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1. INTRODUCTION

The maneuver regulation (or path following)
problem entails designing a smooth feedback mak-
ing the trajectories of a system follow a pre-
specified path, or maneuver. Unlike a tracking
controller, a maneuver regulation controller drives
the trajectories of a system to a maneuver up to
time-reparameterization. This difference is crucial
in robotics and aereospace applications where the
system dynamics impose constraints on the time
parameterization of feasible maneuvers.

This paper continues a research program initiated
in Nielsen and Maggiore (2004a,b) and presents
an approach to solving maneuver regulation prob-
lems inspired by the work of Banaszuk and Hauser
(1995). There, the authors consider periodic ma-
neuvers in the state space and present necessary
and sufficient conditions for feedback linearization
of the associated transverse dynamics. Feedback
linearization is a natural framework for maneuver

1 This work was supported by the Natural Sciences and
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regulation, as evidenced by the body of work on
path following which employs this approach (see
for example Altafini (2002), Altafini (2003), Gille-
spie et al. (2001), Bolzern et al. (2001), Hauser
and Hindman (1997), Coelho and Nunes (2003)).
In all these papers, the maneuver regulation prob-
lem is converted to an input output feedback
linearization problem with respect to a suitable
output. This motivates our interest in establishing
a general framework for doing this.

More specifically, the work presented here and
in Nielsen and Maggiore (2004a,b) investigates
systems with outputs and extends the results
of Banaszuk and Hauser (1995) to the case of
non-periodic maneuvers defined in the output
space (rather than periodic maneuvers in the state
space). This work treats the maneuver regulation
problem as an output stabilization problem. We
solve an output stabilization problem which, un-
der appropriate conditions, also solves a maneuver
regulation problem. The main challenge here lies
in finding conditions for feedback linearization of
dynamics transverse to an embedded submani-
fold of the state space whose dimension is not



restricted to be one. A natural way to study this
problem is to use the notion of zero dynamics.

In Nielsen and Maggiore (2004a,b), we presented
necessary and sufficient conditions for global
transverse feedback linearization (TFL). Here, we
focus on deriving necessary and sufficient con-
ditions for local TFL (Theorems 3-4), as well
as a sufficient condition for a system not to be
transversely feedback linearizable (Corollary 3).
We also show (Lemmas 4 and 5) that, in the case
of state maneuvers, our results recover the results
of Banaszuk and Hauser (1995).

The following notation is used throughout the pa-
per. We denote by Φv

t (x) the flow of a smooth vec-
tor field v. We let col(x1, . . . , xk) := [x1 . . . xn]⊤

and, given two column vectors a and b, we let
col(a, b) := [a⊤ b⊤]⊤. Given a smooth distribution
D, we let inv (D) be its involutive closure (the
smallest involutive distribution containing D) and
D⊥ be its annihilator. For brevity, the term sub-
manifold is used in place of embedded submanifold
of R

n throughout.

2. PROBLEM FORMULATION

Consider the smooth dynamical system

ẋ = f(x) + g(x)u

y = h(x)
(1)

defined on R
n, with h : R

n → R
p (p ≥ 2) of

class Cr (r ≥ 1), and u ∈ R. Given a smooth
parameterized curve σ : D→ R

p, where D is either
R or S1, the maneuver regulation problem entails
finding a smooth control u(x) driving the output
of the system to the set σ(D) and making sure
that the curve is traversed in one direction. When
D = S1, σ(D) is a periodic curve. Banaszuk and
Hauser (1995) provide a solution to this problem
in the special case when D = S1 and h(x) = x.
Notice that one particular instance of maneuver
regulation is the case when a controller is designed
to make y(t) asymptotically track a specific time
parameterization of the curve σ(t) (Hauser and
Hindman, 1995). Thus asymptotic tracking and
maneuver regulation are closely related problems.
In some cases, however, it may be undesirable or
even impossible to pose a maneuver regulation
problem as one of tracking (consider, for instance,
the problem of maneuvering a wheeled vehicle
with bounded translational speed by means of
steering). We impose geometric restrictions on the
class of curves σ(·).

Assumption 1. The curve σ : D → R
p enjoys the

following properties

(i) σ is Cr, (r ≥ 1)
(ii) σ is regular, i.e., ‖σ̇‖ 6= 0

(iii) σ : D → σ(D) is injective (when D = S1 we
instead require σ to be a Jordan curve)

(iv) σ is proper, i.e. for any compact K ⊂ R
p,

σ−1(K) is compact (automatically satisfied
when D = S1)

Assumption 1 guarantees that σ(D) is a subman-
ifold of R

p with dimension 1.

Assumption 2. There exists a C1 map γ : R
p →

R
p−1 such that 0 is a regular value of γ and

σ(D) = γ−1(0). Moreover, the lift of γ−1(0) to
R

n, Γ := (γ ◦ h)−1(0), is a submanifold of R
n.

A sufficient condition for

Γ = {x : γ1(h(x)) = . . . = γp−1(h(x)) = 0} (2)

to be a submanifold of R
n is that h be transver-

sal to γ−1(0), i.e., (Abraham and Robbin, 1967;
Guillemin and Pollack, 1974)

(∀x ∈ Γ) Im (dh)x + Th(x)γ
−1(0) = R

p.

The codimension of Γ is equal to the codimension
of γ−1(0). Therefore dim Γ = n− p + 1 (Consolini
and Tosques, 2003). The problem of maneuvering
y to γ−1(0) is thus equivalent to maneuvering x
to Γ and can be cast as an output stabilization
problem for the system

ẋ = f(x) + g(x)u

y′ = (γ ◦ h)(x).
(3)

In general one may be able to maneuver x to
the subset of Γ which can be made invariant by
a suitable choice of the control input. Accord-
ingly, let Γ∗ be the largest controlled invariant
submanifold of Γ under (1) and let n∗ = dimΓ∗

(n∗ ≤ dimΓ = n − p + 1). Further, let u∗ be a
smooth feedback rendering Γ∗ invariant and define
f∗ := (f + gu∗)|Γ∗ .

Assumption 3. Γ∗ is a closed connected subman-
ifold (with n∗ ≥ 1) and the following conditions
hold

(i) (∃ ǫ > 0)(∀ x ∈ Γ∗) ‖Lf∗h(x)‖ > ǫ.
(ii) f∗ : Γ∗ → TΓ∗ is complete

In Banaszuk and Hauser (1995), Γ∗ = Γ =
σ(S1), and it is assumed that f(x) 6= 0 on Γ∗.
Thus in that work Assumption 3 is automatically
satisfied (the completeness of f∗ follows from the
periodicity of σ(S1)).

We first focus on the well-definiteness part of
the assumption. In order to derive conditions
guaranteeing that Γ∗ is well defined, associate
with each constraint in (2) the single input, single
output system {f, g, γi◦h} where i ∈ {1, . . . , p−1}
and a corresponding zero dynamics manifold Γ∗

i .



Lemma 1. If
⋂

k Γ∗

k is a closed, controlled invari-
ant submanifold, then Γ∗ exists and it is given by

Γ∗ =
⋂

k

Γ∗

k.

Proof : (⊂) Choose any point x ∈ Γ∗. Since
Γ∗ ⊂ Γ,

(∀k ∈ {1, . . . , p− 1}) γk(h(x)) = 0.

This, together with the fact that, by definition, Γ∗

is locally invariant around x, implies that

(∀k ∈ {1, . . . , p− 1}) x ∈ Γ∗

k

or x ∈
⋂

k Γ∗

k.

(⊃) Since
⋂

k Γ∗

k is controlled invariant and output
zeroing, and since Γ∗ ⊂

⋂

k Γ∗

k, one has that, by
the maximality of Γ∗, Γ∗ =

⋂

k Γ∗

k.

Let ri be the relative degree of system {f, g, γi ◦
h} and define Hi : x 7→ col(γi ◦ h(x), Lf (γi ◦
h(x)), . . . , Lri−1

f (γi ◦ h)(x)). If {r1, . . . , rp−1} is
well-defined (uniform), one has that each Γ∗

i is
globally defined and given by Γ∗

i = H−1
i (0). Even

if
⋂

k Γ∗

k is nonempty, it may not be a submanifold.
A sufficient condition for the intersection Γ∗

i ∩Γ∗
j ,

i 6= j, to be a submanifold is that (Guillemin and
Pollack, 1974)

(∀x ∈ Γ∗

i ∩ Γ∗

j ) TxΓ∗

i + TxΓ∗

j = R
n

or, equivalently, ker (dHi)x + ker (dHj)x
= R

n.
Using the fact that Tx(Γ∗

i ∩ Γ∗
j ) = TxΓ∗

i ∩ TxΓ∗
j

one easily arrives at the following result.

Corollary 1. Γ∗ is a globally well defined closed
submanifold if there exists a point x0 ∈ Γ around
which each system {f, g, γi ◦ h}, i ∈ {1 . . . p − 1}
has a uniform relative degree ri and, if p > 2, the
following conditions are satisfied for k = 1, . . . , p−
2.

(i) For k = 1, . . . , p− 2,

(

∀x ∈
k+1
⋂

j=1

Γ∗

j

)

Hk
x +ker(dHk+1)x = R

n,

where Hk
x is defined recursively as

H1
x := ker(dH1)x, k = 1

Hk
x := Hk−1

x ∩ ker(dHk)x, k > 1.

(ii) Letting u∗

k := −
L

rk
f

(γk◦h)

LgL
rk−1

f
(γk◦h)

, 1 ≤ k ≤ p− 1,

(u∗

1)
∣

∣⋂

i
Γ∗

i

= · · · = (u∗

p−1)
∣

∣⋂

i
Γ∗

i

.

In this case, n∗ = n−
∑p−1

i=1 ri.

Remark 1. Rather than using transversality to
derive the sufficient conditions of Corollary 1,
one can employ a slight modification of the zero
dynamics algorithm of Isidori and Moog (1988)

(see also Isidori (1995)) or the constrained dynam-
ics algorithm presented in Nijmeijer and van der
Schaft (1990). In both cases a feasible initial con-
dition for the algorithm should be defined to be
any point x0 ∈ Γ∗ such that f(x0) + g(x0)u0 ∈
Tx0

Γ∗ for some real number u0. If the sufficient
conditions of Corollary 1 are not satisfied, the
zero dynamics algorithm may still find a locally
maximal controlled invariant submanifold of Γ.

The condition, in Assumption 3, that ‖Lf∗h(x)‖
> ǫ on Γ∗ implies that there are no equilib-
ria on Γ∗ and that, whenever x ∈ Γ∗, ‖ẏ‖ =
‖Lf∗h(x)‖ > ǫ. This condition ensures that the
output of (1) traverses the curve σ(D).

We are now ready to formulate the main problems
investigated in this paper. The following are a di-
rect generalization of analogous statements found
in Banaszuk and Hauser (1995).

Problem 1: Find, if possible, a single coordinate
transformation T : x 7→ (z, ξ) ∈ Γ∗ × R

n−n∗

valid in a neighborhood N of Γ∗ such that in (z, ξ)
coordinates

(i) Γ∗ = {(z, ξ) ∈ Γ∗ × R
n−n∗

: ξ = 0}
(ii) The dynamics of system (1) take the form

ż = f0(z, ξ)

ξ̇1 = ξ2

...

ξ̇n−n∗−1 = ξn−n∗

ξ̇n−n∗ = b(z, ξ) + a(z, ξ)u

(4)

where a(z, ξ) 6= 0 in N .

The following is the local version of Problem 1.

Problem 2: For some x0 ∈ Γ∗, find, if possible,
a transformation T 0 : x 7→

(

z0, ξ0
)

∈ Γ∗ × R
n−n∗

valid in a neighborhood U0 of x0 ∈ Γ∗ such that
in

(

z0, ξ0
)

coordinates properties (i) and (ii) of
Problem 1 are satisfied in U0.

Remark 2. It is clear that if one can solve Problem
1 or 2, then the smooth feedback

u = −
1

a(z, ξ)
(b(z, ξ) + Kξ). (5)

achieves local stabilization to Γ∗ and traversal of
σ(D) in output coordinates. However, (5) does not
prevent the closed-loop system from exhibiting
finite escape time (i.e., the entire σ(D) is traversed
in finite time), even though the vector field of the
closed-loop system is complete on Γ∗. A similar
problem is encountered in feedback linearization
when stabilizing a minimum phase system in
normal form. There are various ways to modify (5)
to avoid finite escape time. Discussing them is
beyond the scope of this paper.



Remark 3. If Assumtion 3(i) does not hold, then
we have that the path is not traversed and the
path following problem cannot be solved in this
manner. In these cases, solving Problems 1 and 2
results in the solution to an output stabilization
problem for system (3).

In Nielsen and Maggiore (2004a,b) we provided
necessary and sufficient conditions to solve Prob-
lem 1. In this paper we present necessary and suffi-
cient conditions to solve Problem 2 (Theorem 3),
as well as a sufficient condition for Problems 1
and 2 to be unsolvable. We also show that in the
special case when D = S1 and y = x in (1)
our conditions are equivalent to those presented
in Banaszuk and Hauser (1995).

3. SOLUTION TO PROBLEM 1

For the sake of illustration, we begin our dis-
cussion by summarizing, without proof, the main
results in Nielsen and Maggiore (2004a,b).

Theorem 1. Problem 1 is solvable if and only if
there exists a function α : R

n → R such that

(1) Γ∗ ⊂ {x ∈ R
n : α(x) = 0}

(2) α yields a uniform relative degree n−n∗ over
Γ∗.

The conditions in Theorem 1, although rather
intuitive, are difficult to check in practice. In what
follows we present sufficient conditions for the
existence of a solution to Problem 1 which are
easier to check.

Corollary 2. If one of the constraints in (2), γk̄◦h,
yields a relative degree n− n∗ then Problem 1 is
solved by setting α = γk̄ ◦ h.

Remark 4. The smooth feedback

u∗ :=
−Ln−n∗

f α

LgL
n−n∗−1
f α

makes Γ∗ an invariant submanifold of (1).

Lemma 2. If there exists a function α : R
n → R

which satisfies the conditions of Theorem 1, then
for each x ∈ Γ∗

TxΓ∗ + span{g, . . . , adn−n∗

−1
f g}(x) = R

n. (6)

Remark 5. Condition (6) is a generalization of
the notion of transverse linear controllability to
the case of controlled invariant submanifolds of
any dimension. It is useful in deriving checkable
sufficient conditions for the existence of a solution

to Problem 1. The notion of transverse linear
controllability was originally introduced in Nam
and Arapostathis (1992) and later used in Ba-
naszuk and Hauser (1995) for transverse feedback
linearization. In both papers, n∗ = 1, D = S1, and
TxΓ∗ = span {f∗(x)}.

Theorem 2. Problem 1 is solvable if

(1) Γ∗ is parallelizable (TΓ∗ ∼= Γ∗ × R
n∗

)

(2) TxΓ∗+span {g . . . adn−n∗

−1
f g}(x) = R

n on Γ∗

(3) The distribution span {g . . . adn−n∗

−2
f g} is in-

volutive.

4. SOLUTION TO PROBLEM 2

The following is an obvious result in the light of
Theorem 1.

Theorem 3. Problem 2 is solvable if and only if
there exists a function α : R

n → R defined in a
neighborhood U0 of some x0 ∈ Γ∗ such that

(1) Γ∗ ∩ U0 ⊂ {x ∈ U0 : α(x) = 0}
(2) α yields a relative degree n− n∗ at x0.

Proof : (⇒) Let α = ξ0
1 , conditions (1) and (2)

follow.

(⇐) Let ξ0
1 = α(x). A partial coordinate transfor-

mation on U0 is given by

ξ0
k = Lk−1

f α, k ∈ {1 . . . n− n∗}.

We seek n∗ more independent functions to com-
plete the transformation and yield the correct
form. This can always be done (Isidori, 1995,
Propostion 4.1.3). From the proof of Theorem 1
we have that the zero dynamics of the resulting
normal form coincide, on U0, with Γ∗.

Lemma 3. If there exists a function α : R
n → R

which satisfies the conditions of Theorem 3, then

Tx0Γ∗ + span{g, . . . , adn−n∗

−1
f g}(x0) = R

n.

Proof : The proof is almost identical to the proof
of Lemma 2, which is available in Nielsen and
Maggiore (2004b). We report it here for the sake
of illustration.

The existence of α implies that one can locally
transform the system dynamics into the form (4)
and specifically that Γ∗ ∩ U0 is locally controlled
invariant. Let f∗ := (f + gu∗)|Γ∗ , with u∗ defined
as in Remark 4. Then, for all x ∈ Γ∗∩U0, f∗(x) ∈
TxΓ∗. Also, span{f∗} is a one dimensional, hence
involutive, distribution. These facts imply that,
on Γ∗ ∩ U0,

span{f∗}⊥ = (TxΓ∗)
⊥

+ span {dφ2 . . . dφn∗}.



By Assumption 3, f∗ 6= 0. Define the map t 7→

Φf∗

t (x0) and its inverse φ1 : Γ∗ ∩ U0 → φ1(Γ
∗).

The map Φf∗

t (x0) is a diffeomorphism of φ1(Γ
∗ ∩

U0) onto Γ∗ ∩ U0. By construction Lf∗φ1 = 1 on
Γ∗ ∩ U0, implying that dφ1(x

0) /∈ span{f(x0)}⊥

and thus that

(Rn)
∗

= span{f∗(x0)}⊥ ⊕ span {dφ1(x
0)}

or, equivalently,

R
n = Tx0Γ∗⊕

(

span{dφ1 dφ2 . . . dφn∗}(x0)
)⊥

.

(7)

Consider a set of linearly independent vectors
{v1, . . . , vn∗} spanning Tx0Γ∗, let

V =
[

v1 · · · vn∗

]

,

and define a matrix S as follows (Banaszuk and
Hauser, 1995)

S(x0) =

























dφ1

dφ2

...
dφn∗

dLn−n∗

−1
f α

...
α

























[

V g · · · adn−n∗

−1
f g

]

=

[

LV φ(x0) ∗
0 ∆(x0)

]

(all vector fields and 1-forms are evaluated at x0)
where {LV φ}ij = Lvj

φi, i, j = 1, . . . , n∗, and ∆ ∈

R
n−n∗

×n−n∗

is upper triangular with non-zero di-
agonal (this follows from condition (2) in Theorem
1). It is clear that if the matrix LV φ(x0) is non-
singular then S is nonsingular as well, implying
that Im([V g(x) · · · adn−n∗

−1
f g(x)]) = TxΓ∗ +

span{g, . . . , adn−n∗

−1
f g}(x) = R

n and the proof is

complete. To prove that LV φ(x0) is nonsingular,
we use the fact that the product of two matrices
AB is full rank if and only if ImB ∩ kerA = 0. In
this case we must show that

Im V ∩ ker
(

col(dφ1(x
0), . . . , dφn∗(x0))

)

= 0

or, equivalently,

Tx0Γ∗ ∩ ker
(

col(dφ1(x
0), . . . , dφn∗(x0))

)

= 0,

and this follows directly from (7).

Let

D = span {g . . . adn−n∗

−2
f g}. (8)

Theorem 2 proves that involutivity of D, together
with transverse linear controllability, are sufficient
conditions for the existence of a function α satisfy-
ing conditions (1) and (2) in Theorem 1 and hence
solving Problem 1. When the involutive closure
of D, inv(D), is regular at x0 ∈ Γ∗, the next
result provides necessary and sufficient conditions
to solve Problem 2. These conditions are easier to
check than those in Theorem 3.

Theorem 4. Assume that inv(D) is regular at
x0 ∈ Γ∗. Then Problem 2 is solvable if and only if

(1) Tx0Γ∗ + span{g, . . . , adn−n∗

−1
f g}(x0) = R

n

(2) adn−n∗

−1
f g(x0) /∈ inv(D)(x0).

Proof : (⇒) Assume that the conditions of Theo-
rem 3 hold. By Lemma 3, (1) holds. By definition
of relative degree, in a neighborhood Γ∗∩U0, dα ∈
D⊥ and L

ad
n−n∗

−1

f
g
α 6= 0. Recall that dα ∈ D⊥

implies dα ∈ (inv D)⊥. Since L
ad

n−n∗
−1

f
g
α 6= 0,

one has that adn−n∗

−1
f g /∈ span{dα}⊥ and thus

also adn−n∗

−1
f g /∈ inv(D), showing that (2) holds.

(⇐) Assume inv(D) is regular at x0 and condi-
tions (1) and (2) hold. This part of the proof
closely follows the idea of the proof of Theo-
rem 2.3 in Banaszuk and Hauser (1995). Notice
that n − n∗ − 2 ≤ dim(inv D) ≤ n − 1. If
dim(inv D) = n − n∗ − 2 then essentially the
same proof of Theorem 2 applies and we are
done. Hence, we focus on the case n − n∗ − 1 ≤
dim(inv D) ≤ n−1. As in the proof of Theorem 2,
let {v1, . . . , vn∗} be a set of vector fields defined
on Γ∗ such that TxΓ∗ = span{v1, . . . , vn∗}(x), and
generate s-coordinates by flowing along the vec-
tor fields v1, . . . , vn∗ , adn−n∗

−1
f g, . . . , g with times

s1, . . . , sn, respectively. By condition (1), there
exists a neighborhood U of x0 such that the map
F defined as

s 7→ Φg
sn
◦ · · ·◦Φ

ad
n−n∗

−1

f
g

sn∗+1
◦Φvn∗

sn∗
◦ · · ·◦Φv1

s1
(x0),

is a diffeomorphism of F−1(U) onto U . Define the
set

M := {x ∈ U : sn∗+2(x) = · · · = sn(x) = 0}

which is a submanifold of U containing Γ∗ ∩ U
of dimension n∗ + 1. The submanifold M is the
set of points reachable from Γ∗ by flowing along
adn−n∗

−1
f g. Since, by assumption, inv (D) is reg-

ular at x0, it follows that inv (D) generates a
foliation by integral submanifolds, S, in a neigh-
borhood of x0 which, without loss of generality,
we can take to be U . Let Sx denote a leaf of
the foliation passing through x ∈ Γ∗ ∩ U . On
Γ∗∩U , TxM = TxΓ∗+span{adn−n∗

−1
f g}. By con-

dition (1) TxM + D = R
n, implying that TxM +

inv(D) = R
n or, equivalently, TxM + TxSx = R

n.
This shows that, on Γ∗ ∩U , M is transversal to S
and TxM ∩ TxSx = TxΓ∗ ∩ inv(D)(x) is a regular
distribution. Let n̂ be its dimension. Since we are
considering the case n − n∗ − 1 ≤ dim(inv D) ≤
n − 1, we have that 1 ≤ n̂ ≤ n∗. Making, if
needed, M ∩ U smaller, let {v̂1, . . . , v̂n̂} be a set
of vector fields defined on M ∩U spanning TxM ∩
inv(D) on M ∩U . Choose additional n∗− n̂ vector
fields {v̂n̂+1, . . . , v̂n∗} defined on Γ∗ ∩U such that
TxΓ∗ = span{v̂1, . . . , v̂n∗}(x) ∀x ∈ Γ∗ ∩ U . Then,
by condition (1),



{v̂1, . . . , v̂n̂, v̂n̂+1, . . . , v̂n∗ , g, . . . , adn−n∗

−1
f g}

is a set of independent vector fields on Γ∗ ∩ U .
Moreover, inv(D) = span{v̂1, . . . , v̂n̂} + D. By
making, if necessary, M∩U smaller we can assume
that the vector fields

{v̂1, . . ., v̂n̂, g, . . . , adn−n∗

−1
f g}

are independent on M ∩U . The domain of defini-
tion of the vector fields involved in our construc-
tion is summarized as:

{v̂n̂+1, . . . , v̂n∗} on Γ∗ ∩ U

{v̂1, . . . , v̂n̂} on M ∩ U

{g, . . . , adn−n∗

−1
f g} on U.

We use these vector fields to define the map
G : G−1(U0)→ U0 (U0 ⊂ U is a neighborhood of
x0),

p 7→Φg
pn
◦ · · · ◦ Φ

ad
n−n∗

−2

f
pn∗+2

◦ Φv̂n̂
pn∗+1

◦ · · · ◦ Φv̂1

pn∗
−n̂+2

◦ Φ
ad

n−n∗
−1

f
g

pn∗
−n̂+1

◦ Φv̂n∗

pn∗
−n̂
◦ · · · ◦ Φv̂n̂+1

p1
(x0).

Let P1 = (p1, . . . , pn∗−n̂), P2 = (pn∗−n̂+1, . . .,
pn∗+1), P3 = (pn∗+2, . . . , pn), and define

G
P1

1
(x0) := Φ

v̂n∗

pn∗
−n̂

◦ · · · ◦ Φ
v̂n̂+1
p1

(x0)

G
P2

2
(x1) := Φ

v̂n̂
pn∗+1

◦ · · · ◦ Φv̂1
pn∗

−n̂+2
◦ Φ

ad
n−n∗

−1

f
g

pn∗
−n̂+1

(x1)

G
P3

3
(x2) := Φg

pn
◦ · · · ◦ Φ

ad
n−n∗

−2

f
pn∗+2

(x2),

so that G(p) = GP3

3 ◦ GP2

2 ◦ GP1

1 (x0). For a
fixed x0, x1 ∈ Γ∗ ∩ U0, and x2 ∈ M ∩ U0,
each GPi

i is a diffeomorphism onto its image,
thus G is a diffeomorphism onto U0. This can be
most easily seen by examining the order in which
the various flows are composed. In particular,
since v̂n̂+1, . . . , v̂n∗ are independent on Γ∗, the set
of points reached by flowing along these vector
fields is a submanifold, S̄, of dimension n∗ − n̂,
contained in Γ∗. Next, since adn−n∗

−1
f g, v̂1, . . . , v̂n̂

are independent on M ∩ U0, the set of points
reachable from S̄ by flowing along these vector
fields is precisely M ∩ U0. Thus M ∩ U0 = {x ∈
U0 : P3(x) = 0} and Γ∗ ∩ U0 = {x ∈ U0 :
pn∗−n̂+1(x) = 0, P3(x) = 0}. Finally, the set of
points reachable from M ∩ U0 by flowing along
g, . . . , adn−n∗

−2
f g is the entire U0.

Choose α(x) = pn∗−n̂+1(x). Then Γ∗ ∩ U0 ⊂
{x ∈ U0 : α(x) = 0} and thus condition (1)
in Theorem 3 is satisfied. By the involutivity of
inv(D) = span{v̂1, . . . , v̂n̂} + D, the vector fields
adi

fg, i = 0, . . . , n− n∗ − 2, in s-coordinates have
the form (Su and Hunt, 1986, Lemma 4)

adi
fg =





















0
...
0
∗
...
∗





















← row n∗ − n̂ + 2,

and thus, on U0, Ladi
f
gα = 0, i = 0, . . . , n−n∗−2.

It is also clear that L
ad

n−n∗
−1

f
g
α 6= 0 on U0. Thus

the assumptions of Theorem 3 are satisfied.

Corollary 3. If dim(inv D) = n, then Problems 1
and 2 are unsolvable.

Corollary 4. Assume that inv D is regular on Γ∗

and that

(1) TxΓ∗ + span{g, . . . , adn−n∗

−1
f g}(x) = R

n on
Γ∗

(2) adn−n∗

−1
f g(x) /∈ inv(D)(x) on Γ∗.

Then there exists an open covering {U (i)} of Γ∗

and a collection of transformations {T (i)}, with
T (i) : x 7→ (z(i), ξ(i)) ∈ Γ∗ ∩ U (i) × R

n−n∗

such
that Γ∗ ∩ U (i) = {ξ(i) = 0} and in (z(i), ξ(i))
coordinates the systems has the form (4).

5. STATE MANEUVERS

In this section, we show that when y = x in (1)
and D = S1 the results obtained thus far are
equivalent to the results presented in Banaszuk
and Hauser (1995). See also Nijmeijer and Cam-
pion (1993). The conditions presented in (Ba-
naszuk and Hauser, 1995, Theorem 2.1) for Prob-
lem 1 to be solvable are

(a) dim
(

span {f∗, g, . . . , adn−2
f∗ g}

)

= n on Γ∗

(b) There exists a function α : R
n → R such that

(i) dα 6= 0 on Γ∗.
(ii) α = 0 on Γ∗

(iii) Ladi
f∗

gα = 0 near Γ∗ for i = 0 . . . n− 3.

Lemma 4. Conditions (a) and (b) above hold if
and only if the conditions of Theorem 1 hold.

Proof : (⇒) Assume conditions (a) and (b)
hold. Condition (b.ii) is the same as condition
(1) in Theorem 1. Next, since f∗ is by defini-
tion tangent to Γ∗, condition (b.ii) implies that
Lf∗α = 0 on Γ∗. This, together with condi-
tion (b.iii), implies that, on Γ∗, span{dα}⊥ =
span{f∗, g, . . . , adn−3

f∗ g}. By condition (a), neces-
sarily Ladn−3

f∗
gα 6= 0 on Γ∗. This, together with

condition (b.iii) shows that α yields a relative
degree n − 1, which is precisely condition (2) in
Theorem 1.

(⇐) Assume the conditions of Theorem 1 hold.
Condition (a) holds by Lemma 2. Condition (b.ii)
is identical to condition (1) in Theorem 1. Finally,
since α yields a relative degree n − 1 (recall that
here n∗ = 1), conditions (b.i) and (b.iii) are
satisfied.

As for Problem 2, consider the distribution D,
in (8), with n∗ = 1. The conditions presented



in (Banaszuk and Hauser, 1995, Theorem 2.4) for
Problem 2 to be solvable are

(a) dim
(

span {f∗, g, . . . , adn−2
f∗ g}

)

= n on Γ∗

(b) The distribution D is either
(i) involutive or
(ii) dim(inv D) = n−1 in a neighborhood of

Γ∗ and f∗ ∈ inv D on Γ∗.

Lemma 5. Conditions (a) and (b) above hold if
and only if the conditions of Corollary 4 hold.

Proof : (⇒) Assume (a) and (b) above hold.
Then we just have to show that condition (2)
of Corollary 4 holds. If D is involutive then (a)
immediately gives (2). Otherwise, since f∗ ∈
inv D on Γ∗, condition (a) implies condition (2).

(⇐) Obvious.

A key difference between the normal form pre-
sented in this paper (4) and the one presented
in Banaszuk and Hauser (1995) lies in the struc-
ture given to the vector field f0 in (4). In the
case n∗ = 1 the following procedure illustrates
how to obtain the normal form presented in Ba-
naszuk and Hauser (1995). Fix a point x0 ∈ Γ∗

and define the map t 7→ Φf∗

t (x0) and its inverse
ϕ′ : Γ∗ → ϕ′(Γ∗). Note that, by Assumption 3(ii),
ϕ′ is globally defined and that, when D = S1,
ϕ′(Γ∗) = S1. By construction Lf∗ϕ′ = 1 on Γ∗.
Let z = ϕ′(x) and let ξi = Li−1

f α, i = 1 . . . n −
1. With this transformation, together with the
feedback

u =
−Ln−1

f α + v

LgL
n−2
f α

one obtains

ż = 1 + f1(z, ξ) + g0(z, ξ)v

ξ̇1 = ξ2

...

ξ̇n−2 = ξn−1

ξ̇n−1 = v,

(9)

(f1(z, 0) = 0) which is the normal form as pre-
sented in Banaszuk and Hauser (1995). It is inter-
esting to note that the normal form of Banaszuk
and Hauser (1995) is also valid when D = R (in
such a case, the domain of z is ϕ′(Γ∗) = R rather
than S1).

When n∗ > 1, the normal form (9), could per-
haps be generalized by finding a partial coor-
dinate transformation z = ϕ(x) yielding ż =
col(1, 0, . . . , 0) on Γ∗. This is always possible lo-
cally. Doing so globally amounts to finding a global
rectification for a vector field on a manifold.
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