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Abstract— In this paper we continue research on the trans-
verse feedback linearization problem. In [1] we found sufficient
conditions for this problem to be solvable. Here we present
necessary and sufficient conditions for local transverse feedback
linearization.

I. I NTRODUCTION

The transverse feedback linearization problem (TFLP)
was formulated in [2] by Banaszuk and Hauser. Given
a controlled invariant manifoldΓ⋆ embedded in the state
space, this problem entails finding a coordinate and feedback
transformation putting the dynamics transverse toΓ⋆ into
linear controllable form. When feasible, transverse feedback
linearization can simplify set stabilization problems.

Often, control objectives will dictate that the controller
stabilize sets, rather than equilibria. In [3], for instance,
the solution of a set stabilization problem is central to
controlling bi-pedal locomotion. The “virtual constraints”
technique in [4], used to stabilize oscillatory modes in
Euler-Lagrange systems, relies on feedback linearizationto
stabilize an invariant set.

The work of Banaszuk and Hauser in [2] characterized
the solution to TFLP for single-input systems whenΓ⋆ is
a diffeomorphic to the unit circle. In [5] we generalized
Banaszuk and Hauser’s results to the case whenΓ⋆ is
diffeomorphic to the generalized cylinderR

n⋆−k×T
k, where

T
k is the k-torus. In [1] we gave sufficient conditions to

solve TFLP for multi-input systems. Theorem III.1 in [1],
concerning the global solution to TFLP, contains a mistake.
The theorem claims to give sufficient conditions for TFLP
to be globally solvable under the assumption thatΓ⋆ is a
contractible set. Contractibility may not, in fact, be enough
to guarantee the existence of a global solution to TFLP and
hence Theorem III.1 in [1] must be considered alocal result.

In this paper we further generalize the results of [1].
Our main result is Theorem V.1, which gives necessary and
sufficient conditions for the existence of a local solution to
TFLP. The global problem needs further investigation.
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II. N OTATION AND PROBLEM STATEMENT

Consider a control system modeled by equations of the
form

ẋ = f(x) +

m
∑

i=1

gi(x)ui =: f(x) + g(x)u. (1)

Here x ∈ R
n is the state, andu = (u1, . . . , um) ∈ R

m is
the control input. The vector fieldsf, g1, . . . , gm : R

n →
TR

n are smooth (C∞). We assume throughout this paper
that g1, . . . , gm are linearly independent.

A. Notation

If k is a positive integer,k denotes the set of integers
{0, 1, . . . , k − 1}. We let col(x1, . . . , xk) := [x1 . . . xn]⊤

and, given two column vectorsa and b, we let col(a, b) :=
[a⊤ b⊤]⊤. Throughout this paper by amanifold is meant a
smooth manifoldand by asubmanifoldis meant anembedded
submanifold. All objects are presumed to be smooth. On a
manifoldM , V (M) will denote the set of all smooth vector
fields on M and C∞(M) the ring of smooth real-valued
functions onM . Given v ∈ V (M), we denote byφv

t (x) an
element of the local1-parameter group of diffeomorphisms
or flows generated byv through the pointx ∈ M for
sufficiently small t. Standard notations for Lie derivatives
and Lie brackets are used which can be found in [6], [7].
Finally, we denote by0k the zero vector withk elements and
by Im the m×m identity matrix. Following [8], we denote
the class of closed, connected embedded submanifolds of
R

n which are controlled invariant for (1) byI (f, g, Rn). If
N ∈ I (f, g, Rn), we writeF (f, g,N) for the collection of
“friends” of N , i.e. mapsū : N → R

m such thatf + gū is
tangent toN , i.e.,

(f + gū)|N : N → TN.

Given a distributionD on R
n, we let D⊥ be its orthogonal

complement employing the natural orthogonal structure of
R

n. This stands in contrast to the notationann (D) which
we use to denote the annihilator ofD. If N ⊂ R

n is a
submanifold andD a distribution onRn, by TV +D is meant
the vector bundle overV defined fibre-wise byTpV +D(p);
by ann(TV + D) ⊂ (TR

n)⋆ is meant the annihilator of
TV + D over V . The involutive closure ofD is denotedD̄.

B. Problem Statement

Suppose we are given a pair(Γ⋆, u⋆), where Γ⋆ ∈
I (f, g, Rn), dim Γ⋆ = n⋆, and u⋆ ∈ F (f, g,Γ⋆). In this
paper we investigate the following.



Local Transverse Feedback Linearization Problem (LT-
FLP): Given a pointp0 ∈ Γ⋆ and a pair (Γ⋆, u⋆), find
conditions which ensure that there exist a neighborhoodU
of p0 in R

n, a local diffeomorphismΞ : U → Ξ(U), and a
regular static feedback(α, β) such that, lettingV := U∩Γ⋆,
system(1) is feedback equivalent onU to a system modeled
by equations of the form

ż = f0(z, ξ) + g1(z, ξ)v1 + g2(z, ξ)v2

ξ̇ = Aξ + Bv1

(2)

where(z, ξ) ∈ Ξ(U) ⊂ R
n⋆

×R
n−n⋆

, v = col(v1, v2) ∈ R
m,

B is full rank, the pair(A,B) is controllable andΞ|V is
the canonical immersion

Ξ|V :V → V × {0}

z 7→ (z, 0).

Under mild regularity conditions, necessary and sufficient
conditions for the existence of a solution to LTFLP are
presented in Theorem IV.3.

III. T RANSVERSECONTROLLABILITY INDICES

In [1], we introduced the transverse controllability indices
of (1) with respect toΓ⋆. For our present discussion we
define, fori = 0, 1, . . ., the following distributions associated
with (1)

Gi = span {adj
fgk : 0 ≤ j ≤ i, 1 ≤ k ≤ m},

Gf = f + G0 = {f + g : g ∈ G0}

[∆,Λ] = {[X,Y ] : X ∈ ∆, Y ∈ Λ} (∆,Λ distributions),

adi
fG0 = span{adi

fX : X ∈ G0}, i = 0, 1, . . . ,

Gi = Gi−1 + [Gf ,Gi−1], G0 = G0, i = 1, 2, . . . ,

Si = Ḡi−1 + adi
fG0, S0 = G0, i = 1, 2, . . . .

In [1] the distributionsGi are assumed to be involutive in
a neighborhood ofΓ⋆. Here we omit this assumption and
generalize our definition of transverse controllability indices.

For eachp ∈ Γ⋆, i ∈ N, define

ρ0(p) = dim (TpΓ
⋆ + G0(p)) − n⋆

ρi(p) = dim (TpΓ
⋆ + Ḡi−1(p) + adi

fG0(p))

− dim (TpΓ
⋆ + Ḡi−1(p)).

When the integersρi are constant overΓ⋆ (or an open subset
of Γ⋆) we define a set ofρ0 integersk1, . . . , kρ0

which are
the transverse controllability indices of (1) with respectto
Γ⋆,

ki := card {ρj ≥ i, j ≥ 0}, i ∈ ρ0.

When theGi’s are involutive, the definition of the integersρi

agrees with that given in [1]. In the special case whenΓ⋆ is
an equilibrium point, it is useful to compare our definition of
to that given by Marino in [9]. There, controllability indices
are defined using the integers

r0 = dimG0

ri = dimSi − dim Ḡi−1

in place of the integersρi. The next result states that, when
TpΓ

⋆ = {0}, the integersρi andri are identical.

Lemma III.1 For all non-negative integersi, Ḡi = Ḡi.
Thus, whenTpΓ

⋆ = {0}, ρi = ri.

The proof of Lemma III.1 is omitted for brevity. Inspired
by [9], we conjecture that in cases when the dynamics of (1)
transverse toΓ⋆ cannot be feedback linearized the transverse
controllability indices characterize the largest transverse sub-
system of (1) that can be feedback linearized.

IV. PRELIMINARY RESULTS

Before proving the main results, we require some addi-
tional machinery which will generate a smooth feedback
transformation which orders the vector fields of the distri-
butionsGi in a convenient way. We begin with a necessary
condition for LTFLP to be solvable.

Lemma IV.1 Suppose that LTFLP is solvable atp0 ∈ Γ⋆.
Then there exists a neighborhoodU of p0 in R

n such that,
letting V := Γ⋆ ∩ U , we have that(∀p ∈ V ) (∀i ∈ n − n

⋆)

dim(TpV + Ḡi(p)) = dim(TpV + Gi(p)) = const.,

which implies thatρ0, . . . , ρn−n⋆−1 are constant onV .

Proof: Since the stated condition is coordinate and
feedback independent it suffices to show that the lemma
holds in (z, ξ) coordinates. By the properties of the normal
form (2), for any p ∈ V , Ξ(p) = (p, 0) so that in (z, ξ)
coordinates we have that for allp ∈ V

TpV + Gi(col(p, 0)) =

Im

([

In⋆ ⋆ ⋆ · · · ⋆
0n−n⋆×n⋆ B AB · · · AiB

])

(3)

for i ∈ n − n
⋆. It is clear from (3) that for alli ∈ n − n

⋆,
the subspaceTpV +Gi(col(p, 0)) has constant dimension on
V . We now show that, for allp ∈ V , Ḡi(col(p, 0)) ⊆ TpV +
Gi(col(p, 0)). Once this is proven, the lemma follows from
the fact thatTpV + Gi(col(p, 0)) ⊆ TpV + Ḡi(col(p, 0)).

In (z, ξ) coordinates consider the constant distribution on
U given by

∆ = Im

[

In⋆ 0 0 · · · 0
0 B AB · · · AiB

]

where each column is a (constant) vector. At eachp ∈ V ,
∆(p) = TpV + Gi(col(p, 0)). Since ∆ is involutive and
containsGi, it follows that Ḡi(col(p, 0)) ⊆ ∆(p) = TpV +
Gi(col(p, 0)).
The next result adapts [1, Lemma IV.1, Lemma IV.3] to the
result in Lemma IV.1. In order to identify directions in the
intersectionTpV ∩ Ḡi(p) which are not contained in the
intersectionTpV ∩ Ḡi−1(p), define the integers

µ0(p) := dim(TpV ∩ Ḡ0(p))

µi(p) := dim(TpV ∩ Ḡi(p)) − dim(TpV ∩ Ḡi−1(p))

ni(p) :=
i

∑

j=0

µj .



Thus,ni(p) = dim (TpV ∩ Ḡi(p)). When theρi’s and µi’s
are constant over an open subset ofΓ⋆ we have the following
result.

Lemma IV.2 Let W ⊆ R
n be an open set such thatW ∩

Γ⋆ 6= ∅, and defineV := W ∩ Γ⋆. Assume that, for all
i ∈ n − n

⋆, and for all p ∈ V

dim (TpV + Gi(p)) = dim (TpV + Ḡi(p)) = constant

(∀p ∈ W ) dim (Ḡi(p)) = constant.

Then
ρ0 ≤ ρ1 ≤ · · · ≤ ρn−n⋆−1

k1 ≥ k2 ≥ · · · kρ0
.

Moreover there exists an open setU ⊆ W , a regular static
feedback(α, β) defined onU and ni vector fieldsvj

ℓ : U →
TR

n, 1 ≤ j ≤ i, 1 ≤ ℓ ≤ µi, such that, lettingṼ :=
U ∩ Γ⋆ 6= ∅, for all i ∈ n − n

⋆,

(∀p ∈ Ṽ ) G
‖
i (p) := span{v0

1 , . . . , vi
µi
}(p) ⊆ TpṼ

(∀p ∈ U)

Ḡi(p) = G
‖
i (p) ⊕





i
⊕

j=0

span{adj

f̃
g̃k : 1 ≤ k ≤ ρj}





wheref̃ = f + gα and g̃ = gβ.

This lemma gives a basis of̄Gi by distinguishing between
the vector fields inḠi which are tangent toΓ∗ and those
which are transverse to it. Specifically, we have that

(∀p ∈ U) Ḡi = G
‖
i ⊕ G⋔

i

=
(

G
‖
0 + G

‖
1/0 + · · ·G

‖
i/i−1

)

⊕
(

G⋔
0 + G⋔

1/0 + · · ·G⋔

i/i−1

)

where G
‖
i

∣

∣

∣

V
⊆ TV and, for allp ∈ U ,

G
‖
i/i−1 := span {vi

j : 1 ≤ j ≤ µi}

G⋔

i/i−1 := span {adi
fgj : 1 ≤ j ≤ ρi} ⊆ Gi

(4)

span, respectively, the tangential and transversal directions
in Ḡi not contained inḠi−1. The proof of Lemma IV.2 is
omitted since it is conceptually the same as the proof of [1,
Lemma IV.1]. An immediate consequence of Lemma IV.2 is
that when

∑

ki = n − n⋆, i.e.,

(∀p ∈ V ) dim(TpV + Ḡk1−1(p)) = n,

then, after feedback transformation,

TpV ⊕ span{adj
fgk(p) : 0 ≤ j ≤ n − n⋆ − 1, 1 ≤ k ≤ ρj}

= TpR
n.

(5)
As a result, Lemma IV.2 yields the following array ofn
independent vector fields. In the array we use the symbols
G

‖
i/i−1 andG⋔

i/i−1 to indicate a family of vector fields and

not the span of vector fields.

1 Gτ
0 , G⋔

0 ; . . . ;Gτ
kρ0

−1/kρ0
−2, G

⋔

kρ0
−1/kρ0

−2;

2 Gτ
kρ0

/kρ0
−1, G

⋔

kρ0
/kρ0

−1; . . . . . . ;

Gτ
kρ0−1−1/kρ−1−2, G

⋔

kρ0−1−1/kρ0−1−2;

· · · · · · · · · ·
ρ0 − 1 Gτ

k3/k3−1, G
⋔

k3/k3−1; . . . ;G
τ
k2−1/k2−2, G

⋔

k2−1/k2−2;

ρ0 Gτ
k2/k2−1, G

⋔

k2/k2−1; . . . ;G
τ
k1−1/k1−2, G

⋔

k1−1/k1−2;

ρ0 + 1 v1, , . . . , vn⋆−nk1−1
.

(6)
All of the vector fields of (6) are defined onU except
for those in row ρ0 + 1. Those vector fields are solely
defined onV ⊂ Γ∗ and are not contained in any of the
Ḡi’s so that at eachp ∈ V , span{v1, . . . , vn⋆−nk1−1

}(p) ≃
(

TpV + Ḡk1−1(p)
)

/Ḡk1−1(p). They are chosen to complete
the basis forTpV , so that

TpV =span{v1, . . . , vn⋆−nk1−1
}(p) ⊕ G

‖
k1−1(p).

We conclude this section with the local version of [1,
Theorem VI.1] which is used to prove our main result in
Section V.

Theorem IV.3 LTFLP is solvable atp0 if and only if there
existρ0 smoothR-valued functionsα1, . . . , αρ0

, defined on
some open neighborhoodU of p0 in R

n, such that

(1) U ∩ Γ⋆ ⊂ {x ∈ U : αi(x) = 0, i = 1, . . . , ρ0}
(2) The system

ẋ = f(x) +

ρ0
∑

i=1

gi(x)ui

y′ = col(α1(x), . . . , αρ0
(x))

(7)

has vector relative degree{k1, . . . , kρ0
} at p0.

V. M AIN RESULT

Theorem V.1 Assume thatḠi, i ∈ k1 − 2 are regular at
p0. Then LTFLP is solvable atp0 if and only if

(a) dim (Tp0
Γ⋆ + Gk1−1(p0)) = n

and there exists an open neighborhoodO of p0 in Γ⋆ such
that

(b) (∀i ∈ k1 − 2) (∀p ∈ O) dim (TpΓ
⋆ + Gi(p)) =

dim (TpΓ
⋆ + Ḡi(p)) = constant.

Sketch of the Proof:(⇒) Assume LTFLP is solvable. Then
condition (a) follows by [1, Lemma V.1]. Condition (b)
follows by Lemma IV.1.
(⇐) Conditions (a) and (b) along with the regularity of
Ḡi imply that there exists a neighborhoodW of p0 in R

n

such that the assumptions of Lemma IV.2 hold, and thus
after feedback transformation we obtain then independent
vector fields of (6) defined on an open setU ⊆ W with
V := U ∩ O 6= ∅. We now constructρ0 R-valued functions
α1, . . . , αρ0

satisfying Theorem IV.3. Letp0 ∈ V be the ori-
gin for S-coordinates [10]. These coordinates are generated
by composing the flows of the vector fields in (6) in a special
order and then using then flow times as coordinates. Scalar



functions α1, . . . , αρ0
satisfying Theorem IV.3 are chosen

from among those times.
We compose the flows generated by the vector fields in (6)

starting from the bottom row. Begin with the flows generated
by the vector fieldsv1, . . . , vn⋆−nk1−1

. Consider the mapping
F∅ : Ω ⊂ R

n⋆−nk1−1 → V ⊂ R
n.

F∅ : S∅ := (s
‖
1, . . . ,s

‖
n⋆−nk1−1

)

7→ φ
vn⋆−nk1−1

s
‖

n⋆−nk1−1

◦ · · · ◦ φv1

s
‖
1

(p0).

To each pair(G‖
i/i−1, G

⋔

i/i−1) in (6) we associate a set

of times. For1 i ∈ k1, let Si/i−1 = (S⋔

i/i−1;S
‖
i/i−1) :=

(s⋔

(i/i−1,1), . . . , s
⋔

(i/i−1,ρi)
; s

‖
(i/i−1,1), . . . , s

‖
(i/i−1,µi)

). Next
we generate a collection of mappingsFi/i−1 : Ui/i−1 ⊂
R

µi+ρi → R
n, (1 ≤ i ≤ k1 − 1), given by

Fi/i−1 : Si/i−1 =
(

S⋔

i/i−1;S
‖
i/i−1

)

7→ Φ
‖
i/i−1 ◦ Φ⋔

i/i−1(p),

Φ
‖
i/i−1 := φ

vi
µi

s
‖

(i/i−1,µi)

◦ · · · ◦ φ
vi
1

s
‖

(i/i−1,1)

,

Φ⋔

i/i−1 := φ
adi

f g1

s⋔

(i/i−1,ρi)

◦ · · · ◦ φ
adi

f gρi

s⋔

(i/i−1,1)

.

The notation forSi/i−1 = (S⋔

i/i−1;S
‖
i/i−1) describes the fact

that S⋔

i/i−1 is a collection of times associated with vector
fields in Ḡi, not in Ḡi−1, which are transversal toV on
V . Meanwhile, S‖

i/i−1 is a collection of times associated
with vector fields inḠi, not in Ḡi−1, which are tangent to
V on V . Compose each of these maps together to obtain
F : U ⊂ R

n → R
n,

F := F0 ◦ F1/0 ◦ · · · ◦ Fk1−1/k1−2 ◦ F∅(p0). (8)

The fact that, for some sufficiently small neighborhoodU
of p0 in R

n, (8) is a diffeomorphism onto its image is
an obvious consequence of property (a). Globally, i.e., in
a neighborhood ofΓ⋆, it is not obvious. In the proof of
Theorem III.1 in [1] we mistakenly claimed that (8) is a
diffeomorphism from a neighborhood ofΓ∗ onto its image.
This mistakedoes not affectthe conceptually similar, but
significantly simpler, proof of Theorem 4.4 in [5], which
provides sufficient conditions for the existence of a global
solution to TFLP for single-input systems.

The finalS-coordinates are given by

S = col
(

S∅;Sk1−1/k1−2; . . . ;S1/0;S0

)

.

As candidate output functions, letαi, i ∈ {1, . . . , ρ0},
be the time spent flowing alongadki−1

f gi, i.e. αi(x) =

s⋔

(ki−1/ki−2,ρi−i+1)(x). With this choice forα, we must
show that the conditions of Theorem IV.3 are satisfied.

Re-defineV asV = F (U) ∩ Γ∗. In [1, Theorem III.1] it
is shown thatV ⊆ {x : α(x) = 0} and that for allp ∈ F (U)

Ladℓ
f gj

αi(p) = 0; 1 ≤ i ≤ ρ0, 1 ≤ j ≤ m, 0 ≤ ℓ ≤ ki − 2.

(9)

1We define i/(i-1) := 0 fori = 0 to be consistent with the array (6).

Since the proof of the above facts remains the same in the
more general setting of this theorem, we focus on showing
that theρ0 × m decoupling matrix











Lg1
Lk1−1

f α1(p) · · · Lgm
Lk1−1

f α1(p)

Lg1
Lk2−1

f α2(p) · · · Lgm
Lk2−1

f α2(p)

· · · · · · · · ·

Lg1
L

kρ0
−1

f αρ0
(p) · · · Lgm

L
kρ0

−1

f αρ0
(p)











(10)

is full rank for anyp ∈ V . Notice that for any point onV
the lastm− ρ0 columns of (10) are zero. To see this, recall
that the preliminary feedback transformation of Lemma IV.2
is such that,

(∀i ∈ {0, 1, . . .}) (∀p ∈ V ) (∀k ∈ {ρi + 1, . . . ,m})

adi
fgk(p) ∈ TpV + Ḡi−1(p).

This implies, by the fact thatV ⊆ {x : α(x) = 0} and
by (9), that

L
ad

ki−1

f gj
αi(p) = 0; 1 ≤ i ≤ ρ0, i < j ≤ m.

Using [6, Lemma 4.1.2] allows us to set the finalm − ρ0

columns of (10) to zero. Thus we concentrate on theρ0×ρ0

sub-matrix of (10) consisting of the firstρ0 columns. By [6,
Lemma 4.1.2] and by (9) we have that theρ0×ρ0 sub-matrix
of (10) consisting of the firstρ0 columns is nonsingular if
and only if













L
ad

k1−1

f g1
α1(p) · · · L

ad
k1−1

f gρ0

α1(p)

L
ad

k2−1

f g1
α2(p) · · · L

ad
k2−1

f gρ0

α2(p)

· · · · · · · · ·
L

ad
kρ0

−1

f g1
αρ0

(p) · · · L
ad

kρ0
−1

f gρ0

αρ0
(p)













(11)

is non-singular. Now supposek1 = k2 = · · · km1
> km1+1,

1 ≤ m1 ≤ ρ0. Intuitively this means that the functions
α1, . . . , αm1

correspond to the times flowing along vector
fields in Ḡk1−1, but not in Ḡk1−2. In terms of theρi, this
meansρk1−1 = ρk1−2 = · · · = ρkm1+1

= m1. We now
show that the firstm1 rows of (11) are full rank. Suppose
that there existm1 scalarsci such that

m1
∑

i=1

ci

〈

dαi, adk1−1
f gj

〉

(p) = 0; 1 ≤ j ≤ ρ0.

This implies that
∑

cidαi ∈ ann (Ḡk1−1). However,
∑

cidαi ∈ ann (TV ). Therefore

m1
∑

i=1

cidαi ∈ ann (TV ) ∩ ann (Ḡk1−1)

= ann
(

TV + Ḡk1−1

)

= 0.

Since {dα1, . . . , dαm1
} are linearly independent, (a fact

easily seen inS-coordinates), we conclude thatc1 = · · · =
cm1

= 0 and the firstm1 rows of (11) are full rank as
claimed.

Now suppose thatkm1+1 = · · · = km1+m2
> km1+m2+1,

0 ≤ m2 ≤ ρ0−m1. We want to show that the firstm1 +m2



rows of (11) are full rank. In order to do this we first show
that the exact one-forms

dLi
fαj , 1 ≤ j ≤ m1, 0 ≤ i ≤ k1 − km1+1 − 1

are

(i) linearly independent onV .
(ii) Contained inann

(

TV + Ḡkm1+1−2

)

.

Fact (ii) follows directly from (9) and the fact thatV ⊆ {x :
α(x) = 0}. To prove (i), consider the linear combination

m1
∑

i=1

a0
i dαi + · · · + a

k1−km1+1

i dL
k1−km1+1

f αi = 0. (12)

Next take the inner product of (12) withad
km1+1−1

f gj , 1 ≤
j ≤ m. Using (9) and [6, Lemma 4.1.2] we have

〈

m1
∑

i=1

a
k1−km1+1

i dL
k1−km1+1

f αi, ad
k1−km1+1−1

f gj

〉

= 0

⇔

〈

m1
∑

i=1

a
k1−km1+1

i dαi, adk1−1
f gj

〉

= 0.

Since the firstm1 rows of (11) are linearly independent, we
conclude thata

k1−km1+1

i = 0 for 1 ≤ i ≤ m1. Following
this same procedure one can recursively show that all the
coefficients in (12) are identically zero and (i) is proven. An
important consequence of this fact is that

ann(TV +Ḡkm1+1−1) =

k1−km1+1−1
⊕

i=0

span {dLi
fα1, . . . , dLi

fαm1
}.

(13)

Returning our attention to the firstm1 + m2 rows of (11),
suppose there existm1+m2 scalars such that for1 ≤ j ≤ ρ0

m1
∑

i=1

ai

〈

dαi, adk1−1
f gj

〉

+

m2
∑

i=1

bi

〈

dαm1+i, ad
km1+1−1

f gj

〉

= 0.

Using, once again [6, Lemma 4.1.2] and (9) this can be
written as
〈

m1
∑

i=1

aidL
k1−km1+1

f αi +

m2
∑

i=1

bidαm1+i, ad
km1+1−1

f gj

〉

= 0.

which implies that at eachp ∈ V

m1
∑

i=1

ai(p)dL
k1−km1+1

f αi(p) +

m2
∑

i=1

bi(p)dαm1+i(p) (14)

belongs toann (TV + Ḡkm1+1−1). We now show that this
contradicts (13). Consider theS-coordinates representation
of the term

∑m2

i=1 bidαm1+i in (14). Since the one-forms
{dαm1+1, . . . , dαm1+m2

} are part of the dual basis inS-
coordinates, it has a particularly simple vector notation given
by

[

0h b1 · · · bm2
0m1 0k

]

where h = m1(k1 − km1+1) + nkm1+1−1 and k = n −
m1(k1−km1+1+1)−m2−nkm1+1−1. In light of this the term
∑m1

i=1 aidL
k1−km1+1

f αi in (14) must have, inS-coordinates,
the form

[

⋆h −b1 · · · −bm2 0m1
0k

]

.

However, inS-coordinates, vector fields in̄Gkm1+1−1 have
the formcol(0h, ⋆) with zeros corresponding precisely with
the term ⋆h above. In fact it is possible to find av ∈
Ḡkm1+1−1, v 6∈ Ḡkm1+1−2, given by

v =

km1+1−1
∑

i=0

c0
i gi + · · · + c

km1+1−1
i ad

km1+1−1

f gi

such that inS-coordinates

v = col
(

0h 0 · · · 0 ⋆m1
0k

)

.

This means that
〈

m1
∑

i=1

aidL
k1−km1+1

f αi, v

〉

= 0

and hence
〈

m1
∑

i=1

aidL
k1−km1+1

f αi,

km1+1−1
∑

i=0

c
km1+1−1
i ad

km1+1−1

f gi

〉

= 0.

Thus
∑m1

i=1 aidL
k1−km1+1

f αi ∈ ann (TV + Ḡkm1+1−1)
which by the fact (i) shown earlier, implies thatai ≡ 0.
We are left to show that thebi in (14) are zero. This can be
done directly using (9) and [6, Lemma 4.1.2] and considering
the expression

m1
∑

i=1

a0
i dαi + · · · + a

k1−km1+1−1
i dL

k1−km1+1−1

f αi+

m2
∑

i=1

bidαm1+i = 0.

One now proceeds in exactly the same way as was used to
show that the coefficients in (12) are all zero.

At this point the proof technique can be repeated until
all the rows of (11) are accounted for. Specifically, the
next step in the proof is to assume thatkm1+m2+1 =
· · · = km1+m2+m3

> km1+m2+m3+1. Now take a linear
combination of the firstm1 + m2 + m3 rows of (11) and
assume there existsm1 + m2 + m3 scalars such that, for
1 ≤ j ≤ ρ0,

m1
∑

i=1

ai

〈

dαi, adk1−1
f gj

〉

+

m2
∑

i=1

bi

〈

dαm1+i, ad
km1+1−1

f gj

〉

+

m3
∑

i=1

ci

〈

dαm1+m2+i, ad
km1+m2+1−1

f gj

〉

= 0.

Arguing in the same way as above, one shows that the
integersai, bi, andci must be identically zero. In this way
one shows that (11) is full rank.

In conclusion, the function(α1, . . . , αρ0
) constructed us-

ing S-coordinates satisfy both conditions in Theorem IV.3.



VI. EXAMPLE

To illustrate these ideas we present an example of cen-
tralized control of two Lorenz oscillators. The equations of
motion are

ẋ1 = σ(x2 − x1) + u1 ẏ1 = σ(y2 − y1) + u2

ẋ2 = rx1 − x2 − x1x3 ẏ2 = ry1 − y2 − y1y3

ẋ3 = −bx3 + x1x2 + u1 ẏ3 = −by3 + y1y2 + u2.

(15)

For simplicity, we assume thatσ = r = b = 1. We
consider two separate problems: (a) the problem of full state
synchronization and (b) a partial synchronization problem.
We will show that the latter is solvable while the former
is not by using transverse feedback linearization. These
types of problems are common and have appeared in the
literature [11]. We begin with the partial synchronization
problem.

Suppose we are interested in forcing the the variablesx1

and y1 to lie on a unit circleΓ⋆ = {(x, y) ∈ R
3 × R

3 :
x2

1 + y2
1 = 1}. In this case it is clear thatu⋆ = col(−σ(x2 −

x1)+y1,−σ(y2−y1)−x1) is a suitable, though not unique,
friend. The constrainth = x2

1 + y2
1 − 1 definingΓ⋆ satisfies

condition (1) of Theorem IV.3. It turns out that condition
(2) holds as well signifying that the constraint can be used
as the virtual outputy′ in (7). It is instructive to also check
the conditions of Theorem V.1. In this example we have that
for all x ∈ Γ⋆,

TxΓ⋆ = Im

















0 0 0 0 y1

1 0 0 0 0
0 1 0 0 0
0 0 0 0 −x1

0 0 1 0 0
0 0 0 1 0

















.

Simple calculations reveal that for allx ∈ Γ⋆, dim(TxΓ⋆ +
G0(x)) = 6, i.e. condition (a) of Theorem V.1 is satisfied.
In the special case whenn⋆ = n − 1, the conditions
of Theorem V.1 simplify and condition (a) becomes both
necessary and sufficient.Following the procedure in the proof
of Theorem IV.3 one obtains the output function

α(x, y) = ln

(

√

x2
1 + y2

1

)

.

Next we pursue the question of whether or not trans-
verse feedback linearization can be used to synchronize
system (15), i.e we want to know if the diagonal

Γ⋆ = {(x, y) ∈ R
3 × R

3 : x1 = y1, x2 = y2, x3 = y3}

can be stabilized using transverse feedback linearization. The
setΓ⋆ is invariant for any choice ofu⋆ so long asu⋆

1 = u⋆
2.

In particularu⋆ = 0 is a suitable candidate. Thusn⋆ = 3
and for anyp ∈ Γ⋆ we have that

TpΓ
⋆ = Im

















1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1

















.

To check that conditions of theorem V.1 we note thatG0 =
Ḡ0 and that for allp ∈ Γ⋆ dim(TpΓ

⋆ + G0(p)) = 4 which
means thatρ0 = 1. Next we find the distributionG1 by
noting thatadfg1(x, y) = col(1, x1 + x3 − 1, 1− x2, 0, 0, 0)
andadfg2(x, y) = col(0, 0, 0, 1, y1 + y3 − 1, 1− y2). Simple
calculations give thatρ1 = 1 and so for condition (b)
of Theorem V.1 to hold we require that for allp ∈ Γ⋆,
dim(TpΓ

⋆ + G1(p)) = dim(TpΓ
⋆ + Ḡ1(p)). One can easily

check that this condition fails and hence the conditions
of Theorem V.1 do not hold. We conclude that transverse
feedback linearization cannot be used to synchronize the
Lorenz oscillators (15).

VII. CONCLUSIONS

Together with earlier results in [5] and [1], this paper
completes the characterization of the local transverse feed-
back linearization problem. The main contributions of this
paper are: a generalization of the definition of controllability
indices which can be used when the distributionsGi are
not involutive; the comparison between our definition of
transverse controllability indices in the special case when
TpΓ

⋆ = {0} and Marino’s definition (Lemma III.1); a new
necessary condition (Lemma IV.1) and checkable necessary
and sufficient conditions (Theorem V.1) for the existence of
a solution to LTFLP. Future research includes solving the
global version of TFLP.
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