrinking U (and hence V ), there
exists a set of smooth local generators, g̃ρ0+1, . . . , g̃m, for G0 ∩ TV . We now have the
desired decomposition on V

TV + G0 = TV + Ḡ0 = TV ⊕ span{g̃1, . . . , g̃ρ0},

where, in the new basis for G0, at each p ∈ V

g̃1(p), . . . , g̃ρ0(p) ∈ G0(p),

g̃ρ0+1(p), . . . , g̃m(p) ∈ TpV.
(4.7)

On V , f̃(p) ∈ TpV , so we have that adj

f̃
g̃k ∈ TV + Ḡj−1, ρ0 + 1 ≤ k ≤ m, j = 0, 1, . . .

and hence ρ0 ≥ ρ1, . . . , ρn−n⋆−1.

Now we perform the induction step. Assume that, for some positive integer I,
and any i ∈ {0, . . . , I}, there exists a basis {ĝ1, . . . , ĝm} for G0 such that

(a) TV + Ḡi−1 = TV ⊕





i−1
⊕

j=0

span{adj

f̃
ĝk : 1 ≤ k ≤ ρj}





(b) (∀k ∈ {ρi−1 + 1, . . . , m}) adi−1

f̃
ĝk ∈ TV + Ḡi−2.
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Property (b) implies that ρi−1 ≥ ρi, . . . , ρn−n⋆−1. We now seek a basis {g̃1, . . . , g̃m}
for G0 such that for any i ∈ {0, . . . , I},

(a)′ TV + Ḡi = TV ⊕





i
⊕

j=0

span{adj

f̃
g̃k : 1 ≤ k ≤ ρj}





(b)
′

(∀k ∈ {ρi + 1, . . . , m}) adi
f̃
g̃k ∈ TV + Ḡi−1.

On V , define the distribution

Gi =
[

Ḡi ∩ (TV + Ḡi−1)
]⊥

∩ Ḡi.

Note that Ḡi ∩ (TV + Ḡi−1) is constant dimensional since

dim(Ḡi ∩ (TV +Ḡi−1)) = dim(Ḡi) + dim(TV + Ḡi−1) − dim(TV + Ḡi).

The distribution Ḡi is regular on U and TV + Ḡi−1 is constant dimensional on V .
Since their intersection is constant dimensional, it follows from Lemma 2.4 that the
orthogonal complement of their intersection is smooth, and thus Gi, being the inter-
section of two smooth and regular distributions, is smooth. Furthermore

dimGi = n − dim(Ḡi) − dim(TV + Ḡi−1) + dim(TV + Ḡi)

+ dim(Ḡi) − dim
(

[

Ḡi ∩ (TV + Ḡi−1)
]⊥

+ Ḡi

)

= dim(TV + Ḡi) − dim(TV + Ḡi−1)

= ρi.

By construction, Gi ⊆ Ḡi and Gi ∩ (TV + Ḡi−1) = 0 so by dimensionality we have
that

(

TV + Ḡi−1

)

⊕ Gi = TV + Ḡi = TV + Gi. (4.8)

By possibly shrinking U (and hence V ), there exist ρi smooth vector fields w1, . . . , wρi

such that on V , Gi = span{w1, . . . , wρi}. Hence, by (4.8) we can write

wj = w̄ +

ρi−1
∑

k=1

βj
kadi

f̃
ĝk +

m
∑

k=ρi−1+1

βj
kadi

f̃
ĝk, j ∈ {1, . . . , ρi}, (4.9)

where w̄ ∈ TV + Ḡi−1 and each βj
k : V → R is a C∞(V ) function. By property (b),

for all k ∈ {ρi−1 + 1, . . . , m}, adi
f̃
ĝk ∈ TV + Ḡi−1. Let

ŵj :=

ρi−1
∑

k=1

βj
kadi

f̃
ĝk, j = 1, . . . , ρi. (4.10)

Notice that span{ŵ1, . . . , ŵρi} ∩
(

TV + Ḡi−1

)

= 0. For, if this were false, then there
would exist a C∞(V )-linear combination of the wj which belongs to TV +Ḡi−1 which,
by (4.8), is not possible. Furthermore, ŵ1, . . . , ŵρi are linearly independent because
if there exist ρi functions ci ∈ C∞(V ) such that on V c1ŵ1 + · · · + cρiŵρi = 0, then,
for some w∗ ∈ TV + Ḡi−1, c1w1 + · · ·+ cρiwρi −w∗ = 0, thus, c1w1 + · · ·+ cρiwρi = 0
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implying c1 = · · · = cρi = 0. Now let βi be the ρi−1 × ρi matrix of smooth functions

whose (k, j)-th element is βj
k obtained from (4.10) so that

[

ŵ1 · · · ŵρi

]

=
[

adi
f̃
ĝ1 · · · adi

f̃
ĝρi−1

]

βi.

The vector fields ŵ1, . . . , ŵρi are linearly independent and are generated as the image
of ρi−1 linearly independent vector fields under βi. Therefore βi is full rank. We can
now write

TV + Ḡi =
(

TV + Ḡi−1

)

⊕ span{ŵ1, . . . , ŵρi}.

Let

[

g̃1 · · · g̃ρi

]

=
[

ĝ1 · · · ĝρi−1

]

βi.

The vector fields {g̃1, . . . , g̃ρi} are linearly independent because the vector fields
{ĝ1, . . . , ĝρi−1} are linearly independent and βi is full rank. Moreover, since span{g̃1,
. . . , g̃ρi} ⊆ span{ĝ1, . . . , ĝρi−1} and both are constant dimensional, we can find (mak-
ing U , and hence V , smaller if necessary) ρi−1 − ρi vector fields g̃ρi+1, . . . , g̃ρi−1 such
that span{g̃1, . . . , g̃ρi−1} = span{ĝ1, . . . , ĝρi−1} (hence preserving property (a) from
the induction assumption) and adi

f g̃ρi+1, . . ., adi
f g̃ρi−1 ∈ TV + Ḡi−1. This is done by

finding local generators for the smooth distribution

span{g̃1, . . . , g̃ρi}
⊥ ∩ span{ĝ1, . . . , ĝρi−1}

which has constant dimension ρi−1 − ρi. Finally, let g̃ρi−1+1 = ĝρi−1+1, . . ., g̃m = ĝm.

We have therefore obtained a basis {g̃1, . . . , g̃m} for G0 in which properties (a)′ and
(b)

′
hold. In summary, the induction process gives a basis for G0 in which the input

vector fields are arranged in such a way that for i ∈ n− n⋆,

(

TV + Ḡi−1 + adi
fG0

)

/
(

TV + Ḡi−1

)

≃ span{adi
f̃
g̃1, . . . , adi

f̃
g̃ρi}.

We are left to show that this arrangement can be achieved using a regular static
feedback and that the arrangement is valid on U , and not just V as is presently
the case. To this end, let g̃ =

[

g̃1 · · · g̃m

]

and define a regular static feedback

defined on V by (α̂, β̂) where α̂ = u⋆ and β̂ =
(

g⊤g
)−1

g⊤g̃. To obtain a feedback
transformation defined off of Γ⋆, we can, by possibly shrinking U (and hence V ),
and applying Lemma 2.3 introduce a retraction r : U → V of U onto V . Then, let
α = α̂ ◦ r and β = β̂ ◦ r. The regular static feedback (α, β) has the desired properties.

In order to identify directions in the intersection TpV ∩ Ḡi(p) which are not
contained in the intersection TpV ∩ Ḡi−1(p), it is useful to define the integers

µ0(p) := dim(TpV ∩ Ḡ0(p))

µi(p) := dim(TpV ∩ Ḡi(p)) − dim(TpV ∩ Ḡi−1(p)),

for i ∈ N, and let

ni(p) :=

i
∑

j=0

µj(p),
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so that dim(TpV ∩Ḡi(p)) = ni(p). Under the assumption of Lemma 4.4, we have that
dim(TpV ∩ Ḡi(p)) = n⋆ + νi − dim(TpV + Ḡi(p)) and hence the µi are constant for all
i ∈ n − n⋆ and we have the following result.

Lemma 4.5. Let Ũ be an open subset of R
n such that Ṽ := Ũ ∩ Γ⋆ 6= ∅. Assume

that, for all i ∈ n− n⋆, the conditions of Lemma 4.4 hold. Then, there exists an open
set U ⊆ Ũ and nn−n⋆−1 vector fields vj

ℓ ∈ V(U), 0 ≤ j ≤ n−n⋆ − 1, 1 ≤ ℓ ≤ µj, such
that, after the feedback transformation of Lemma 4.4, letting V := U ∩ Γ⋆, and

G
‖
i := span{v0

1 , . . . , v
0
µ0

, . . . . . . , vi
1, . . . , v

i
µi
}

one has that, for all i ∈ n − n⋆, on U ,

Ḡi = G
‖
i ⊕





i
⊕

j=0

span{adj

f̃
g̃k : 1 ≤ k ≤ ρj}





and G
‖
i

∣

∣

∣

V
= TV ∩ Ḡi.

Proof. Suppose the feedback transformation (α, β) of Lemma 4.4 has been applied
which is valid on U ⊆ Ũ as defined therein. Since every point p of U is a regular point
for the distributions Ḡi, we can, by possibly shrinking U (and hence V ) find a set of
local generators X i

1, . . . , X
i
νi

valid on U for Ḡi, i ∈ n − n⋆.
On V , define the distribution Q0 = TV ∩ Ḡ0. By assumption, Q0 has constant

dimension µ0. Moreover, since Q0 is the intersection of two smooth, regular distri-
butions and constant dimensional, it is, by Lemma 2.4, smooth. By shrinking U
(and hence V ) we can find a basis such that, on V , Q0 = span{v̂1, . . . , v̂µ0}. By
construction, Q0 ⊂ Ḡ0 so that each v̂k ∈ Q0 can be expressed as

v̂k =

ν0
∑

j=1

ĉk
j0X

0
j , k ∈ {1, . . . , µ0},

where each ĉk
j0 : V → R is a C∞(V ) function. Next, we apply Lemma 2.3 and, by

possibly shrinking U (and hence V ) introduce a retraction r : U → V of U onto V .
Let ck

j0 = ĉk
j0 ◦ r so that

v0
k :=

ν0
∑

i=1

ck
i0X

0
i , k ∈ {1, . . . µ0},

are now vector fields defined on U and let G
‖
0 := span{v0

1 , . . . , v
0
µ0
}. It follows that

G
‖
0 ⊂ Ḡ0 in U and G

‖
0

∣

∣

∣

V
= Q0. By Lemma 4.4, TV + Ḡ0 = TV ⊕ span{g̃1, . . . , g̃ρ0}

so that Q0 ∩ span{g̃1, . . . , g̃ρ0} = 0. The distribution Ḡ0 has dimension ν0 = n0 + ρ0

throughout U so that

(∀p ∈ U) Ḡ0(p) ⊇ span{v0
1 , . . . , v

0
µ0
}(p) + span{g̃1, . . . , g̃ρ0}(p)

(∀p ∈ V ) Ḡ0(p) = span{v0
1 , . . . , v

0
µ0
}(p) ⊕ span{g̃1, . . . , g̃ρ0}(p)

where span{v0
1 , . . . , v

0
µ0
} ⊆ TV.

The vector fields v0
1 , . . . , v0

µ0
, g̃1, . . . , g̃ρ0 are linearly independent on V , therefore they

remain linearly independent in some open neighborhood of V in R
n, without loss of
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generality U . Therefore, they are local generators for Ḡ0 on U . Next, we perform the
induction step. Assume that, for some positive integer I, and any i ∈ {0, . . . , I}, on
U ,

Ḡi−1 = G
‖
i−1 ⊕





i−1
⊕

j=0

span{adj

f̃
g̃k : 1 ≤ k ≤ ρj}





and G
‖
i−1

∣

∣

∣

V
= TV ∩ Ḡi−1.

(4.11)

We want to show the existence of µi vector fields vi
1, . . . , v

i
µi

such that, for any i ∈

{0, . . . , I}, letting G
‖
i = G

‖
i−1 ⊕ span{vi

1, . . . , v
i
µi
}, one has that, on U ,

Ḡi = G
‖
i ⊕





i
⊕

j=0

span{adj

f̃
g̃k : 1 ≤ k ≤ ρj}





and G
‖
i

∣

∣

∣

V
= TV ∩ Ḡi.

(4.12)

On V , define the distribution Qi by Qi = (TV ∩Ḡi)∩(TV ∩Ḡi−1)
⊥. The distribution

Qi is the intersection of two smooth, regular distributions. Furthermore, for all p ∈ V ,

dim(Qi(p)) = dim(TpV ∩ Ḡi(p)) − dim(TpV ∩ Ḡi−1(p))

= µi

is constant by assumption, thus, by Lemma 2.4, Qi is a smooth regular distribution.
Locally, by making U (and hence V ) smaller if necessary, there exist local generators
v̂k, k ∈ {1, . . . , µi}, for Qi. By construction, Qi ⊂ Ḡi so that each v̂k ∈ Qi can be
expressed as

v̂k =

νi
∑

j=1

ĉk
jiX

i
j , k ∈ {1, . . . , µi},

where each ĉk
ji : V → R is a C∞(V ) function. Let ck

ji = ĉk
ji ◦ r so that

vi
k :=

νi
∑

j=1

ck
jiX

i
j , k ∈ {1, . . . , µi}

are vector fields defined on U and let G
‖
i/i−1 := span{vi

1, . . . , v
i
µi
}. It follows that

G
‖
i/i−1 ⊂ Ḡi and G

‖
i/i−1

∣

∣

∣

V
= Qi. By the definition of Qi and by (4.11) it follows

that, G
‖
i−1

∣

∣

∣

V
∩ G

‖
i/i−1

∣

∣

∣

V
=
(

TV ∩ Ḡi−1

)

∩Qi = 0. Furthermore, since (TV ∩Ḡi−1) ⊂

(TV ∩ Ḡi), we have that TV ∩ Ḡi = G
‖
i−1⊕G

‖
i/i−1 =: G

‖
i . In addition, by Lemma 4.4,

on V ,

G
‖
i ∩





i
⊕

j=0

span{adj

f̃
g̃k : 1 ≤ k ≤ ρj}



 = 0.

Finally, since dim(Ḡi) = ni +
∑i

j=0 ρj we have that (4.12) holds on V . Thus, since

G
‖
i ⊂ Ḡi on U , (4.12) also holds in a neighborhood of V , without loss of generality,

U .
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Lemmas 4.4 and 4.5 elucidate the fact that when the Ḡi are regular and the
integers ρi are constant, it is possible to find a local basis for each Ḡi distinguishing
between the tangential component and transversal component. Specifically, we have
that for i ∈ n − n⋆, on U ,

Ḡi = G
‖
i ⊕ G⋔

i

=
(

G
‖
0 + G

‖
1/0 + · · · + G

‖
i/i−1

)

⊕
(

G⋔
0 + G⋔

1/0 + · · · + G⋔

i/i−1

) (4.13)

where G
‖
i

∣

∣

∣

V
= TV ∩ Ḡi and

G
‖
i/i−1 = span{vi

j : 1 ≤ j ≤ µi}

G⋔

i/i−1 = span{adi
f̃
g̃j : 1 ≤ j ≤ ρi}.

(4.14)

The distributions G
‖
i/i−1 and G⋔

i/i−1 span, respectively, the tangential and transversal

directions contained in Ḡi but not contained in Ḡi−1. An immediate consequence of
Lemma 4.4 is that when

∑

ki = n − n⋆, i.e.,

TV + Ḡk1−1 = TR
n,

then, after feedback transformation,

TV ⊕ span{adj
f g̃k : 0 ≤ j ≤ n − n⋆ − 1, 1 ≤ k ≤ ρj} = TR

n. (4.15)

As a result, Lemma 4.5 yields the following array2 of n independent vector fields on
U .

1 G
‖
0, G

⋔
0 ; . . . ; G

‖
kρ0−1/kρ0−2, G

⋔

kρ0−1/kρ0−2;

2 G
‖
kρ0/kρ0−1, G

⋔

kρ0/kρ0−1; . . . ; G
‖
kρ0−1−1/kρ−1−2, G

⋔

kρ0−1−1/kρ0−1−2;

· · · · · · · · · ·

ρ0 − 1 G
‖
k3/k3−1, G

⋔

k3/k3−1; . . . ; G
‖
k2−1/k2−2, G

⋔

k2−1/k2−2;

ρ0 G
‖
k2/k2−1, G

⋔

k2/k2−1; . . . ; G
‖
k1−1/k1−2, G

⋔

k1−1/k1−2;

ρ0 + 1 v1, , . . . , vn⋆−nk1−1
.

(4.16)

In (4.16), each block delimited by semicolons in rows 1 to ρ0 contains independent
vector fields in some Ḡk which are not contained in Ḡk−1. The vector fields in rows
1 through j, 1 ≤ j ≤ ρ0, span Ḡkρ0−j+1−1. The vector fields in row ρ0 + 1 are

solely defined on V ⊂ Γ⋆ and are not contained in any of the Ḡi’s so that at each
p ∈ V , span{v1, . . . , vn⋆−nk1−1

}(p) ≃ (TpV + Ḡk1−1(p))/Ḡk1−1(p). They are chosen
to complete the basis for TpV , so that

(∀p ∈ V ) TpV =span{v1, . . . , vn⋆−nk1−1
}(p) ⊕ G

‖
k1−1(p).

2In the array we use the symbols G
‖
i/i−1

and G⋔

i/i−1
to mean a family of vector fields and not

the span of the vector fields.
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5. Proof of the Main Result (Theorem 3.2). Suppose that LTFLP is solv-
able at p0 ∈ Γ⋆. Let V = Ξ(Γ⋆ ∩ U) and consider the expression (4.4) for TV + Gi

in local coordinates. It is clear from (4.4) that the subspace TpV + Gi(col(p, 0)) has
constant dimension n⋆ + rank([B · · · AiB]). Since the pair (A, B) is controllable,
we have that rank([B · · · An−n⋆−1B]) = n − n⋆ and condition (a) holds. As far as
condition (b) is concerned, we have already shown in the proof of Lemma 4.3 that
TV + Gi = TV + Ḡi.

Conversely, suppose conditions (a) and (b) hold. These two conditions along
with the regularity of Ḡi, i ∈ n − n⋆ − 1, allow one to invoke Lemmas 4.4 and 4.5.
Specifically, there exist a neighborhood Ũ of p0 in R

n, a regular static feedback (α, β)
on Ũ , and nk1−1 vector fields defined on Ũ such that, letting Ṽ := Ũ ∩ Γ⋆, the
distributions Ḡi have the representation given in (4.13), (4.14) on Ũ and at each
p ∈ Ṽ the n vector fields of the array (4.16) are linearly independent.

Having applied the static feedback (α, β), we will denote f̃ and g̃ by, respectively,
f and g to simplify notation. We construct ρ0 functions αi : U → R satisfying
Theorem 3.1. Pick the point p0 as the origin for the s-coordinate system to be
generated from the vector fields in (4.16) (see, [25], [27]). Compose the flows generated
by the vector fields in (4.16) starting from the bottom row. Consider the mapping

F∅ : W∅ ⊂ R
n⋆−nk1−1 → V

: S∅ = (s
‖
1, . . . , s

‖
n⋆−nk1−1

) 7→ φ
vn⋆−nk1−1

s
‖

n⋆−nk1−1

◦ · · · ◦ φv1

s
‖
1

(p0).

We continue by moving upwards in the array (4.16) to generate a sequence of map-

pings similar to F∅. To each pair (G⋔

i/i−1, G
‖
i/i−1), 0 ≤ i ≤ k1−1, we associate a set of

times3 Si/i−1 = (S⋔

i/i−1; S
‖
i/i−1) := (s⋔

(i/i−1,1), . . . , s
⋔

(i/i−1,ρi)
; s

‖
(i/i−1,1), . . . , s

‖
(i/i−1,µi)

)

and a mapping

Fi/i−1 : Wi/i−1 ⊂ R
µi+ρi → R

n

: (S
‖
i/i−1, S

⋔

i/i−1) 7→ Φ
‖
i/i−1 ◦ Φ⋔

i/i−1(p).

Here Φ
‖
i/i−1 is the composition of flows generated by vector fields spanning G

‖
i/i−1,

and Φ⋔

i/i−1 is the composition of flows generated by the vector fields spanning G⋔

i/i−1.
Specifically,

Φ
‖
i/i−1 = φ

vi
µi

s
‖

(i/i−1,µi)

◦ · · · ◦ φ
vi
1

s
‖

(i/i−1,1)

Φ⋔

i/i−1 = φ
adi

f gρi

s⋔

(i/i−1,ρi)

◦ · · · ◦ φ
adi

f g1

s⋔

(i/i−1,1)

.

Let

s = col(S∅; Sk1−1/k1−2; . . . ; S1/0; S0). (5.1)

and let W ⊂ R
n be a neighborhood of s = 0, sufficiently small, to ensure that the

map

F : W → F (W )

s 7→ F0 ◦ F1/0 ◦ · · · ◦ Fk1−2/k1−3 ◦ Fk1−1/k1−2 ◦ F∅(p0).
(5.2)

3We define i/(i − 1) := 0 when i = 0 to be consistent with the array (4.16)
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is a diffeomorphism onto its image and that F (W ) ⊂ Ũ . The existence of W is
guaranteed by the inverse function theorem and the fact that the differential of F at
s = 0,

dF0 =
[

v1 · · · vn⋆−nk1−1
adk1−1

f g1 · · · · · · g1 · · · gρ0 v0
1 · · · v0

µ0

]

(p0).

(5.3)
is an n×n square matrix whose columns span the subspace Tp0Γ

⋆ +Gk1−1(p0) which,
by condition (a), has dimension n. As candidate (virtual) output functions, let αi,
i ∈ {1, . . . , ρ0} be the time spent flowing along adki−1

f gi, i.e,

αi(x) = s⋔

(ki−1/ki−2, i)(x), i ∈ {1, . . . , ρ0}. (5.4)

The image of Ṽ under F−1 is the hyper-plane

F−1(Ṽ ) = {s ∈ W : S⋔
0 = 0, S⋔

1/0 = 0, . . . , S⋔

k1−1/k1−2 = 0}.

Since the chosen functions α1, . . . , αρ0 are a subset of the functions whose zero level

set define F (Ṽ ), the αi are identically zero on F (Ṽ ) and hence condition (1) of
Theorem 3.1 is satisfied. Next, we must show that α = col(α1, . . . , αρ0) yields a well-
defined vector relative degree of (k1, . . . , kρ0) at p0 = F−1(0). As per [9], this entails
showing that

(VRD1) Ladk
f gj

αi(x) = 0 for all 1 ≤ j ≤ ρ0, for all 0 ≤ k ≤ ki − 2, for all 1 ≤ i ≤ ρ0

and for all x in a neighborhood of p0.
(VRD2) The ρ0 × ρ0 matrix













L
ad

k1−1

f g1
α1(p0) · · · L

ad
k1−1

f gρ0

α1(p0)

L
ad

k2−1

f g1
α2(p0) · · · L

ad
k2−1

f gρ0

α2(p0)

· · · · · · · · ·
L

ad
kρ0−1

f g1
αρ0(p0) · · · L

ad
kρ0−1

f gρ0

αρ0 (p0)













(5.5)

is non-singular at p = p0 (if this matrix is non-singular, then the decoupling
matrix has full rank).

First we show that VRD1 holds. Fix a set of times S∅ = c∅, Sk1−1/k1−2 = ck1−1/k1−2,
. . ., Ski−1/ki−2 = cki−1/ki−2, where each cj is a constant vector, to uniquely determine
the hyper-plane

Hi = {s ∈ W : S∅ = c∅, Sk1−1/k1−2 − ck1−1/k1−2, . . . , Ski−1/ki−2 = cki−1/ki−2}.

Consider the point s = col(c∅, . . . , cki−1/ki−2, 0, . . . , 0) ∈ Hi and let x = F (s) ∈

Ũ . Through x there passes an integral submanifold of each Ḡi, i ∈ k1 − 1, which
we denote by Li(x). Consider the map F0 ◦ F1/0 ◦ · · · ◦ Fki−2/ki−3(x). It is the
composition of the flows defined by vector fields which are local generators for Ḡki−2.
Therefore the image of this map is the νki−2 dimensional manifold Lki−2(x) ∩ Ũ . On
the other hand, the image of this map in s-coordinates is the hyper-plane Hi, i.e.,
Hi = F−1(Lki−2(x) ∩ Ũ). Therefore for each s ∈ Hi, TsHi =

(

F−1
)

⋆
Ḡki−2(s) =

Im
(

col(0, Iνki−2
)
)

. The function αi is among those fixed times which define the

hyper-plane Hi. Therefore, dαi ∈ ann(Ḡki−2) ⊂ · · · ⊂ ann(G0) and hence VRD1
holds in a sufficiently small neighborhood of p0.
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Next we show that VRD2 holds. Treating TR
n as an orthogonal bundle with the

usual inner product, the value of the (i, j)-th entry of (5.5) is equal to

〈

dαi, adki−1
f gj

〉

(p0).

From the expression (5.3) for dF0 it follows that

adki−1
f gj(p0) =

[

F⋆

(

∂

∂s⋔

(ki−1/ki−2, j)

)]∣

∣

∣

∣

∣

s=0

, 1 ≤ i ≤ j ≤ ρ0

so that

∂

∂s⋔

(ki−1/ki−2, j)

=
[

F−1
⋆

(

adki−1
f gj(x)

)]∣

∣

∣

x=p0

, 1 ≤ i ≤ j ≤ ρ0.

In light of this and the definition of αi, i ∈ {1, . . . , ρ0}, given by (5.4), in s-coordinates
the values of the entries of (5.5), along and below the diagonal, at p0 are

〈

ds⋔

ki−1/ki−2, i,
∂

∂s⋔

(ki−1/ki−2, j)

〉

= δij , 1 ≤ i ≤ j ≤ ρ0,

where δij is the Kronecker delta function. Thus, at 0 = F−1(p0) the matrix (5.5), in s-
coordinates, has ones along its diagonal and zeros below. Therefore it is non-singular
at s = 0 which is equivalent to being non-singular at p0 = F (0). �.

6. Conclusions. We have determined necessary and sufficient conditions under
which a multi-input nonlinear control-affine system is locally transversally feedback
linearizable with respect to a given invariant submanifold. Our main conditions are
checkable, though we do not present a constructive procedure for finding the coordi-
nate and feedback transformations.

One can similarly pose the global transverse feedback linearization problem (GT-
FLP) in which one, roughly speaking, seeks a single coordinate and feedback trans-
formation such that (2.1) is feedback equivalent to the normal form (3.1) in a tubular
neighborhood of Γ⋆. Clearly the geometry of Γ⋆ will play an increased role in char-
acterizing the solution. In [19], we provided sufficient conditions for the solvability of
GTFLP in the single-input case. GTFLP for multi-input systems remains an open
problem.
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