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Abstract—In this paper we continue research on the trans- II. NOTATION AND PROBLEM STATEMENT

verse feedback linearization problem. In [1] we found sufficient C id | deled b . f th
conditions for this problem to be solvable. Here we present onsider a control system modeled by equations of the

necessary and sufficient conditions for local transverse feedo ~ form
linearization.

b= @)+ Y go)u = f@) + gl )

[. INTRODUCTION Here x € R™ is the state, andi = (uq,...,uy,) € R™ is
the control input. The vector fieldg, g1,...,9m : R* —
n o0 1
The transverse feedback linearization problem (TFLP}Et are SmOO;fr‘e(C;im)a-axveinadS:U;zet;\thQhOUt this paper
was formulated in [2] by Banaszuk and Hauser. Give G- - gm y P '

a controlled invariant manifold™ embedded in the state o Notation
space, this problem entails finding a coordinate and feddbac
transformation putting the dynamics transversel'tointo
linear controllable form. When feasible, transverse feeklba
linearization can simplify set stabilization problems.

If k& is a positive integerk denotes the set of integers
{0,1,...,k — 1}. We letcol(zy,...,zx) := [x1 ... z,]"
and, given two column vectors and b, we letcol(a,b) :=
o o a’ b"]T. Throughout this paper by manifoldis meant a
Often, control objectives will dictate that the controllerg.,,oth manifoléind by asubmanifolds meant arembedded
stabilize sets, rather than equilibria. In [3], for instanc ¢,,pumanifold All objects are presumed to be smooth. On a
the solution of a set stabilization problem is central tQanifold M, V(M) will denote the set of all smooth vector
controlling bi-pedal locomotion. The “virtual constraiit fiaids on A/ and C>°(M) the ring of smooth real-valued
technique in [4], used to gtabilize oscillator_y mpde_s ifunctions on. Given v € V(M), we denote bys!(z) an
Euler-Lagrange systems, relies on feedback linearizaion gjement of the local-parameter group of diffeomorphisms
stabilize an invariant set. or flows generated by through the pointz € M for
The work of Banaszuk and Hauser in [2] characterizedufficiently smallt. Standard notations for Lie derivatives
the solution to TFLP for single-input systems whBh is  and Lie brackets are used which can be found in [6], [7].
a diffeomorphic to the unit circle. In [5] we generalizedFinally, we denote by, the zero vector with elements and
Banaszuk and Hauser's results to the case whenis by I, the m x m identity matrix. Following [8], we denote
diffeomorphic to the generalized cylind&r” —* xT*, where  the class of closed, connected embedded submanifolds of
T* is the k-torus. In [1] we gave sufficient conditions toR” which are controlled invariant for (1) by (f, g,R™). If
solve TFLP for multi-input systems. Theorem Ill.1 in [1], N € .#(f, g,R™), we write.Z(f, g, N) for the collection of
concerning the global solution to TFLP, contains a mistakefriends” of N, i.e. mapsi : N — R™ such thatf + g is
The theorem claims to give sufficient conditions for TFLPangent toN, i.e.,
to be globally solvable under the assumption that is a
contractible set. Contractibility may not, in fact, be egbu (f +gu)ly : N —TN.

to guarantee the existence of a global solution to TFLP ar@iven a distributionD on R", we let D be its orthogonal

hence Theorem I11.1 in [1] must be consideretbaal result. complement employing the natural orthogonal structure of
In this paper we further generalize the results of [1]g» This stands in contrast to the notatiann (D) which
Our main result is Theorem V.1, which gives necessary anigle use to denote the annihilator &. If N c R" is a
sufficient conditions for the existence of a local solution t sybmanifold andD a distribution oriR™, by TV +D is meant
TFLP. The global problem needs further investigation. the vector bundle ove¥ defined fibre-wise by, V + D(p);
by ann(TV + D) C (TR™)* is meant the annihilator of

_ ‘ , o TV + D overV. The involutive closure oD is denotedD.
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Local Transverse Feedback Linearization Problem (LT- Lemma Ill.1 For all non-negative integers, G; = %,.
FLP): Given a pointp, € I'* and a pair (I'*,«*), find Thus, wherl,,I'* = {0}, p; = ;.

conditions which ensure that there exist a neighborhébd

of py in R™, a local diffeomorphisnE : U — Z(U), and a The proof of Lemma Ill.1 is omitted for brevity. Inspired
regular static feedbacky, 3) such that, letting/ := UNI*, by [9], we conjecture that in cases when the dynamics of (1)

systen(1) is feedback equivalent oif to a system modeled transverse td™ cannot be feedback linearized the transverse
by equations of the form controllability indices characterize the largest tramsgesub-

. system of (1) that can be feedback linearized.
Z = fO(Z7 5) + gl(za 5)’01 + 92(Z> 5)02

: 2

& = A + Buy @ V. PRELIMINARY RESULTS
where(z, &) € E2(U) € R™ xR™™™" v = col(vy, v2) € R™, Before proving the main results, we require some addi-
B is full rank, the pair (A, B) is controllable and=|,, is tional machinery which will generate a smooth feedback
the canonical immersion transformation which orders the vector fields of the distri-

butionsG; in a convenient way. We begin with a necessary

Ely V= Vx {0} condition for LTFLP to be solvable.

z > (z,0).

Under mild regularity conditions, necessary and sufficientemma V.1 Suppose that LTFLP is solvable g§ € T'*.
conditions for the existence of a solution to LTFLP arerhen there exists a neighborhodt of p, in R” such that,

presented in Theorem IV.3. letting V := I'* N U, we have tha{Vp € V) (Vi € n — n*)
[1l. TRANSVERSECONTROLLABILITY INDICES dim(T,V + Gi(p)) = dim(T,V + Gy(p)) = const,

In [1], we introduced the transverse controllability inefic o

of (1) with respect tol'*. For our present discussion weWhich implies thatpo, ..., p,—n+—1 are constant or/.

define, fori = 0,1, .. ., the following distributions associated ) o .

with (1) Proof: Since the stated condition is coordinate and

) o feedback independent it suffices to show that the lemma

G; =span{ad}gy : 0 <j <i, 1 <k<m}, holds in(z, &) coordinates. By the properties of the normal
G =f+Go={f+g:9€Go} form (2), for anyp € V, E(p) = (p,0) so that in(z,¢)
[AA] = {[X,Y]: X € A,Y € A} (A, A distributions, coordinates we have that for alle V'
adlj}Go = span{adifX : X €Gp}, i1=0,1,..., T,V + G;(col(p,0)) =
b =% 1 +19,%-1], %=GCGo, i=12,..., Im({ I ke ok }) ©)
S =Y 1+ adijo, So=Go, i =1,2,.... On—nexns B AB .- A'B

In [1] the distributionsG, are assumed to be involutive in for i € n —n*. Itis clear from (3) that for ali € n —n”,
a neighborhood of*. Here we omit this assumption and the subspac#,V +G;(col(p,0)) has constant dimension on
generalize our definition of transverse controllabilitgizes. V- We now show that, for alp € V, G;(col(p,0)) C T,V +
For eachp € T*, i € N, define G;(col(p,0)). Once this is proven, the lemma follows from
. the fact that7},V + G, (col(p,0)) C T,V + G;(col(p, 0)).
— * o * P ) P )
polp) = d.1m (LT + ?O(p)) " , In (z,¢) coordinates consider the constant distribution on
pi(p) = dim (T,T* 4 G;—1(p) + ad}Go(p)) U given by
— ] * e .
dim (T,I'" + Gi—1(p))- AT I« 0 0 - 0

When the integerg; are constant ovdr* (or an open subset =My B AB ... A'B
of I'*) we define a set of, integersky, ..., k,, which are

the transverse controllability indices of (1) with respezt Where each column is a (constant) vector. At each V,
T* A(p) = T,V + G;(col(p,0)). Since A is involutive and

ki == card{p; >1,j >0}, i€ po. ??tail?SGOi)y) it follows that G;(col(p,0)) € A(p) = T,V +
: , - , i\COUP, V) u
When theG;’s are involutive, the definition of the integeps  The next result adapts [1, Lemma IV.1, Lemma IV.3] to the
agrees with that given in [1]. In the special case whens  resylt in Lemma IV.1. In order to identify directions in the
an equilibrium point, it is useful to compare our definition o jntersection7,V N G;(p) which are not contained in the
to that given by Marino in [9]. There, controllability indis intersection?},V N G,_1(p), define the integers
are defined using the integers ~
ro = dim % o(p) := d.nn(TpV ﬂgo(p)) . a
v = dim.S — dim%,_, wi(p) == dl'm(TpV NG;i(p)) — dim(T,V N Gi—1(p))

7
in place of the integerp;. The next result states that, when  p, (p) := ZW,
T,I'* = {0}, the integers; andr; are identical. =0



Thus,n;(p) = dim (7,V N G;(p)). When thep;’s and ;’s
are constant over an open subsel'dfwe have the following
result.

Lemma IV.2 Let W C R™ be an open set such th&t’ N
I'* # (), and defineV := W N TI*. Assume that, for all
i€n—n* andforallpeV

dim (T,V + G;(p)) = dim (T,,V + G;(p)) = constant
(Vp € W) dim (G;(p)) = constant

Then
pPo < p1 < < Pnonr—t

ki > ko > kpy.

Moreover there exists an open détC W, a regular static
feedbacka, 3) defined onU and n; vector fieldsv) : U —
TR", 1 < j < i, 1 < ¢ < p,, such that, lettingl’ :=
UNnr* 0, foral i € n —n*,

(Vpe V) Gl‘ (p) := span{v{, ..., v’

vl Hp) C T,V
(VpeU)

Gi(p) = G(p) @ | P spanf{ad : 1 <k < p;}
7=0

where f = f + ga and § = gf.

This lemma gives a basis @, by distinguishing between
the vector fields inG; which are tangent ta™ and those
which are transverse to it. Specifically, we have that

(Vpel) G;=Glaah

—(ch+al+-cl

i/z‘q) ® <G§ + GT/O +- Ggh/i71>

where Gy ’V C TV and, forallp € U,

I
Gi/z;l

sz/iq := span {adizgj 1 <5 <pi} CG;

i=span {v} : 1 < j < p;}

(4)

span, respectively, the tangential and transversal drest
in G; not contained inG;_;. The proof of Lemma IV.2 is

not the span of vector fields.

1 é’GQ;"';qu;pofl/kmf?Gglpofl/kmf?

2 Gkﬂo/kpo_l’kao/kpo_l; ...... ;
Gzpo,l—wk[,,l—z’Ggpo,l—yk-po,l—zi

po—1 ng/kg—pG?g/kg—l? = -3G£2—1/k2—2’G?2—1/k2_2%

Po GZg/kg—DGz;/kQ—l;'";G;c—l—l/kl—w 2]1—1/1@1—2?

po+1 | v, Vneny -

(6)
All of the vector fields of (6) are defined oy except
for those in rowpy + 1. Those vector fields are solely
defined onV C I'* and are not contained in any of the
Gy's so that at eaclp € V, span{vi, ..., U+ —n,, _, }(p)
(T,V + Gr,-1(p)) /Gr,—1(p). They are chosen to complete
the basis forT, V', so that

~

Tpv = Span{vla cey Un*—nklf1}(p) 2] Gilfl(p)'

We conclude this section with the local version of [1,
Theorem VI.1] which is used to prove our main result in
Section V.

Theorem IV.3 LTFLP is solvable ap, if and only if there
exist py smoothR-valued functionsy, ..., a,,, defined on
some open neighborhodd of py in R™, such that

QD UNT*C{zeU: :aqix)=0,i=1,...,p0}
(2) The system

PO
b= )+ Y gilw)us -
i=1

y' = col(an (), ..., ap(z))

has vector relative degregk, ..., k,,} at po.

V. MAIN RESULT

Theorem V.1 Assume that3;, i € k; — 2 are regular at
po. Then LTFLP is solvable at, if and only if
(a) dim (TPOF* + le—l(po)) =N
and there exists an open neighborho@dof py in I'* such
that
(b) (Vi € ki —2) (Vp € O) dim(T,I" + Gi(p))

dim (7,I'* + G,(p)) = constant.

omitted since it is conceptually the same as the proof of [1

Lemma IV.1]. An immediate consequence of Lemma IV.2 i
that when>_ k;, = n —n*, i.e,,

(Vp € V) dim(T,V + G, —1(p)) = n,
then, after feedback transformation,

TPVGBspan{ad;gk(p) 0<ji<n—-n*"-1,1<k<p;}
= T,R".
(5)

ketch of the Proof(=) Assume LTFLP is solvable. Then
condition (a) follows by [1, Lemma V.1]. Condition (b)
follows by Lemma IV.1.
(<) Conditions (a) and (b) along with the regularity of
G; imply that there exists a neighborhodt of p, in R"
such that the assumptions of Lemma IV.2 hold, and thus
after feedback transformation we obtain thendependent
vector fields of (6) defined on an open détC W with
V :=UnNO # 0. We now construcp, R-valued functions
aq, ..., ap, satisfying Theorem IV.3. Lepy € V' be the ori-

As a result, Lemma V.2 yields the following array @f gin for S-coordinates [10]. These coordinates are generated
independent vector fields. In the array we use the symbaly composing the flows of the vector fields in (6) in a special

Gy/zq and GQ}Fl to indicate a family of vector fields and order and then using the flow times as coordinates. Scalar



functions a, ..
from among those times.

., a,, satisfying Theorem V.3 are chosenSince the proof of the above facts remains the same in the

more general setting of this theorem, we focus on showing

We compose the flows generated by the vector fields in (8)at thepg x m decoupling matrix

starting from the bottom row. Begin with the flows generated

by the vector fields,, .. . s Un*—ng, - Consider the mapping
Fy:QCRY ™1 -V CR™
Fy: Sy ::(5!7...5H )

oNF—ng, -1

Un*—mp, 1 vy
= d’su 00 ‘ZSQH (po)-
“1

* _
n Ny —1

To each pair(Gl.'/i_l,G;“/F1

of times. Fot i € ki, |etHs,»/Z-,1 = ($P, ;S ) =
h m )

(S(i/i—l,l)’ o S(ii=1,p:)3 S(i/i—1,1)7 0 S(ifim1 s ). Next

we generate a collection of mappind$,;—; : U;/i—1 C

RHitri 5 R™, (1 <i<k — 1), given by

. _(agh gl Il M
Fifim1 2 Sijio1 = (Si/z‘fl7 Si/iq) =0y 09 4(p),

I I U:‘i vy
(I)i/iq = ¢S|| ©---0 ¢Su )
(i/i=1.pm;) (i/i=1,1)
adi g1 adi 9p
o, = b o
i/i-1 8(i/i—1,p;) S(i/i-1,1)

The notation forS; /;_; = (Sf‘}i_l; SZU/FI) describes the fact

that S7),
fields in G;, not in G,_1, which are transversal t& on

V. Meanwhile, S”/

i/i—1

with vector fields inG;, not in G;_;, which are tangent to

V on V. Compose each of these maps together to obtain

F:UCR"—R",
8)

The fact that, for some sufficiently small neighborhoad

F:=FyoFygo0---0F 1520 Fy(po).

is a collection of times associated

Lo, L5 Yoy (p)

f LgmL’g*al (p)
Lg, L% as(p)

Lgnl Lf271a2 (p) (10)
kpn—1 kp,—1
Ly, pro g, (D) LgmprO po (D)

is full rank for anyp € V. Notice that for any point o/
the lastm — pg columns of (10) are zero. To see this, recall

) in (6) we associate a set that the preliminary feedback transformation of Lemma IV.2

is such that,

(Vi €{0,1,...}) (VpeV) (Vk € {p; +1,...,m})
ad’gi(p) € T,V + Gi—1(p).

This implies, by the fact that’ C {x : «(z) = 0} and
by (9), that
L ghi1 _Ozi(p)ZO; 1<t <pg, t <3< m.
aa, 9

Using [6, Lemma 4.1.2] allows us to set the final— pg
columns of (10) to zero. Thus we concentrate onghe pg
sub-matrix of (10) consisting of the firgty columns. By [6,
Lemma 4.1.2] and by (9) we have that thex pg sub-matrix

is a collection of times associated with vectorof (10 consisting of the firsp, columns is nonsingular if

and only if
Ladll;lflglal(p) t Lad’}'lflgpu al(p)
Lyta-ty,02(p) Lada0,,920) |1y
Lad’;flo_lglapo (p) te Lad’;Po_lgma/)o (p)

is non-singular. Now supposg = ka2 = -+ - kny > kmy+1,

of po in R”, (8) is a diffeomorphism onto its image is1 < m; < po. Intuitively this means that the functions

an obvious consequence of property (a). Globally, i.e., ing,..

a neighborhood ofl™, it is not obvious. In the proof of

Theorem I1ll.1 in [1] we mistakenly claimed that (8) is ameanspy, 1 = pg,—2 = --

diffeomorphism from a neighborhood ©f onto its image.
This mistakedoes not affecthe conceptually similar, but

significantly simpler, proof of Theorem 4.4 in [5], which
provides sufficient conditions for the existence of a global

solution to TFLP for single-input systems.
The final S-coordinates are given by

35103 50) -

As candidate output functions, let;, i € {1,...,p0},
be the time spent flowing alongd’}i_lg,;, i.e. a;(x)
S(ki1/ki—2.pi—i+1) (). With this choice fora, we must
show that tﬁe conditions of Theorem V.3 are satisfied.

Re-defineV asV = F(U)NI'*. In [1, Theorem III.1] it
is shown tha” C {z : a(x) = 0} and that for alp € F(U)

S = col (Sp; Sk, —1/ky—25 - -

Ladfcgjai(P):(J% 1<i<py, 1<j<m, 0<l<k;—2.

9)

1We define i/(i-1) := 0 fori = 0 to be consistent with the array (6).

.,am, correspond to the times flowing along vector
fields in Gy, _1, but not inGy, 5. In terms of thep;, this

© = Pk, = m1. We now
show that the firstn; rows of (11) are full rank. Suppose
that there exisin; scalarse; such that

mi

> e <dai, ad’}ﬁlgj> ()

=1

This implies that Y c;da; €
> cida; € ann (T'V). Therefore

ann (Gg,—1). However,

m1
Z cida; € ann (TV) Nann (G, —1)
i=1

= ann (TV + le_l) =0.

Since {day,...,day,,} are linearly independent, (a fact
easily seen inS-coordinates), we conclude that = - - -
¢m, = 0 and the firstm; rows of (11) are full rank as
claimed.

Now suppose thak,,, +1 = -+ = kmy+ms > Kmy+mat1s
0 < ms < po—my. We want to show that the first; +ms



rows of (11) are full rank. In order to do this we first showwhere h = my (k1 — kpmy4+1) + My 41—1 andk = n —

that the exact one-forms my (k1 —km,+1+1)—ma— Ny, 11 —1- 1N light of this the term
771 k krn
dLiay, 1<j<my, 0<i<ky—kp—1 Sty adLy " ag in (14) must have, irS-coordinates,
the form
are
*h —bl ce —bm 0 , Ok .

(i) linearly independent of. [_ | _ : ‘_ " h ]
(i) Contained inann (T'V + Gy, ,,—2)- However, inS-coordinates, vector fields i6s,, ,,-1 have

the formcol(0y, x) with zeros corresponding precisely with
the termx; above. In fact it is possible to find a €
Gk v & Gy, given by

Fact (ii) follows directly from (9) and the fact th&t C {« :

a(xz) = 0}. To prove (i), consider the linear combination

nL1+1_1’ ml+1_2’

my
0 k1—FKmi+1 k1—FEmy+1 k 1
a;do; +---+a; " dL Ta; =0 (12) mytl B B
Z e ! v = Z i -l—----l—cf’"l+1 lacll;’"1+1 191'
1=0
. . Ko -1
Next take the inner product of (12) witnd; "5, 1< such that inS-coordinates
j <m. Using (9) and [6, Lemma 4.1.2] we have

v=col( Op| O -+ 0 |xm, |0k ).
— k1—k ki—k ki1—k -1 .
> AL T  y ad T g, ) =0 This means that
=1 mi b1 —k
my a;dL; " a0 ) =0
N <Za2€1 km1+1d dkl 1 > —0. ; f
=1 and hence
Since the firstn; rows of (11) are linearly independent, we ; ,,,, Emqt1—1
conclude tharaflfkmﬁl = 0 for 1 < i < m;. Following é aidLl;l—k,,,Lmai, Z Cfm1+1—1adl;m1+1—lgi> _o.
this same procedure one can recursively show that all thg;=: i=0

coefficients in (12) are identically zero and (i) is provem A

my k1—km 41 ) _
important consequence of this fact is that Thus > ;= aidL ai € am(TV +Gr,,yy-1)

which by the fact (i) shown earlier, implies that = 0

ann(TV+G‘km1+l_1) = We are left to show that the in (14) are zero. This can be
k1 —km, 41—1 (13) done directly using (9) and [6, Lemma 4.1.2] and considering
@ span {dLécozl, .. ,dLécaml 1. the expression

i=0 my

070 1oy R kmisi=l g ki—kmy =1
Returning our attention to the first; + ms rows of (11), Zai dai +---+a dL; it

suppose there exist; +mo scalars such that far < j < pg

ma
i k1 Z bidaml_H' =0.
Zai <dai,adf gj> =
i=1 One now proceeds in exactly the same way as was used to
mo . . .
femyg1—1 \ show that the coefficients in (12) are all zero.
+ Zb <d0‘m1+“ad g]> =0 At this point the proof technique can be repeated until

_ _ _ all the rows of (11) are accounted for. Specifically, the
Using, once again [6, Lemma 4.1.2] and (9) this can bRext step in the proof is to assume thet, im,+1 =
written as oo = Ky tmatms > Kmytmetmst1- NOW take a linear

my - mo . . combination of the firstn; + mo + mg rows of (11) and

D adLy T o > bida, i, ady™ T g5 ) = 0. assume there existsi; + mo + my scalars such that, for

i=1 i=1 1 <7< po,
which implies that at each € V' mi 1 m2 et

- . z:a2 <daz, ad;' ™ > Zb <dam1+l,ad ! gj>

Sy a +Zb Jdam, 1i(p)  (14) T

= + Z Ci <dam1+m2+i’ ad?nﬁmw_lgj> =0
belongs toann (T'V + Gy, ,,—1). We now show that this i=1
contradicts (13). Consider th§-coordinates representation Arguing in the same way as above, one shows that the
of the term "% b;da,,, +; in (14). Since the one-forms integersa;, b;, andc; must be identically zero. In this way

{dovm, 11, ... dom, +m, } are part of the dual basis if- one shows that (11) is full rank.
coordinates, it has a particularly simple vector notative In conclusion, the functiorf, . . ., a,,) constructed us-
by ing S-coordinates satisfy both conditions in Theorem IV.3.

[On] b1 -+ by | Om, | Op ] n



VI. EXAMPLE To check that conditions of theorem V.1 we note that=

To illustrate these ideas we present an example of ceffo and that for allp € ™ dim(Z,I™ + Go(p)) = 4 which
tralized control of two Lorenz oscillators. The equatioris omeans thatp, = 1. Next we find the distributionz; by

motion are noting tha(tadqul (z, yz =col(l,zq1 +x3—1,1— Jc)g, 0,0,0)
. B . B andady¢gs(x,y) = col(0,0,0,1,y1 +y3 — 1,1 —1y2). Simple
9.61 =olz—z)+u 1{1 =olyz —w) calculations give thatp; = 1 and so for condition (b)
T2 =741 — &2 — 13 g2 =ry1=y2 = y1ys (15)  of Theorem V.1 to hold we require that for gl € T*,
&g = —brs + w122 + w1 Y3 = —bys + y1y2 + uz. dim(7,I'* + G1(p)) = dim(7,I'* + G1(p)). One can easily

For simplicity, we assume that = r = b = 1. We check that this condition fails and hence the conditions

consider two separate problems: (a) the problem of fulbestaPf Theorem V.1 do not hold. We conclude that transverse
synchronization and (b) a partial synchronization problenfeedbaCk I|_near|zat|on cannot be used to synchronize the
We will show that the latter is solvable while the formerlorenz oscillators (15).

is not by using transverse feedback linearization. These VII. CONCLUSIONS

types of problems are common and have appeared in the

literature [11]. We begin with the partial synchronization Together with earlier _resglts in [5] and [1], this paper
problem. completes the characterization of the local transversd-fee

Suppose we are interested in forcing the the variables back linearization problem. The main contributions of this

and y; to lie on a unit circlel* {(z,y) € R® x R? paper are: a generalization of the definition of controligbi
1 s : . . . . . .
22+ 2 = 1}. In this case it is clear that* = col(—o (2 — indices which can be used when the distributiais are

1)+, ol —n) —1) s @ suiable, though notunique, 2 BT ELERE e b
friend. The constraint = 2% + y? — 1 defining"* satisfies y b

. L o _
condition (1) of Theorem IV.3. It turns out that condition T,I* = {0} and Marino's definition (Lemma Ill.1); a new

(2) holds as well signifying that the constraint can be usegccessarny condmon_(Lemma IV.1) and checkable_ hecessary
as the virtual outpuy’ in (7). It is instructive to also check and sufficient conditions (Theorem V.1) for the existence of

the conditions of Theorem V.1. In this example we have tht solution to LTFLP. Future research includes solving the
o global version of TFLP.

for all x € T'*,
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