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Abstract— A solution is presented to the problem of synchro- a problem of full synchronization with simultaneous cohtro
nizing a chain of N cart-pendulums using virtual holonomic  of pscillations, as follows.
constraints. The approach is based on a master-slave configu- o L
ration whereby the first cart-pendulum is controlled so as to Synchronization of Oscillations Problem (SOP)- De-
stabilize a desired oscillation around its unstable equilibrium. sign feedback lawsi, i =1,...,N, meeting the following
Then, each remaining cart-pendulum is controlled so as to fully  two specifications:
synchronize it to the previous pendulum.

(i) Oscillation control for pendulum 1. Let ¢’ (R x S') x
_ _ R? be a closed curve representing a desired oscillation
In this paper we considét cart-pendulum systems whose around the unstable equilibrium. For ti;(0),G1(0))

I. INTRODUCTION

carts slide on a straight line. Tlh cart-pendulum, depicted in a neighborhood of#’, the solution (qa(t),da(t))
in Figure 1, has configuration variablg = (6,%) € Q;, asymptotically approaches.
where Q; = S' x R is thei-th configuration space, an"  (ii) Full synchronization. For alli € {2,...,N}, and for all
is the set of real numbers modular2diffeomorphic to the initial conditions in a suitable setg(t) — 6_1(t) —
unit circle. Thei-th pendulum model can be written in the 0 and x(t) —xi_1(t) — di_1, whered;_; is a design
standard form parameter.
. m In other words, we wish to fully synchronize the pendulums,
6, l 9 with desired separatiorts between the carts, while simulta-

neously inducing desired oscillatory behaviours on theifn. O
particular interest is the special case wi€ns the unstable
equilibrium of the first pendulum. In this case, SOP becomes
Ui M; the simultaneous swing-up and synchronization ofNeart-
pendulums. For the problem to be feasible it is required that
o 0 the lengthsl; of all N pendulums be identical, so we will
X! assume thaly =---=Iy =1.

Ui

Fig. 1. Theit cart-pendulum system SOP has been posed and solved by Shiriaev-Freidovich-
Gusev in [1] using virtual holonomic constraints to plan the
desired oscillation, and applying the transverse lineéon
Di(g)¢Gi +Ci(qi,q)a + OR(gi) = Bui, (1) technique to stabilize the oscillation in question. In this
paper we present an alternative technique, also based on
where the notion of virtual holonomic constraint, but relying on
Di(q) = [ ml,2 ml.i cose.} OR(g) = [— mglisinel] 7 different prir?ciples. o |
mlicosé  Mi+m 0 The solution to SOP presented in this paper relies on a
B_ H @) master-slave configuration. Specifically, we design a dyoam
1 feedbacku;(01,1,51,51), where (s1,$) is the state of a
dynamic compensator, to asymptotically stabilize thereesi
We will let g = (q,...,qn) denote the collective configura- oscillation ¢ for pendulum 1. Then, fof = 2,...,N, we
tion variable, andQ = Q; x --- x Qy denote the collective design a dynamic feedback (q;,Gi,qi-1,6i-1,S,$) to fully
configuration space. synchronize pendulumto pendulumi — 1. The techniques
System (1) is an Euler-Lagrange control system with 2 used to synthesize the dynamic feedbackeely on recently
degrees-of-freedom (DOFs) amd actuators. Therefore, the developed theory in [2], [3] reviewed below.

degree of underactuation I. In this paper we investigate  This paper is organized as follows. In Section Il we review
) . . the definition of virtual holonomic constraint and basiclsoo
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Il. VIRTUAL HOLONOMIC CONSTRAINTS be shown (this fact was discovered in [4]) that the reduced

In this section we review some parts of the theory in [2]dynamics always take the form

3]. Consider a controlled Euler-Lagrange system of thenfor N .
3] grange sy tin = Wi () + Wal(on) 2 @

D(a)d+C(a,9)q+ UP(q) = Bu, (3) : . .

If gy is a real variable, (4) is always Euler-Lagrange. If, on
with n degrees-of-freedom and— k controls, wherek is  the other handg, € St, then it was shown in [2] that (4) is
the degree of underactuation. L@tdenote the configuration Euler-Lagrange provided thatis an odd function. In either
space. Avirtual holonomic constraint (VHC) of orderpfor  case, the total energy of the system is
system (3) is a relation between the configuration variables
of the form h(g) = 0, whereh: Q — RP is a C! function E(On, 6n) = }M(Qn)Qﬁ-ﬁ-V(Qn), (5)
such that its Jacobiathy has full rank for allg € h=(0). A 2
VHC h(q) =0 is said to bdeasibleif there exists a feedback where

u*(g,q) such that the sefft = {(q,q) : h(q) = 0,dhqq = 0}, O

is invariant for the closed-loop system (3) with= u*(q, (). M(an) = exp{—z/o Wz(r)dr},

We call the sef the constraint manifold. In other words, o ®6)
a VHC h(q) = 0 is feasible if, through appropriate feedback, V(th) = —/0 W1(H)M(p)dp.

solutions of system (3) can be made to satisfy the constraint
h(gq) = 0 whenever their initial condition is chosen suchWhen g, € S, it was shown in [2] that almost all level
that h(q(0)) = 0 and their initial velocity is tangent to the sets of E(gn,¢n) are solutions of the reduced system (4)
constraint,dhy)d(0) = 0. homeomorphic to circles, therefore representing ositithat

If a VHC h(qg) = 0 is feasible, the next step is to enforceof the system. If one wishes to stabilize one such oscilla-
it via feedback, i.e., to design a feedback stabilizing théon {E(agn,dn) = Eg}, one has to break the invariance of
constraint manifoldl". If we take h(g) to be an output the constraint manifold” because the reduced system (4)
function for system (3), and if the outpyt= h(q) yields has no control input. In [3], the stabilization of a level
a well-defined vector relative degrg@,...,2} on T, then set{E(gn,dn) = Eo} was addressed by making the VHC
an input-output feedback linearizing controller will state®  col(dy, . ..,dn) = @(dn) depend on a time-varying parameter
. A VHC h(qg) = 0 satisfying the vector relative degrees. More precisely, the idea in [3] is to use a modified VHC
condition above is said to besgular. Note that regular parametrized by a scala; col(qi,...,0n) = @°(gn), with

VHCs are always feasible. the property that the modified VHC is regular for glland
Proposition 2.1: A VHC h(qg) = 0 is regular iff that @°(gn) = @(gn). We call such a constraint dynamic
. . VHC. The time evolution of the scalas is governed by
(Vg€ h™(0)) Im(D~*(q)B(a)) N Ker(dhg) = {0}, §=v, wherev is a new control input to be designed.
or, equivalently, if the matrixihy,D~(q)B(q) has rankp for Instead of stabi_lizin_g‘,_ an input-output feedbacl_< Iinearizing
all g€ h=(0). controller u*(q,q,s,$) is designed to asymptotically stabi-

We omit the elementary proof of this proposition, which idize the setl” = {col(d, ..., tn) = ¢°(ch),col(C, ..., Gn) =
adapted from Lemma 2.1 in [2]. The regularity condition?en ®°(Ah) G+ Js¢(dn)s}. Concerning the compensatorV,
above has the following mechanical interpretatiai: of It IS shown in [3] that for appropriate choices of gains
the acceleration directions that can be imparted via tHg1: K, Ks, the feedback

control input must beransversal to the tangent space of
the constraint sefq: h(q) = 0}.

Next, we review the notion of reduced dynamics. FOf, conjunction with the feedbaak’, asymptotically stabilizes

this, we will consider the special case whén=1, i.e., iha set {E(tn,Gn) = Eo,s = $ = 0} while simultaneously
when the degree of underactuation is one, and CO”Siders%bilizingr.

VHC of order n—1 expressed in explicit form, whereby
n—1 configuration variables are functions of the remaining
configuration variable, c@,...,qn) = @(gn), SO that the as-
sociated constraint manifold 5= {(q,q) : col(qs,...,qn) = In this section we present a solution to SOP adopting a
@(0n),col(qs,...,0n-1) = @ (an)an}. If such a VHC is reg- master-slave approach. We begin by considering the case of
ular, and a feedback*(q,q) is used to makd invariant, two pendulumsN = 2. Viewing the first pendulum as the
the dynamics of the closed-loop system [orare called the master, we select a desired oscillatioh and we design a
reduced dynamics These are simply the zero dynamics ofdynamic feedbacky that asymptotically stabilizes pendulum
system (3) with outputy = col(t,...,an) — @(gn). It can 1 to ¥. We do that by looking for regular VHCs of the form

61 = @(x1), where|g| < 11/2 so that, if the VHC is enforced,

1A<_:tua|ly, the stabilization of will occur if there exist two class¥”  the pendulum rod is forced to lie in the upper half-plane. We

functionsa and such that the functioil (g, ) = col(h(q),dhqq) satisfies . .

also impose a second constraifit,= 6,, to make the angles

the boundsa ([(q,d)lIr) < [|H(a.@)[l < B(//(a.9)[Ir), where]|- |- denotes X
the point-to-set distance to. of pendulums 1 and 2 synchronize.

V=K1 (E — Ep)Qn + Kos+ K3S, 7

IIl. SOLUTION OF SOP



A. Design for the case N = 2 E(xq,%1) are shown in Figure 2. It can be seen that the level

Consider the VHC of order 2, sets in a neighborhood ¢k,x;) = (0,0) are closed curves.
In particular, the level sefE(x3,x;) = 0} is the stable
61=@(x1), 62 =61 (8)  equilibrium (x1,%;) = (0,0). Since(0) =0, oscillations of

1,%1) near(0,0) correspond to oscillations @By, 6;) near
0,0). Physically this means that when the VHIZ= ¢(x1)
is enforced on pendulum 1, with appropriate initialization
(Vx1) cosp(x1)+1¢/(x1) #0, cosp(xy) #0.  (9) the cart will oscillate aroundy = 0, while the pendulum

Th . hoi ina th giti will oscillate around its unstable inverted configuration.
ere are various choices gfmeeting these two conditions This is precisely the type of oscillation we wish to stataliz

and such thatg| < n/g. For instance, for alB € R and all ;| part (i) of SOP. Accordingly, lefE(x1,%) — Eo} be a
& € (0,71/2), the function desired level set of the energy for pendulum 1. Then, the
. { cos@ closed orbit we wish to stabilize is
o) =-asin( e 0a-p)) 0

satisfies both properties in (9), making the VHC in (8)
regular. Now we need to analyze the reduced dynamics,
looking for periodic orbits of interest. The reduced dynesni
are obtained by left-multiplying (1) by a left annihilator
of B and evaluating the resulting expression bn i.e.,

Using Proposition 2.1, one can check that VHC (8) is regul
if and only if

¢ = {(61,%1,61,%) € Q1 : E(x1,%1) = Eo,

: . 12)
61 = @(x1), 01 = ¢ (x1)%1}-
Stabilizing%” with Eg = 0 will correspond to swinging up the
pendulum. The stabilization & can be performed using the

. : ! o tools of [3] reviewed in Section Il. In particular, noticeath
IeEtlng .921 =6 = So(xlB), o1 :dez ~ qo’(xl)xt, and 9;: 92d: Jf @ function p(x,) satisfies relations (9), then so does the
d(p;/r(:z(alr)n)&:: ¢ (x)%. By so doing, one obtains the reduced ;o @(x1—s1) for all s; € R. In light of this observation,

we enforce the dynamic VH®; = ¢ (x3) = @(Xg —S1) on

Xy = W1(X1)+LP2(X1)X§, Ko = W1(X1)+W2(X1)X§, (11) pendulum 1, withg given in (10), through the input-output

) linearizing feedback
where Wilx)) = mlgllslnzq(yl)/(?llzqg’g(l) +
mylcosp(xy)) and Wa(x1) = —mul“@"(x1)/(mul“¢@/(x1) + o« _ —1p 11 Py
myl cosg(xy)). The structure of (11) prompts two ui = {1 _a’flq)Sl}Dl B} Ul_ B dxquSl]Dl_ (Crta+0Py)
observations. First, thex;~equation has the structure + (0 )% + (20, 05, 0™ )51 $1 + (95 ™S + (95, 0™ )W
of (4). This is due to the fact that the constrafiit= @(x1) —kq (61— ™) — ko (61 — (O, ™) %1 — (95, ™)1,
only involves the state of pendulum 1, which has degree of
underactuation 1. Sinoq is a real variable, thg, subsystem where k;,ko > 0 are design parameters. As described in
is guaranteed to be Euler-Lagrange, and its energy functid@ection I, the evolution 0§, is governed by
E(x1,%1) is given by (5)-(7). Moreover, as we will see
in a moment, the level sets dE near (x3,x1) = (0,0) § = K1(E — Ep)Xg + Kosp + K3$1. (14)
correspond to the type of oscillations we wish to stabilize
in part (i) of SOP. The second observation is that sincith an appropriate design ¢;, Ky, K3z, the dynamic feed-
X1 — %2 = 0, solutions on the constraint manifold are suctback uj in (13)-(14) stabilizes the closed cur# x {s, =
that x; (t) — x2(t) — £ wheneverx;(0) —x2(0) # 0. This is  § = 0}. Now we turn to the stabilization of the equilibrium
obviously undesirable because we wapft) —xq(t) — di. X, —x; = dy. For this, we will modify the second constraint
Motivated by these observations, we will turn VHC (8) into ain (8) asf, = 6, —s,, wheres; = v, andv, will be designed
dynamic constraint so as to stabilize a level seE@f;,x1), so thatx, —x; — d; andsy, — 0. This modification introduces
and stabilize the equilibriumt; —x; = di. The level sets of a small offset on the oscillations of the slave system, see

Figure 3, which can be controlled so that the slave is driven

— to stay at a fixed distance from the master. One can check that
& this dynamic VHC is regular for alk;| < J — 6. To enforce
Xl : “
-2 ()Xl 2 4 6

Fig. 3. Use of a dynamic VHC to introduce a driving force on theve
Fig. 2. Phase portraits of the reduced motion of the mastempesrdulum  cart-pendulum system to remain at a fixed distance from theemast
for the VHC's with ¢(x1) = fgsin(%’xl). All physical parameters are
assumed to be unity.

the VHC 6, = 6; — s, we use the input-output linearizing



feedback origin of (20). Consider the linear feedbagk= Le, where
. qn -1 1 P L=[L1 Ly L3 Ly ande=[e; & € &]'. If we find L
u; ={[1 0]D27|132} ' [ 0D, *(Bath —Ca6y — OPy) making the origin of (20) exponentially stable, then the
+[1 0D, (Cotlo + OP,) —ka(62— 61+ %) (15 origin e= 0 of (19) is exponentially stable as well. To assess
—k4(62— 01+ %) — Vv, the stability of (20) we use averaging theory. Consider the

whereks, ks > 0 are design parameters. Summarizing, Wlt_}ransformanonsaH E, L~ C, defined as

have replaced the VHC in (8) with the dynamic VHC e=diag(1l,¢,¢2 %)E

A 4 3 .2
L= 0% (x) = 0x—S), B=6—5  (16) L =diage”, &%, €% €)C
whereEk = [El E, E3 E4]T, C= [Cl C, C3 C4]T, ande >0is

where ¢ is given in (10). This VHC is regular for all - ) .
a small parameter. In original coordinates we are using the

s1€R and all|s;| < 5 — 6, and the dynamic feedbacks,
us in (13)-(14) and (15) stabilize the associated constraif°PENSator
manifold & = £9C1 (X1 — Xo + ) + £5Co (%1 — %) 4 £2CaSp + £C4$p.
M= {(01,%,G1,%,51,%,51, %) : 61 = ¢ (x1), 02 = 61 — %, _ o (22)
By = Oy, % (1) %1 + 05, 0% (X1)S1, B = By — &) With these definitions, (20) takes on the normal form of
1= O @ (X)X + 05 @7 (X1)S1, 1 (17) averaging theory [5]E = A, (t)E + 3[+]E, where

What is left to do is to design the control inpwp in 0 1 0 0
the dynamic compensatss = v, so as to stabilize the set 0 0 ag() O
{X2— X1 —ch — 0% — %1 — 0,8 — & — 0}. To this end, Al=10 0 0 1 (23)
we will consider the reduced dynamics bnassuming that C G C G

compensator (14) has made the master system conve
to the desired energy level s&, and thats; = $ = 0. N _

This corresponds to investigating the reduced dynamics on E = eAgE, (24)
M =TN{E(x,X%) = Eyg,s1 = & = 0}. By left-multiplying

Hi%e averaged system is given by

the equations in (1) for= 1,2 with a left annihilator ofB whereAg, = (1/Te, ) Jo ° A, (T)dT reads as
and evaluating the resulting expressionslénwe obtain O 1 0 oO
; ~ 0 0 a, O
g, _ 95IN(@0) —%2) ~19/(a)¥10a) M=o o ago 1l (25)
cog@(x1) — )
i -2 Cj_ Cz C3 C4
(@) + ¢ (x1) Wa(xe) )% — v (18) .
coq@(x1) — %) with ag, = (1/Te,) J, °a(t)d. Note thatag, depends on the
&=y, energy levelEy of the master system corresponding to the

. . periodic orbit (x1(t),x1(t)) that is rendered asymptotically
where W1, W are as before. In the abovex(t),Xi(t)) IS  giable by compensator (14). With the choice of VigG)
the periodic solution of the; "subsystem in (11) satisfying (10), it holds thatag, > O as shown with the following
E(xu(t),%1(t)) = Eo, and it is viewed as an exogenous signalienma.

In what follows, we will letTg, be the period of this solution. | gyma 3.1 ag, > g, whereg is the acceleration due to

Consider the error coordinates=x1 —X2+di, & =X1—%2,  gravity, for all Ey such that the seft(xy, %) : E(x1,%1) = Eo}
&3 =% andey = $. We have is a closed curve.

e =6, &="f(t,e)+gt,e)Vo, &3=es, &=V, (19) The proof is omitted for brevity. With this lemmae, # 0,
it follows that the LTI system
wheref(t,e3) andg(t,es) are suitable smooth functions. We

linearize (19) at the origie= 0, obtaining the linear periodic 8 é aTSO 8 8
control system oo o 1'lo (26)
€1 =6, & =ag()es+bg, (t)v2, &3 =64, &4 =V, (20) 00 0 0 |2
where is controllable, and therefore for dlly there exist<C € R*
9(1+1¢ (x1) cos(x1)) —I(p”(xl)sin(p(xl)X% such thatAg, in (25) is Hurwitz. In particular, we have the

ag, (t) = (Cosp(xa)) (Cosg(xa) + 197 (xa)) following result.
—I

~ cosp(xa)’

Lemma 3.2: The matrixAg, in (25) is Hurwitz for allC e
R* such thatCy,...,C4 < 0 and

(21) 0< a_EO < min{—C3C4/Cz, (C1C£ —C2C3C4)/C§}. (27)
and where, once agairfxi(t),x.(t)) is a Tg,-periodic ex- The proof of the above lemma is straightforward. It relies on
ogenous signal associated to the energy levelEgethat the fact, established in Lemma 3.1, tlagt > O, and the ap-
has been asymptotically stabilized for the master systerplication of the Routh-Hurwitz criterion to the characstic
The control inputv, must be designed to stabilize thepolynomial of Ag,, A% —CsA% —CA2% —aCoA —aCy.

on (t)



One can show that the functidi — ag, is monotonically  the fact that, or, 6 = 61— 3_,sj and 6 = 6;— 3|_,V;,
increasing. Therefore, in light of inequality (27),@fc R*  so that
is such thatAg, is Hurwitz, then with the sam€ it holds A i , . i )
that Ag, is Hu?witz for all E; < Ep. The next proposition ¥ = (6 z‘:2VJ)+gism(el ZJZZSJ)
summarizes our results so far. cos(61 —3-»Sj) e
Proposition 3.3: ConsideN =2 pendulums in (1). Given « _ . ;. 2. N} A
a feasible energy level sdfy, pick C € R* to stabilize b B B
the LTI system (26). Then, there exists > 0 such that We see from the above that the reduced dynamicd 'on
for all € € (0,&*), the feedbackss;, us in (13), (15) with are given byN —1 decoupled identical subsystems, each of
compensators (14), (22), asymptotically stabilize the Eet dimension 4, driven by the exogenous sigfel(t),x1(t)),
in (17) and.¥” = { (01, 02, 61, 62,51, 5,51, %) € T :E(x1, %) =  the periodic solution of the; ‘subsystem in (11) with energy
Eo, X1 —X2+01 =X —% =0,5 = =% = & = 0}, therefore level Eqo. Defining the error coordinates = X1 —x +di_1,
solving SOP forN = 2. Moreover, the same gain vectér € =X_1—X%, & =15, € =5, i € {2,...,N}, the error
can be used to stabilize any energy lefl< Eq for the dynamics can be found to be a linear-time varying system
master system. which when linearized about the origin and lettieg=
Sketch of the proof: The feedbacksi;, us exponentially [€,,...,€,]", one has that the’ dynamics are governed by a
stabiliz& the constraint manifold” in (17). The averaging linear periodic system with inpug; identical to the system
theorem [5] guarantees the existence&df> 0 such that in (20), (21). This remarkable fact implies that the analysi
for all € € (0,€*) the averaged system (24) is exponentiallyperformed in the previous section directly carries ovehts t
stable, implying that the linear periodic system (20) is@xp setting. Thus, foi € {2,...,N}, the compensator
nentially stable, and therefore the det = xq(t) +di, %2 =
%1(t),s2 = & = 0} is exponentially stable for system (18)
representing the reduced dynamics [on In other words,
.7 is exponentially stable relative to’. Moreover, by the
theory in [3], I’ is exponentially stable relative tb for
suitable choices oK1,Kz, Kz in (14). By the Seibert-Florio
reduction theorem for asymptotic stability of sets in [&],
is asymptotically stable. ]

§ =eCr(x1—X+0i_1) +E3Co(¥%_1—%) +€°Cas +£Ca$,

(31)
whereCy,...,C4 are designed as in Proposition 3.3 and are
independent of, exponentially stabilizes the origin of the
error subsystem.

Proposition 3.4: Consider theN cart-pendulums in (1).
Given a feasible energy level g, pick C € R* to stabilize
the LTI system (26). Then, there exists > 0 such that for
B. Design for N cart-pendulums all € € (0,e7), the feedbacksy; in (13) andu’, i =2,...,N,

Here we show that the result for the 2 cart-pendulur]! (30) With compensators (14), (31) asymptotically siabil
systems can be extended to the genétatart-pendulums the sef in (29) and the set’ = {(q.¢,s,9) € T 1 E(x1,%1) =

systemwithout any additional control design. The dynamic E0:X-1—%+di1=0% 1-%=08=§=0i=1...,N},
VHC in (16) is generalized as follows: therefore solving SOP. Moreover, the same gain veCtar

R* can be used to stabilize any energy level BeK E.
61=0%(x1), B =6_1-5,ic{2,...,N}, (28) Proof: The proof of this result follows directly from the
proof of Proposition 3.3 and the fact that the linearizedrerr
system is made oN decoupled subsystems, each identical
to (20). [ ]

where, as beforep™ (x1) = @(x1 —s1), andg is given in (10),
and the evolution of the parametessis governed byN
compensators =Vvj, i =1,...,N. The dynamic VHC in (28)
can be shown to be regular for &, ...,sy) such that
|sN.,sj| < m/2— 6. The constraint manifold is IV.  SIMULATION RESULTS
— . . . Here we present simulation results for the cése- 3.
r={(@as9: 91_: (pfi(xl),e. =6-1-5,60= 340" ()% p| physical parameters were taken to be unity. For the
+05 0™ (x1)81,6 = 6_1—§, i €{2,...,N}}, master cart-pendulum system we chose to enforce the VHC
(29)  (x1) = —(11/3)sin((1.5/m)x;). The gainsk,...,ks in the
and the input-output linearizing feedbacks stabilizingn feedbackar; in (13) andus, u3 in (30) are chosen to be =
conjunction withuj in (13) are ks = 25, ko = ks = 10. The gains in for the; compensator
N 1p -1 1 . in (14) were chosen to b&; = —0.1,K; = -1, Kz = -1
U ={[1 0D "B} "[[1 0D (Bi-ati-1—Ci-aGis The desired cart separations ate= d, = 1. Finally, for
~0OR_1)+[1 0D *(CiG+0R) —ks(6 —6-1 (30) the s, ands; compensators in (31) we let= 1 and pick
+5)— k(B —B_14+8)—Vv], i=2,....N. C € R* to place all poles of (26) withag, = 10 at — 1.
Wis givesC =[-.11 — .43 —6.33 —4.11]. Finally, the

As before, we are interested in investigating the reduced... e o T
dynamics or”’ = I 1 {E(xy,% ) = Eo,5 = & = 0}. For this, initial conditions chosen were as followeg(0) = [-.3 Q] ',

o , 92(0) =[-34", 05(0) = [.1 6" anddjz (0) = G2(0) = d3(0) =
we use the fact thai = —(1/cos)6 + gsing;/ cosé and 00" ands =§ =0, i =1,2,3. To illustrate the role

2Actually, uj, us exponentially stabilize an open subsetrafsince the of the t.h_ree compensatosg,$,$3, in Figure 4 we show
dynamic VHC (16) is regular for small values f. the positions and angles of the three cart-pendulums when
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Fig. 4. Full synchronization of 3 cart-pendulums without rgyestabiliza- ~ Fig. 5. Full synchronization of 3 cart-pendulums with simoéaus energy

tion: angle of each pendulum (top) and cart position (bottdNgte that level stabilization for the master cart-pendulum. Here wesgabilizing the

during transient the three pendulums remain in the uppergtaife. energy leveEg = 0, which corresponds to stabilizing the upright equilibmiu
position of the pendulums. Note that during transient theghgendulums
remain in the upper half-plane.

the energy stabilization mechanism of compensatoiis”

turned off (i.e., Ky = Kz = K3 = 0). As Figure 4 shows, dynamic, with N states, and it stabilizes the manifofd

the enforcement of the VH®, = ¢(x,) makes the master (29), thus enforcing the dynamic VHC (28). While in [1]
system oscillate about its inverted configuration, while th o haeds to stabilize an LTV system of ordét 21, our
other two cart-pendulums fully synchronize to it. Next, inconq design relies on the stabilization of a fourth-ard®
Figure 5 we turn on the energy stabilization mechanism Qfysiem no matter how large is. Thus, our control design
compensatosy with Eo =0, which corresponds to stabilizing i mch simpler. Additionally, the benefit of stabilizirg

the mverted conflguratl_on of the three cart-pendulums. Weyjje simultaneously meeting the specifications of SOP is
see from Figure 5 that, indeed, the three cart-pendulumg ful o1 gne has better control over the transient performance
synchronize, and that the cart positions converge to desirg¢ \he system. For instance, if a small disturbance affects

constants while the angles converge to zero. the master pendulum so that the relatién= ¢*(x;) is
violated, the controller will guarantee a graceful recgyer
in that during the ensuing transient the quan@ty- ¢ (x1)

We have presented a technique to fully synchrorfize il remain small. This is desirable becauig#: (x1)| < 71/2
cart-pendulum systems while simultaneously stabilizing gy all s, € R, and therefore the master pendulum remains in
desired oscillation of the pendulums about their inverteghe upper half-plane for small enough perturbations. Simil
configurations. As mentioned in the introduction, SOP hagpnsiderations hold for all other pendulums in the chain.
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