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Abstract— This article presents an approach to path following
control design based on transverse feedback linearization. A
“transversal” controller is designed to drive the output of the
plant to the path. A “tangential” controller meets application-
specific requirements on the path, such as speed regulation
and internal stability. This methodology is applied to a five
degree-of-freedom (5-DOF) magnetically levitated positioning
system. Experimental results demonstrate the effectiveness of
our control design.

I. INTRODUCTION

The path following control problem (PFP) is chiefly

concerned with providing a stable motion along a given

path with no a priori time parameterization associated with

the movement on the path. More specifically, the control

objective is to drive the output of a control system to the

path in such a way that the path is traversed in a desired

direction. Usually, specific applications impose additional

requirements, such as speed regulation on the path and

internal stability.

PFP has some affinity to the tracking control problem,

in which it is desired that the system output asymptoti-

cally matches a reference signal, but there are fundamental

differences. Tracking controllers stabilize a specific system

trajectory, while path following controllers should stabilize

a family of trajectories, all those whose associated output

signals lie on the desired path. We call the collection of

all such trajectories the path following manifold. Its precise

definition is given in Section II.

The point of view taken in this paper is to convert PFP

into the stabilization of the path following manifold. This

guarantees, among other things, an invariance property :

if the state is appropriately initialized, then the resulting

output signal lies on the desired path at all time. Among

various possible set stabilization techniques, we choose to

use transverse feedback linearization [1], [8], [9], which

makes it possible to divide the control design into two steps:

the stabilization of the path following manifold (transversal

control design) and the control of the motion on the manifold

(tangential control design).

We apply this methodology to the design of a path follow-

ing controller for a 5-DOF magnetically levitated system at
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control objective is to make a platen move along a closed

Jordan curve defined within the system’s range of operation.

The path invariance property induced by our control

method is particularly beneficial in this application, because

it effectively creates virtual mechanical constraints in the

system that make it act as if it were being guided by (re-

configurable) mechanical guides. This distinguishes our path

following controller from some others in the literature. Due

to a lack of space, we regrettably omit a literature review on

solutions to the path following problem.

The following notation is used in this paper. We denote

by Im the m × m identity matrix and by 0m×n the m × n
matrix of zeros. Let col(x1, . . . , xk) := [x1 . . . xk]⊤.

II. PATH FOLLOWING METHODOLOGY

We consider smooth control-affine systems with m inputs

and p outputs,

ẋ = f(x) + g(x)u

y = h(x).
(1)

Given a smooth embedded1path in the output space, γ :=
{y : s(y) = 0}, we want to design a smooth feedback that

makes the output of the system (1) approach and traverse γ
in a desired direction with a desired speed. Moreover, it is

required that γ be output invariant for the closed-loop system.

In order to give a precise definition of output invariance, let

Γ := {x : s(h(x)) = 0}. Stabilizing the set Γ corresponds to

sending the output of the plant to the desired path. However,

generally Γ is not an invariant set so one should instead

stabilize the maximal controlled-invariant set contained in Γ,

denoted by Γ⋆. Intuitively, the set Γ⋆ is the collection of all

those motions of the control system (1) whose associated

output signals can be made to lie in γ at all time by a

suitable choice of input signal. Assume that Γ⋆ is non-empty

(this is a basic feasibility requirement for the path following

problem) and it is a closed embedded submanifold of the

state space. Let n⋆ := dim (Γ⋆). With this assumption, Γ⋆ is

precisely the zero dynamics manifold of the control system

ẋ = f(x) + g(x)u with output ŷ = s(h(x)). We call Γ⋆ the

path following manifold. Given a smooth feedback u(x), we

say that γ is output invariant for the closed-loop system

if Γ⋆ is an invariant set with respect to the vector field

f(x) + g(x)u(x).

1By smooth we mean that s is a smooth function; by embedded we mean
that the path has no self-intersections and it is a closed subset of R

p. This
is equivalent to requiring that one can choose s : R

p → R
p−1 so that its

Jacobian has full rank p − 1 everywhere on γ.



The path following control design problem entails finding

a feedback ensuring that three objectives are met.

P1 For each initial condition in a suitable set, the corre-

sponding solution x(t) is defined for all t ≥ 0 and

‖h(x(t))‖γ → 0 as t → +∞, where ‖y‖γ denotes the

point-to-set distance of y to the set γ, i.e., ‖y‖γ :=
infp∈γ ‖y − p‖.

P2 The set γ is output invariant for the closed-loop system.

P3 The motion on γ meets additional application-specific

requirements such as direction and speed of traversal of

the path, and boundedness of the internal dynamics.

Our approach to solving PFP is summarized below.

S1 Find the path following manifold Γ⋆.

S2 Transverse feedback linearization, [9] [7]. Find, if possi-

ble, a coordinate transformation T : x 7→ (η, ξ), defined

in a neighbourhood U of Γ⋆, and a regular feedback

transformation u = α(x) + β(x)v (β non-singular on

U ) such that T (Γ⋆) = {(η, ξ) : ξ = 0} and, in new

coordinates,

η̇ = f0(η, ξ) + g⋔(η, ξ)v⋔ + g‖(η, ξ)v‖

ξ̇ = Aξ + Bv⋔
(2)

with v = col(v⋔, v‖) ∈ R
m and (A, B) a controllable

pair. We refer to the ξ subsystem as the transversal

subsystem. On the other hand, the system η̇ = f0(η, 0)+
g‖(η, 0)v‖ is the tangential subsystem.

S3 Transversal control design. Design a transversal feed-

back v⋔(ξ) stabilizing the origin of the transversal

subsystem.

S4 Tangential control design. Design a tangential feedback

v‖(η, ξ) such that, when ξ = 0, the tangential subsystem

meets the application-specific goals in P3 and, more-

over, the closed-loop system has no finite escape times.

The approach outlined above relies on the stabilization of

the path following manifold Γ⋆. Other set stabilization ap-

proaches may be used to stabilize Γ⋆, but transverse feedback

linearization is particularly well suited to path following in

that it allows one to separately address the stabilization of Γ⋆

(objectives P1 and P2) and the control of the dynamics on Γ⋆

(objective P3). More specifically, the tangential subsystem,

with state η, describes the motion on Γ⋆, that is when the

plant output lies in γ. The tangential controller is designed

to meet goal P3. The transversal subsystem, with state ξ,

describes the motion off the set Γ⋆. Due to the absence

of finite escape times, the transversal controller stabilizes

T (Γ⋆). If the trajectories of the closed-loop system are

bounded2, then the stabilization of T (Γ⋆) implies that of

Γ⋆, and therefore the transversal controller meets goal P1. It

also meets goal P2 because the origin of the ξ subsystem is

an equilibrium of the closed-loop system, and thus Γ⋆ is an

invariant set of the closed-loop system.

2It may happen in some applications that the trajectories of the closed-
loop system aren’t bounded because the path itself is unbounded. In this
case, in order to be able to state that the stabilization of T (Γ⋆) implies
that of Γ⋆, it is necessary that there exist a class-K function α such that
ξ(x) ≥ α(‖x‖Γ⋆ ).

The computation, in step S1, of Γ⋆ can be performed

using the zero dynamics algorithm described in [4], provided

some mild regularity conditions hold. We now discuss the

existence and derivation of the coordinate and feedback

transformations that are required in step S2 to get the normal

form (2) with the property that T (Γ⋆) = {(η, ξ) : ξ =
0}. The transformations in question are guaranteed to exist

locally around any point of Γ⋆ (see [9] and [7]) if and only

if there exist functions α1(x), . . . , αl(x), 1 ≤ l ≤ m, with

the following properties. (a)

1) Γ⋆ ⊂ {x : α1(x) = · · · = αl(x) = 0}.

2) The “virtual” output α(x) = col(α1(x), . . . , αl(x))
yields a uniform vector relative degree {k1, . . . , kl}
on Γ⋆ and the indices ki are such that k1 + · · ·+ kl =
n − n⋆.

A good first guess for the required virtual output is the

function s(h(x)), or a function defined using some of the

components of s(h(x)), because it already satisfies property

(a) above. If this guess doesn’t work, then Theorem 3.2 in [9]

(see also Theorem V.1 in [7]) gives necessary and sufficient

checkable conditions for the existence of the required func-

tions. More comments on the derivation of α1, . . . , αl(x)
are found in [9]. Now suppose that α1(x), . . . , αl(x) have

been found that satisfy properties (a) and (b). We show how

they are used to derive the normal form (2). Let D(x) be

the decoupling matrix associated to the output α(x), i.e., the

l × m matrix with components Dij(x) = Lgj
Lki−1

f αi(x)
which, by property (b), has rank l on Γ⋆ and therefore also

on a neighbourhood N of Γ⋆. Let β(x) = [M(x) N(x)],
where M(x) := D⊤(x)(D(x)D⊤(x))−1 is the m × l right-

inverse of D(x), and N(x) is a m × (m − l) smooth

matrix-valued function whose columns span3 the kernel of

D(x). Notice that β(x) just defined is non-singular. Let

α(x) = −β(x) col(Lk1

f α1, . . . , L
kl

f αl, 0m−l×1). Consider

the feedback transformation u = α(x) + β(x)v, where

v = col(v⋔, v‖), with v⋔ ∈ R
l and v‖ ∈ R

m−l. This

feedback transformation and property (b) give







dk1α1/dt
...

dklαl/dt






=







Lk1

f α1

...

Lkl

f αl






+ D(x)(α(x) + β(x)v) = v⋔.

Defining the map x 7→ ξ as

ξ := col(α1, . . . , L
k1−1

f α1, . . . , αl, . . . , L
kl−1

f αl)(x),

the above implies that ξ̇ = Aξ + Bv⋔, where (A, B)
is in Brunowský normal form with controllability indices

{k1, . . . , kl}. Next, following the ideas in the proof of

Proposition 11.5.1 in [5], one finds that there exists a map

η = ϕ(x) mapping a neighbourhood of Γ⋆ onto Γ⋆ such

that the transformation T : x 7→ (η, ξ) is a diffeomorphism

3Since D(x) has constant rank around Γ⋆, for each point p in Γ⋆ there
exists a smooth matrix-valued function N(x), defined in a neighbourhood
of p, spanning the kernel of D. This isn’t enough, as we want to define
N(x) over a neighbourhood of Γ⋆ on which D has full rank (possibly the
whole N ). If N is a contractible set (i.e., if it can be continuously deformed
to a point), then in fact one can find N(x) defined over the whole N .



Fig. 1. The magnetic levitation system
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Fig. 2. Top view of the magnetic levitation system

mapping a neighbourhood of Γ⋆ onto a neighbourhood

of Γ⋆ × R
n−n⋆

. In transformed coordinates, the dynamics

have precisely the form (2). It can also be shown, using a

straightforward argument found in the proof of Theorem 4.1

in [8], that T (Γ⋆) = {(η, ξ) : ξ = 0}. This concludes the

derivation of the normal form in step S2.

III. EXPERIMENTAL APPARATUS AND MODEL

A. Hardware setup

The 5-DOF maglev positioning system, shown in Figure 1,

was developed in collaboration with Quanser and is the

evolution of two previous setups, a 2-DOF and a 3-DOF,

described in [2]. The setup used in this research consists

of four symmetrically placed iron-cored permanent magnet

linear synchronous motors, or PMLSMs, shown from the

top view in Figure 2. Each PMLSM is labeled Motor 1 to

Motor 4, and consists of a stator and a mover. The stators

are housed in a heavy stationary frame and each mover is

positioned beneath its corresponding stator and affixed to an

aluminium platen. Each stator exerts two orthogonal forces

on the mover: a horizontal translational force and a vertical

normal force. The aluminium platen is positioned below a

stationary frame and rests on sets of linear guides4 that allow

the platen to move along two horizontal axes, one vertical

4The linear guides do not provide any actuation force to the platen other
than friction (a disturbance) and are currently required to maintain proper
alignment of the platen and, most importantly, facilitate the placement of
sensors used to measure displacements and rotations of the platen.

axis, as well as rotate about the two horizontal axes (pitch

and roll).

The system has a horizontal displacement range of ±50
mm along the X-axis and Z-axis, a vertical range of ap-

proximately 13 mm, and rotations about the X-axis and Z-

axis of approximately ±3 mrad and ±14 mrad, respectively.

Let T = [0.018, 0.031]× [−0.05, 0.05]× [−0.05, 0.05] and

R = [−0.003, 0.003]× [−0.014, 0.014] denote the allowable

operating range of the translational and rotational subsystems

measured in meters and radians, respectively.

B. Mathematical model

The mathematical model of the forces produced by a

PMLSM was reported in [6]. Using this model it is a simple

matter to derive the dynamics describing the translations and

two rotations of the platen. The detailed derivation is found

in [3]. For the sake of clarity and conciseness, we will not

present the cumbersome expressions of the forces and the

derivation of the mathematical model. We will rather focus

on presenting its basic structure.

We denote by x1, x3, and x5 the Y , X , and Z-axes

displacements of the centre of mass of the platen, respec-

tively, and by x2, x4, and x6 their velocities. Note that

(x1, x3, x5) ∈ T . Let x7 and x9 denote the rotation angles of

the platen about the X and Z-axes, respectively, and by x8

and x10 the corresponding angular velocities. We have that

(x7, x9) ∈ R. Our convention is that when x1 = 0.025 and

x3 = x5 = x7 = x9 = 0 the platen is placed in the centre

of its displacement range and it is leveled with the ground.

The physical inputs to the system are the applied three-

phase currents to each of the PMLSMs. It is customary to

represent three-phase currents of motor k, k = 1, . . . , 4,

using their direct and quadrature components, which we

denote by idk
and iqk

. Having eight control inputs, the system

is overactuated. We now briefly describe how to eliminate

the overactuation. Set ux := iq2
= iq4

, uz := iq1
= iq3

, to

make sure that when the platen is leveled with the ground

the horizontal forces produced by motor pairs (2,4) and (1,3)

are the same. We further set uy := id1
+ id3

= id2
+ id4

,

uφ := id1
− id3

, uθ := id2
− id4

. The definition of uy

guarantees that when the platen is leveled with the ground

motor pairs (1,3) and (2,4) produce the same lift force. We

thus have five control inputs (ux, uz, uy, uφ, uθ) that actuate

5-DOFs.

With this definition, a simplified5 mathematical model of

the system has the form (3). The state space of the system is

X := R
6 × S

1 × R × S
1 × R, where S

1 denotes the unit

circle. The system output is given by the three displace-

ments, h(x) := col(x1, x3, x5). For the remainder of this

paper we will call the (x1, x2, x3, x4, x5, x6) subsystem the

translational subsystem and (x7, x8, x9, x10) the rotational

subsystem.

5In reality, the mathematical model of the plant is not affine in the
control inputs uy, uφ, and uθ , due to the presence of quadratic expressions
involving these currents. However, the analysis in [3] shows that the control-
affine approximation of the model describes the dynamics of the control
system sufficiently well for control purposes.



ẋ1 = x2

ẋ2 = a1(x1, x7, x9, ux, uz) + a2(x1, x7, x9)uy

+a3(x1, x7)uφ + a4(x1, x9)uθ

ẋ3 = x4

ẋ4 = p(x1, x9)ux

ẋ5 = x6

ẋ6 = q(x1, x7)uz

ẋ7 = x8

ẋ8 = b1(x1, x7, uz) + b2(x1, x7)uy + b3(x1, x7)uφ

ẋ9 = x10

ẋ10 = c1(x1, x9, ux) + c2(x1, x9)uy + c3(x1, x9)uθ.
(3)

All functions in the above model are smooth. Their salient

properties are listed below

• b1(x1, 0, uz) ≡ b2(x1, 0) ≡ c1(x1, 0, ux) ≡ c3(x1, 0) ≡
0.

• The functions p(x1, x9), q(x1, x7), b3(x1, x7), c3(x1, x9)
do not vanish on T ×R.

• Letting

K(x) :=





a2(x1, x7, x9) a3(x1, x7) a4(x1, x9)
b2(x1, x7) b3(x1, x7) 0
c2(x1, x9) 0 c3(x1, x9)



 ,

the matrix K(x) is nonsingular on T ×R.

IV. PATH FOLLOWING CONTROL DESIGN

We want to solve the path following control problem,

formulated in Section II, with path γ given by a closed Jordan

curve in the output space. To concretely illustrate our design,

we pick an ellipse not leveled with the ground,

γ :=
{

(y1, y2, y3) ∈ R
3 : s1(y) = s2(y) = 0

}

, (4)

s1(y) := y2

2
+ y2

3
− 0.032, s2(y) := −18y1 +3y2 +0.45, but

our procedure can be applied to any other embedded path that

is expressible as the zero level set of a function. The ellipse,

shown in Figure 3, covers most of the operating range T
for the displacements. The controller must meet objectives
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Fig. 3. The desired path γ. The box represents the operating range T

P1-P3 in Section II with P3 specialized to this application

as follows,

P3 On the path γ, (x1(t), x3(t), x5(t)) tracks a desired

speed profile. Moreover, the rotational dynamics are

regulated to zero, i.e., (x7(t), x8(t), x9(t), x10(t)) → 0
as t → ∞.

A. Preliminary feedback transformation

The first step in controller design is to observe that the

plant (3) is feedback linearizable. The feedback transforma-

tion
[

ux

uz

]

=

[

u2/p(x1, x9)
u3/q(x1, x7)

]





uy

uφ

uθ



 = K(x)−1





u1 − a1(x1, x7, x9, ux, uz)
u4 − b1(x1, x7, x9, uz)

u5 − c1(x1, x9, ux)



 ,

(5)

gives five decoupled double-integrators with input u :=
(u1, . . . , u5),

ẋ = Âx + B̂u (6)

where Â and B̂ are in Brunowský canonical form. We next

apply the procedure presented in Section II to system (6)

with path (4).

B. S1: Finding the path following manifold

The path following manifold Γ⋆ is the maximal control

invariant subset of Γ = {x : s1(h(x)) = 0, s2(h(x)) = 0},

with s1(h(x)) = x2
3 + x2

5 − 0.032 and s2(h(x)) = −18x1 +
3x3 +0.45. In this case, the task of finding Γ⋆ is straightfor-

ward because the virtual output ŷ := col(s1(h(x)), s2(h(x)))
yields a well-defined vector relative degree of {2, 2} on

X/ {x : x3 = x5 = 0}, since the decoupling matrix

D(x) =

[

0 2x3 2x5 0 0
−18 3 0 0 0

]

has full rank on X/ {x : x3 = x5 = 0}. Therefore the path

following manifold has dimension n⋆ = 6 and is given by

Γ⋆ =
{

x ∈ X :x2

3 + x2

5 − 0.032 = −18x1 + 3x3 + 0.45 =

2x3x4 + 2x5x6 = −18x2 + 3x4 = 0
}

.

(7)

C. S2: Transverse feedback linearization

Since the virtual output ŷ = col(s1(h(x)), s2(h(x)))
yields a well-defined vector relative degree, the derivation

of the normal form (2) amounts to standard input-output

feedback linearization. Following the procedure for deriv-

ing the normal form outlined in Section II, let β(x) =
[M(x) N(x)], where M(x) = D⊤(x)(D(x)D⊤(x))−1 is

the right-inverse of D(x) and the columns of

N(x) =









x5

6x5

−6x3

03×2

02×1 I2











span the kernel of D(x), and define the feedback transfor-

mation

u = −β(x) col(2(x2

4 + x2

6), 0, 0, 0, 0) + β(x)v,

v = (v⋔
1
, v⋔

2
, v̂

‖
1
, v

‖
2
, v

‖
3
).

(8)

Notice that this feedback transformation is regular on

X/ {x : x3 = x5 = 0}. Next, the state of the transversal

subsystem is defined as

ξ :=









x2
3 + x2

5 − 0.032

2x3x4 + 2x5x6

−18x1 + 3x3 + 0.45
−18x2 + 3x4









. (9)

We complete the coordinate transformation by means of the

map x 7→ η defined below,

η1 = arg (x3 + ix5)

η2 = (x3x6 − x4x5)/(x2

3
+ x2

5
)

η3 = x7

η4 = x8

η5 = x9

η6 = x10.

(10)

The state η1 is the angle formed by the projection of the

centre of mass of the platen onto the X − Z plane and

the X-axis, and η2 represents the corresponding angular

velocity. Therefore, when ξ = 0, i.e., when the centre of

mass of the platen is on γ, the pair (η1, η2) completely

describes the position and velocity of the platen. On the other

hand, η3, η4, η5, η6 are simply the states of the rotational

subsystem. The transformation T : x 7→ (η, ξ) defined by (9)

and (10) is a diffeomorphism of X/ {x : x3 = x5 = 0} onto

its image and it yields the desired normal form,

η̇1 = z2

η̇2 = φ(x, v⋔
1 , v⋔

2 ) − 6v̂
‖
1

η̇3 = z4

η̇4 = v
‖
2

η̇5 = z6

η̇6 = v
‖
3

ξ̇ = Aξ + Bv⋔.

where φ(x, v⋔
1 , v⋔

2 ) is a smooth function defined on

X/ {x : x3 = x5 = 0}. Interestingly, the system above is

feedback equivalent to a linear time-invariant system. For,

by letting

v̂
‖
1

= 1/6(φ(x, v⋔
1 , v⋔

2 ) − v
‖
1
), (11)

we obtain the linear time-invariant system

η̇ = A⋆η + B⋆v‖

ξ̇ = Aξ + Bv⋔,
(12)

where (A⋆, B⋆) and (A, B) are in Brunowský normal

form and represent, respectively, three decoupled double-

integrators and two decoupled double-integrators.

D. S3: Transversal control design

We stabilize the origin of the transversal subsystem in (12),

therefore meeting design goals P1 and P2, by means of two

parallel PID compensators,

v⋔
1 (ξ) = −K11ξ1 − K12ξ2 − K13

∫ t

0

ξ1(τ)dτ

v⋔
2
(ξ) = −K21ξ3 − K22ξ4 − K23

∫ t

0

ξ3(τ)dτ.

Since v⋔
1 (0) = v⋔

2 (0) = 0, ξ = 0 is an equilibrium of the

closed-loop transversal subsystem in (12), and thus Γ⋆ is an

invariant set for the closed-loop system. In other words, the

controller above meets goal P2. The positive gains Kij are

selected using LQR design with manual tuning of the weight

matrices.

E. S4: Tangential control design

We now design a tangential controller for the η-subsystem

in (12) that meets objective P3. Recalling the definition of

η in (10), making sure that, on γ, the centre of mass of the

platen (x1, x2, x3) tracks a desired speed profile is equivalent

to making sure that the angular velocity η2 approaches a

desired reference profile ηref
2

(t), which can be achieved by

means of a simple proportional feedback with feedforward

action. Furthermore, regulating the rotational dynamics cor-

responds to stabilizing the origin of the subsystem with states

(η3, η4, η5, η6), which can be achieved by means of two

PID compensators. In the light of the above, the tangential

controller

v
‖
1
(η) = η̇ref

2
(t) + K3(η2 − ηref

2
(t))

v
‖
2
(η) = −K41η3 − K42η4 − K43

∫ t

0

η3(τ)dτ

v
‖
3
(η) = −K51η5 − K52η6 − K53

∫ t

0

η5(τ)dτ

meets design goal P3. The positive gains in the above

controller are chosen using LQR design with manual tuning

of the weight matrices in order to stabilize the rotational

dynamics.

V. EXPERIMENTAL RESULTS

We define the instantaneous “path error”, denoted e(t), as

the minimum Euclidean distance of the center of mass of the

platen to the path at time t, e(t) := ‖(x1(t), x3(t), x5(t))‖γ .

The average path error over a finite time interval [0, T ] is

ē(T ) :=
1

T

∫ T

0

e(τ)dτ.

The average path error is the benchmark throughout the

tuning process.

A. Experiment 1

After tuning the proportional controller for the tangential

control, we ran a test consisting of a series of constant angu-

lar velocity commands {π/2, π/4, π/8,−π/8,−π/4,−π/2}



rad/s in order to tune the LQR gain matrices for the transver-

sal control. For each velocity, the platen was moved through

two circuits around the path before switching to the next

velocity command. The initial average path error for this test

was over 300µm, and after tuning the average path error was

reduced to approximately 41µm. Figure 4 shows the position

response of the system after tuning in XYZ Figure 5 shows

the measured path error during the test. The performance is

clearly satisfactory.
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Fig. 4. Position response of the path following controller.
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Fig. 5. Path error measured for the path following controller at various
velocities

B. Experiment 2

We further tested the accuracy of the path following

controller by running longer trials at constant velocities

ranging from π/8 rad/s to 2π rad/s and recording the average

path error with T = 60 seconds for each velocity. Figure

6 summarize the results from this test. We observe a large

increase in average path error as the speed increases.

C. Discussion

We observed that there was a significant friction effect at

certain points where the platen’s motion along an axis stops

and changes direction. We call these turn-around points.

We say that this is predominantly a friction effect for two

reasons: 1) the effect is symmetrical and depends on the

direction of travel, and 2) the effect is less predominant

at larger velocities when the platen has more persistency

of motion. Figure 7 illustrates the effect (before controller

tuning) at velocities π/8 and −π/8.

Another undesirable effect that we observe is a slight

coupling between the η and ξ dynamics, that theoretically
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Fig. 6. Average path error measured over 60 seconds for various angular
velocities
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Fig. 7. Effect of friction at a turn-around point for small velocities before
tuning

(see (12)) are decoupled. This coupling manifests itself by an

increase in the average path error at large angular velocities

η2. This is evidenced in Figure 6 which show the measured

average path errors for various angular velocities.
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