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Abstract

This article presents a solution to the path following problem for the planar vertical take-off and landing aircraft (PVTOL)
which is applicable to a class of smooth Jordan curves. Our path following methodology enjoys the two properties of output
invariance of the path (i.e., if the PVTOL’s centre of mass is initialized on the path and its initial velocity is tangent to the
path, then the PVTOL remains on the path at all future time) and boundedness of the roll dynamics. Further, our controller
guarantees that, after a finite time, the time average of the roll angle is zero, and the PVTOL does not perform multiple
revolutions about its longitudinal axis.

Key words: path following, planar vertical take-off and landing aircraft, set stabilization, controlled invariant submanifolds,
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1 Introduction

In this paper we investigate the model of a V/STOL aircraft in planar vertical take-off and landing (PVTOL) mode,
introduced by Hauser, Sastry and Meyer in [10]

ẋ1 = x2

ẋ2 = −u1 sinx5 + ǫu2 cosx5

ẋ3 = x4

ẋ4 = −g + u1 cosx5 + ǫu2 sinx5

ẋ5 = x6

ẋ6 = µu2

y = h(x) = col (x1, x3),

(1)
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where (x1, x3) are the coordinates of the centre of mass of the aircraft in the vertical plane, x5 is the roll angle, and
(x2, x4, x6) are the corresponding velocities. The constants ǫ and µ are positive, and g denotes the acceleration due
to gravity. The state space of the PVTOL is M = R

4 × (R mod 2π)×R. The output of the system is the position of
the aircraft’s centre of mass, (x1, x3). In various computations we will denote by f , g1, and g2 the drift and control
vector fields in (1), so that ẋ = f(x) + g1(x)u1 + g2(x)u2.

The PVTOL control system (1) has become a benchmark for controller design used in unmanned aerial vehi-
cle applications. The bulk of existing research can be partitioned into two main categories: set-point stabiliza-
tion [20], [23], [24], [26], [27] and design of tracking or path following controllers [1], [4], [5], [12], [13], [15], [19]. This
paper falls into the latter category and deals with the path following problem.

It is well-known that when the centre of mass (x1, x3) of the PVTOL is used as an output, the resulting zero dynamics
are non-minimum phase, i.e., they are not asymptotically stable. This fact presents a challenge to controller design. In
particular, if one is not careful in designing a tracking controller, the VTOL will begin to rotate about its longitudinal
axis uncontrollably making several rotations as the vehicle executes the trajectory. In [14], [15] the authors overcome
this problem by using the Huygens centre of oscillation as an alternative output yielding a fully feedback linearizable
system; see also [23]. A nonlinear output regulation approach to tracking was studied in [13]. There, the authors
make the vertical displacement x3 track a sinusoidal signal in the presence of disturbances and unknown model
parameters, while keeping the aircraft perfectly horizontal, and with no lateral movement. In this special case, the
tracking problem is greatly simplified, as it is only during lateral movements that the coupling between lateral and
vertical thrusts becomes problematic.

The fact that PVTOL has non-minimum phase zero dynamics associated with its centre of mass suggests that path
following controllers may be more appropriate than tracking controllers. In a tracking control approach, the path to
be followed is parameterized by time, and the parametrization becomes the reference signal. Tracking such a time
parametrization is not always suitable for the PVTOL: moving along the path too quickly can lead to the undesirable
rotations mentioned earlier. In contrast to tracking controllers, path following controllers do not rely on an a priori
parameterization of the curve to be followed and have the potential to overcome the performance limitations inherent
with tracking controllers.

In [1], the authors use non-causal system inversion to design a tracking controller and then convert it to a path
following controller by means of a popular projection technique introduced in [9]. The authors demonstrate their
ideas on a circular path. In [4], it is shown that there exists a constant κ such that for every C2 closed curve γ(t)
with ‖γ̈‖∞ ≤ κ, it is possible to find suitable initial conditions for the roll angle and velocity such that the centre of
mass exactly tracks γ and the aircraft does not overturn. The authors show that any C2 closed curve can be exactly
tracked with bounded roll angle variation, provided the curve is reparameterized in such a way that the reference
point moves sufficiently slowly along the curve. The same problem is investigated in [19]. There, the authors define
a desired (“quasi-static”) trajectory for the roll dynamics and formulate a nonlinear optimal control problem whose
solution yields a feasible trajectory that approximates the quasi-static one and has bounded roll angle variations.

The three approaches reviewed above do not produce controllers in closed form, because they rely on iterative
algorithms to compute feasible trajectories. In this paper, we design a closed-form path following controller driving
the centre of mass of the PVTOL to a curve and making it traverse the curve in a desired direction. Our approach
applies to a large class of smooth Jordan curves with a vertical axis of symmetry. The assumptions on the path
geometry are described in detail in Section 2.

We take a nested set stabilization approach to solve the problem. We first stabilize a four-dimensional submanifold
of the state space, Γ⋆

1, on which the centre of mass of the PVTOL is constrained to lie on the path. We further
stabilize a two dimensional submanifold Γ⋆

2 ⊂ Γ⋆
1 that corresponds to a “virtual constraint” specifying what should

be the roll angle of the PVTOL at any given point on the path. The proposed solution to the path following problem
is local in the sense that the controller is guaranteed to work for all initial conditions in a neighborhood of Γ⋆

2. In
particular, the centre of mass of the PVTOL can be initialized in a neighborhood of the path.

With the proposed controller, the PVTOL enjoys the feature of output invariance of the path, by which we mean that
if the PVTOL’s centre of mass starts on the path with initial velocity tangent to it, then it will remain on the path
for all future time. This is desirable because once the aircraft is on the path with the correct velocity vector, the path
is followed exactly, which is essential to avoid collisions with the ground. Our design also guarantees boundedness
of the roll dynamics of the PVTOL and that, after a finite time, the time average of the roll angle is zero, and the
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PVTOL does not perform multiple revolutions about its longitudinal axis. A feature of our approach, as apposed
to exact tracking approaches in the literature (including [4] and [19]), is that it doesn’t require any upper bound on
the speed with which the PVTOL traverses the path.

Interestingly, when the path to be followed is a circle, the problem of making the PVTOL travel around the circle
while not performing full rotations about its longitudinal axis is equivalent to controlling the pendubot system and
ensuring that the outer link does not make full rotations about its pivot point, while the inner link rotates. In [6],
the authors use virtual constraints to design controllers that achieve two types of periodic motions of the outer link
in the pendubot. The periodic motion of the outer link is determined by the choice of virtual constraint. Thus, our
control approach is philosophically similar to that in [6], although the choice of virtual constraint and the analysis
are entirely different.

Notation. If N is a positive real number, [·]N : R → R modN is the function mapping real numbers to their
value modulo N , so for instance [7π/2]2π = 3π/2. Two points x and x + N are mapped by [·]N to the same
point in R modN in the same way that two points with angles θ and θ + 2π are identified on the unit circle.
Therefore, the set R modN can be given the geometric structure of a circle. In the following, we will consider a
curve of length L, and will denote S1 := R modL. Given vectors x, y ∈ R

n, we will denote by 〈x, y〉 the Euclidean
inner product and by ‖x‖ the associated Euclidean norm. Given a set A ⊂ R

n, and a point x ∈ R
n, we let

‖x‖A := infa∈A ‖x− a‖. We let col(x1, . . . , xk) = [x1 · · · xk]⊤. Given a function σ : A→ B, we let Im(σ) denote
its image, i.e., Im(σ) = {y ∈ B : y = σ(x), for some x ∈ A}. If f(x1, . . . , xn) is a differentiable function, we denote
by ∂xi

f its partial derivative with respect to xi.

If M and N are two smooth manifolds and F : M → N is a map, we denote by dFp the differential of F at p ∈M .
If M and N are open subsets of Euclidean spaces R

m and R
n, respectively, then dFp is the familiar derivative of

F at p, whose matrix representation is the n×m Jacobian of F . In this case, we will not distinguish, notationally,
between the map dFp and its matrix representation. In particular, if λ : R

n → R is a real-valued function then,
depending on the context, dλx may represent the differential map R

n → R or the row vector [∂x1λ · · · ∂xn
λ]. On

the other hand, we will denote by ∇xλ the column vector dλ⊤x . Given a vector field f , the directional derivative of λ
along f , denoted by Lfλ, is given by Lfλ(x) = 〈dλx, f(x)〉. If φ : D → M is a smooth map between manifolds, with
either D = R or D = R modN , and d/dθ is the tangent vector to D at θ, we will denote by φ′(θ) := dφθ(d/dθ) the
tangent vector at φ(θ), which we identify with a vector in R

m, where m = dimM , so that the function θ 7→ φ′(θ)
maps D → R

m. Then, the second derivative φ′′(θ) is also a function D → R
m.

Organization of the paper. In Section 2 we present the class of curves, the path following problem, and we outline
the steps we take to solve it. The steps are elaborated in detail in Section 3. The complete path following controller
and the main stability result are presented in Section 4. In Section 5 we present various examples and discuss how
to implement our controller in the two cases when curves are represented parametrically or in implicit form.

2 Path following problem

Consider a regular Jordan curve (i.e., a regular simple closed curve) C of length L in the y plane with smooth param-
eterization σ̃(·) : R → R

2, Im(σ̃) = C. Assume, without loss of generality, that σ̃ is a unit speed parameterization,
i.e., ‖σ̃′(·)‖ ≡ 1. With this assumption, the map σ̃ is L-periodic. Being a Jordan curve in R

2, C can also be expressed
in implicit form as

C = {y ∈W : γ(y) = 0},

where γ : W ⊂ R
2 → R is a smooth function such that dγy 6= 0 on W , and W is an open set containing C. In

Section 5.2 we illustrate one way to determine γ from a parametrization of C. Without loss of generality, we will
assume that ‖dγy‖ = 1 for all y ∈ C (for, if that isn’t the case, we may replace γ(y) by γ(y)/‖dγy‖, whose differential
has unit norm on C).

Being Jordan and smooth, the curve C is diffeomorphic to the set S1 := R modL, and the diffeomorphism between
the two sets is produced as follows. Since σ̃ is L-periodic, any two points t and t + L in the domain of σ̃ can
be identified. We define a map σ : S1 → R

2 through the identity σ([t]L) = σ̃(t) for all t ∈ R. Now σ maps S1

diffeomorphically onto C, and it has the same properties of σ̃: Im(σ) = C, ‖σ′(·)‖ ≡ 1. Let ϕ(θ) : S1 → R mod2π
be the map associating to each θ the angle of the tangent vector σ′(θ) to C at σ(θ). Then, the derivative ϕ′ is the
signed curvature of C. Throughout this paper, we restrict the geometry of C by means of the next assumption.

Assumption 1 (Curve geometry).
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σ(θ0)

σ(θ0 + L/2)

ϕ(θ0 + θ)

ϕ(θ0 − θ)

Fig. 1. An illustration of Assumption 1(i).

(i) There exists θ0 ∈ S1 such that
ϕ(θ0 + θ) = −ϕ(θ0 − θ), for all θ ∈ S1. (2)

(ii) The curvature satisfies the inequality

|ϕ′(θ)| <

√

(

2π

L

)2

+
(µ

ǫ

)2

for all θ ∈ S1. (3)

Note that the identity in (2) holds modulo 2π. Assumption 1(i) implies that ϕ(θ0) = [0]2π and that

σ1(θ0 + θ) − σ1(θ0) = − (σ1(θ0 − θ) − σ1(θ0))

σ2(θ0 + θ) − σ2(θ0) = σ1(θ0 − θ) − σ1(θ0),

where σ1 and σ2 are the components of the map σ. Therefore, part (i) requires C to have a vertical symmetry axis
passing through the point σ(θ0). In particular, then, ϕ(θ0 + L/2) = [π]2π . See Figure 1.

Remark 2.1. In the special case when C is a circle of length L, radius L/(2π), and unit speed parameterization

σ(θ) =
L

2π
col

(

cos

(

2π

L
θ

)

, sin

(

2π

L
θ

))

,

the assumption is satisfied with θ0 = [−L/4]L. We verify this claim by computing the tangent vector to the circle at a
point σ(θ), σ′(θ) = (− sin(2πθ/L), cos(2πθ/L)) and its angle, ϕ(θ) = [(2π/L)θ+π/2]2π. Now note that ϕ([−L/4]L) =
[0]2π, and ϕ′(θ) = 2π/L, which clearly satisfies identity (2) and bound (3). We will return to the circle at various
times in the paper to illustrate our solution.

As seen above, the curvature of a circle of length L is 2π/L. Thus, part (ii) of the assumption requires that the
maximum curvature of C be not too much higher than that of a circle of the same length. In intuitive terms, the
assumption limits the amount of deformation that one must apply to a circle in order to obtain C. The higher the
ratio µ/ǫ is, the more the maximum curvature of C can deviate from that of a circle of the same length, and hence
the more deformation one may apply to the circle to obtain C.

Path Following Problem (PFP): Given a Jordan curve σ : S1 → R
2, with Im(σ) = C, satisfying Assumption 1,

find a continuous feedback u(x) = col(u1(x), u2(x)) : M → R
2 and an open set of initial conditions U ⊂ M such

that C ⊂ h(U), and the closed-loop system meets the following goals:

G1 For each initial condition in U , at least one solution x(t) to (1) exists for all t ≥ 0 and all solutions are such that
‖h(x(t))‖C → 0 in finite time.

G2 The set C is output invariant for the closed-loop system. In other words, if the centre of mass (x1, x3) is initialized
on C, and if the velocity vector (x2, x4) is initialized tangent to C, then all solutions of the closed-loop system give
output signals y(t) ∈ C for all t ≥ 0.

G3 For each initial condition in U , there exists a time T1 > 0 such that after time T1, all output signals y(t) trace the
entire curve C, i.e., Im(y([T1,+∞))) = C, in a desired direction and the speed ‖ẏ(t)‖ is bounded away from zero.
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G4 For each initial condition in U , there exists a time T2 > T1 after which the roll angle oscillates around its zero
value, and its time average is zero. In other words, the aircraft does not undergo multiple revolutions about its
longitudinal axis and, on average, its wings are parallel to the ground.

The reason for allowing continuous feedback, and therefore non-unique solutions, is that, in solving PFP, we will
utilize the finite-time stabilization theory of [2], [3]. As mentioned in the introduction, goal G2 is a crucial feature that
distinguishes our control strategy from other path following control approaches in the literature and has considerable
practical value. To illustrate its importance, suppose that a sudden disturbance slows down the PVTOL or even
stops its motion without making its centre of mass abandon C. If goal G2 is met, then as soon as the disturbance
vanishes, the PVTOL resumes its normal operation without leaving C. On the other hand, a controller not meeting
goal G2 may have the undesirable property of making the PVTOL leave C.

Our approach to solving PFP is summarized in the following steps.

(1) We find the four-dimensional path following submanifold Γ⋆
1 associated with C (see [16], [17]), i.e., the maximal

controlled invariant subset of h−1(C). Physically, the set Γ⋆
1 is the collection of all those motions of the PVTOL

system (1) whose associated output signal can be made to lie in C at all times by a suitable choice of input
signal.

(2) We decompose system (1) into subsystems tangential and transversal to Γ⋆
1, with the property that the transver-

sal subsystem is linear time invariant (LTI). The tangential and transversal subsystems are driven by tangential
and transversal control inputs, v‖ and v⋔, respectively.

(3) Using the theory of [2], we design the transversal controller v⋔ to finite-time stabilize the origin of the transversal
subsystem. This controller meets goals G1 and G2.

(4) We find a two-dimensional controlled invariant submanifold Γ⋆
2 ⊂ Γ⋆

1, henceforth called the roll dynamics
manifold, on which the roll dynamics (subsystem with state (x5, x6)) meet goal G4. More precisely, for all
initial conditions on Γ⋆

2, the resulting roll angle, x5(t), is a periodic function with zero mean and its total
variation is bounded. On Γ⋆

2, the PVTOL is subject to a virtual constraint: its centre of mass lies on C, and its
roll angle is entirely determined by the position of the PVTOL on C.

(5) We design the tangential controller v‖ to finite-time stabilize the roll dynamics submanifold Γ⋆
2.

(6) We show that the two-dimensional dynamics on Γ⋆
2 are Hamiltonian with energy H = T + V given by kinetic

plus potential energy. Using this fact, we are able to completely characterize the motion on Γ⋆
2. In particular,

we show that there exist two open subsets of Γ⋆
2 corresponding to clockwise and counterclockwise motion of the

PVTOL on the curve C, thus satisfying goal G3.

3 Solution of PFP

In this section we carry out in detail each point of the program outline above.

3.1 Step 1: Finding the path following manifold

In general, the path following manifold Γ⋆
1 associated with the curve C (see [16], [17]) is defined to be the maximal

controlled invariant submanifold (if it exists) contained in h−1(C) = {x ∈M : γ(col(x1, x3)) = 0}. As such, Γ⋆
1 is the

collection of all possible motions generated by the control system with the property that their associated outputs lie
in C at all times. Equivalently, Γ⋆

1 is the zero dynamics manifold of (1) with output function h̃(x) := γ(col(x1, x3)).

In order to characterize Γ⋆
1 for the problem at hand, it suffices to notice that h̃ yields a well-defined relative degree

2 everywhere on h−1(C), since Lgi
h̃(x) = 0, for i = 1, 2 and for all x ∈M , and

[Lg1Lf h̃ Lg2Lf h̃] = dγ(x1,x3)

[

− sinx5 ǫ cosx5

cosx5 ǫ sinx5

]

has full rank 1 for all x in h−1(W ). Therefore, the path following submanifold of (1) associated with C is the
four-dimensional submanifold

Γ⋆
1 := {x ∈M : h̃(x) = 0, Lf h̃ = 0}

= {x : γ(col(x1, x3)) = 0, (∂x1γ)x2 + (∂x3γ)x4 = 0}. (4)
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Remark 3.1. When C is a circle of length L centred at the origin, the path following manifold can be expressed as

Γ⋆
1 =
{

x ∈M :
π

L

(

x2
1 + x2

3

)

−
L

4π
= 0,

2π

L
(x1x2 + x3x4) = 0

}

.

3.2 Step 2: Decomposition into transversal and tangential subsystems

We have established that Γ⋆
1 is the zero dynamics manifold associated with the output function h̃, and that h̃ yields

relative degree 2. Now we perform input-output feedback linearization in a neighborhood of Γ⋆
1. To this end, define

the partial coordinate transformation

ξ1 = h̃(x) = γ(col(x1, x3))

ξ2 = Lf h̃(x) = dγcol(x1,x3)(col(x2, x4)).

Roughly speaking, ξ1 is a measure of the distance of the point (x1, x3) to the curve C, while ξ2 is a measure of the
velocity of (x1(t), x3(t)) relative to C. Together, (ξ1, ξ2) represent transversal coordinates to Γ⋆

1. We need to find four
functions completing the coordinate transformation. The states x5 and x6 are two obvious choices because they are
functionally independent from ξ1 and ξ2. If, given y ∈ R

2, we define

π(y) := arg min
θ∈S1

‖y − σ(θ)‖,

then θ = π(y) is such that the point σ(θ) is the orthogonal projection of y onto C. Such a projection is unique in
a neighborhood of C, and in fact the tubular neighborhood theorem (see [8]) implies that there exists a sufficiently
small constant ε > 0 such that, letting Cε := {y ∈ R

2 : ‖y‖C < ε}, the map π : Cǫ → S1 defined above is smooth and,
for all y ∈ Cε, dπy 6= 0. The orthogonal projection map π(y) and its time derivative are the two remaining functions
we were looking for. In order to prove this claim, we need the following.

Lemma 3.2. For each y ∈ C, the matrix

D(y) :=

[

dπy

dγy

]

=

[

∂y1π ∂y2π

∂y1γ ∂y2γ

]

(5)

is orthogonal.

Proof. To begin with, by the definition of π, for any θ ∈ S1 and any y ∈ π−1(θ), we have 〈y − σ(θ), σ′(θ)〉 = 0.
Therefore, recalling that σ′(θ) is the tangent vector to C at σ(θ), the set {y ∈ Cε : π(y) = θ} is a straight line
segment through σ(θ), perpendicular to C. Hence, the normal vector to this segment at σ(θ), (dπσ(θ))

⊤, is tangent

to C, so (dπσ(θ))
⊤ = k σ′(θ), for some k ∈ R. To find k, we differentiate the identity π(σ(θ)) = θ with respect to θ,

to obtain dπσ(θ)(σ
′(θ)) = 1, so that k = 1 and (dπσ(θ))

⊤ = σ′(θ). Since σ(θ) has unit norm, so does dπσ(θ). On the
other hand, differentiating the identity γ ◦ σ(θ) ≡ 0 with respect to θ we obtain dγσ(θ)(σ

′(θ)) = 0, and so the vector

(dγσ(θ))
⊤ is perpendicular to C at σ(θ). Moreover, by assumption this vector has unit norm. In conclusion, for each

y ∈ C, the vectors dπy and dγy have unit norm and are perpendicular to each other.

Lemma 3.3. The coordinate transformation

T : x 7→ (η1, η2, η3, η4, ξ1, ξ2) ∈ (R mod 2π) × R × S1 × R
3
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defined as
























η1

η2

η3

η4

ξ1

ξ2

























:=

























x5

x6

π(col(x1, x3))

dπcol(x1,x3)(col(x2, x4))

γ(col(x1, x3))

dγcol(x1,x3)(col(x2, x4))

























, (6)

is a diffeomorphism of a neighborhood V of Γ⋆
1 onto its image.

Proof. According to the generalized inverse function theorem (see [8, p.56]), it suffices to show that

(i) for all x ∈ Γ⋆
1, dTx is an isomorphism, and

(ii) T |Γ⋆
1

: Γ⋆
1 → T (Γ⋆

1) is a diffeomorphism.

For each x ∈ Γ⋆
1, dTx has the matrix representation,

























0 0 0 0 1 0

0 0 0 0 0 1

∂x1π 0 ∂x3π 0 0 0

⋆ ∂x1π ⋆ ∂x3π 0 0

∂x1γ 0 ∂x3γ 0 0 0

⋆ ∂x1γ ⋆ ∂x3γ 0 0

























,

where stars denote don’t care elements. By Lemma 3.2, the matrix above is nonsingular, and so dTx is an isomorphism
on Γ⋆

1. To show that property (ii) holds, note that π|Γ⋆
1

= σ−1, and consider the restriction of T to Γ⋆
1,

T |Γ⋆
1
(x) =

























x5

x6

σ−1(col(x1, x3))

dπcol(x1,x3)(col(x2, x4))

0

0

























.

The map above is smooth and injective. Its inverse is given by the relationships col(x1, x3) = σ(η3), col(x2, x4) =
D−1(σ(η3)) ·col(η4, 0), and col(x5, x6) = col(η1, η2), where D(·) is defined in (5), and is clearly smooth, proving that
T |Γ⋆

1
is a diffeomorphism onto its image.

Example 3.4. Let C be a circle or radius L centred at the origin. Then, π(y) = L
2π

arg(y1 + i y2). This function is

smooth everywhere except at the origin. Next, we pick γ(y) to be γ(y) = (π/L)(y2
1 + y2

2) − L/(4π) so that, on C,
‖dγy‖ = 1. On C, D is given by

D(y) =
2π

L

[

− y2 y1

y1 y2

]

,

and since y2
1 + y2

2 = (L/(2π))2, we have that D is orthogonal, as predicted by Lemma 3.2. The coordinate transfor-
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mation of Lemma 3.3 reads as
























η1

η2

η3

η4

ξ1

ξ2

























=



























x5

x6

L
2π

arg (x1 + ix3)

L

2π(x2
1+x2

3)
(x1x4 − x2x3)

π
L

(

x2
1 + x2

3

)

− L
4π

2π
L

(x1x2 + x3x4)



























,

and the domain of the transformation is M − {x : x1 = x3 = 0}.

We now return to the general situation and apply the coordinate transformation (6) to (1) to get

η̇1 = η2
η̇2 = µu2

η̇3 = η4

η̇4 = ḋπ col(x2, x4) − g ∂x3π + dπcol(x1,x3)R(x5)

[

u1

u2

]

ξ̇1 = ξ2

ξ̇2 = ḋγ col(x2, x4) − g ∂x3γ + dγcol(x1,x3)R(x5)

[

u1

u2

]

,

where ḋπ and ḋγ are the time derivatives of the row vectors dπcol(x1,x3) and dγcol(x1,x3) along the vector field f , and

R(x5) =

[

− sinx5 ǫ cosx5

cosx5 ǫ sinx5

]

.

Since dπcol(x1,x3) and dγcol(x1,x3) are linearly independent on Γ⋆
1, they remain so in a neighborhood of Γ⋆

1, without
loss of generality on V . Consider the regular feedback transformation on V ,

[

u1

u2

]

:= R−1(x5)D
−1(col(x1, x3))

(

−

[

ḋπ

ḋγ

]

col(x2, x4)

+ g

[

∂x3π

∂x3γ

]

+

[

v‖

v⋔

])

,

(7)

where v‖ and v⋔ are new control inputs. The PVTOL after coordinate and feedback transformation reads as

η̇1 = η2

η̇2 = µu2(η1, η3, ξ1, v
‖, v⋔)

η̇3 = η4

η̇4 = v‖

ξ̇1 = ξ2

ξ̇2 = v⋔.

(8)

In (η, ξ) coordinates, the path following manifold is given by T (Γ⋆
1) = {(η, ξ) : ξ = 0}. Therefore, the ξ subsystem

describes the dynamics of the PVTOL transversal to Γ⋆
1, and for this reason it is called the transversal subsystem,

driven by the transversal input v⋔. On the other hand, the restriction of the η subsystem to T (Γ⋆
1) when v⋔ = 0

represents the dynamics of the PVTOL on Γ⋆
1, and is therefore referred to as the tangential subsystem, driven by the
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tangential input v‖. The decomposition of the PVTOL model into subsystems tangential and transversal to Γ⋆
1 and of

the controls into tangential and transversal components is referred to as transverse feedback linearization [16], [18].

3.3 Step 3: Transversal control design

Since the transversal subsystem in (8) is a double integrator, we could stabilize it using a simple linear feedback
v⋔(ξ) = Kξ. However, in order to simplify the stability analysis that follows, it is convenient to stabilize ξ = 0
in finite time. Following the work in [2], [3], we define a controller v⋔(ξ) guaranteeing that trajectories of the ξ
subsystem are stable and converge to zero in a finite time which is uniform over compact sets of initial conditions so
that, in x coordinates, Γ⋆

1 is locally stabilized in finite time, meeting goals G1 and G2. The controller in question
is given by

v⋔(ξ) = −
1

k1

(

sgn (k1ξ2)|k1ξ2|
1
2 + sgn (φ(ξ))|φ(ξ)|

1
3

)

, (9)

where k1 > 0 is a design parameter, and

φ(ξ) := k1ξ1 +
2

3
sgn (k1ξ2)|k1ξ2|

3
2 .

A control law analogous to v⋔(ξ) is used in [21] and is based on the controllers introduced in [2]. The control law (9)
globally asymptotically stabilizes ξ. Furthermore, there exists a continuous function Tξ(ζ, k1), [0,+∞)× [0,+∞) →
[0,+∞), with the following properties:

(i) For all ‖ξ(0)‖ < ζ, ξ(t) = 0 for all t ≥ Tξ(ζ, k1).
(ii) Tξ(ζ, k1) → 0 as k1 → 0+, and Tξ(0, k1) = 0.

The existence and properties of Tξ follow from the proof of Proposition 1 in [2], and utilizes [3, Theorem 4.2].

3.4 Step 4: Finding the roll dynamics submanifold

In this section we consider the motion of the PVTOL on the path following manifold Γ⋆
1. In light of the results of

the previous section, for all t greater than Tξ(‖ξ(0)‖, k1), we have ξ(t) = 0 and therefore also v⋔(t) = 0. Therefore,
the motion on the path following manifold Γ⋆

1 is determined by setting ξ = 0 and v⋔ = 0 in (8).

Lemma 3.5. The tangential subsystem on Γ⋆
1, obtained from (8) by setting ξ = 0 and v⋔ = 0, is given by

η̇1 = η2

η̇2 =
µ

ǫ
(g sin η1 + sin(η1 − ϕ(η3))ϕ

′(η3)η
2
4

+ cos(η1 − ϕ(η3))v
‖)

η̇3 = η4

η̇4 = v‖.

(10)

Proof. On Γ⋆
1, and setting v⋔ = 0, the matrix D is orthogonal and the control u2 in the feedback transformation (7)

is given by

u2 =
1

ǫ
[cos η1 sin η1][∇π ∇γ]

(

−

[

ḋπ

ḋγ

]

col(x2, x4)

+ g

[

∂x3π

∂x3γ

]

+

[

v‖

0

])

.

Recall that dπcol(x1,x3) and dγcol(x1,x3) are two orthonormal vectors. Moreover, we have shown in the proof of

Lemma 3.2 that (dπσ(θ))
⊤ = σ′(θ), and so in η coordinates, when ξ = 0, we have dπcol(x1,x3) = [cosϕ(η3) sinϕ(η3)],

dγcol(x1,x3) = [sinϕ(η3) − cosϕ(η3)], and ḋπ = ϕ′(η3)η4 [− sinϕ(η3) cosϕ(η3)], ḋγ = ϕ′(η3)η4 [cosϕ(η3) sinϕ(η3)].

Finally, on Γ⋆
1 we have col(x2, x4) = D(σ(η3))

−1 col(η4, 0) = η4∇π = η4 col(cosϕ(η3), sinϕ(η3)). Using the identities
above in the expression for u2, we obtain the differential equation (10).

9



Next, in order meet goal G4, we will impose a “virtual constraint” for the roll angle η1, η1 = f(η3), where f : S1 →
R mod 2π is a function to be determined to fulfill the two objectives:

(i) f is a well-defined smooth function S1 → R mod 2π. In other words, there exists an L-periodic smooth function

f̃ : R → R mod2π such that f([x]L) = f̃(x) for all x ∈ R;
(ii) f is odd with respect to θ0, i.e., f(θ0 + η3) = −f(θ0 − η3) for all η3 ∈ S1.

The constraint η1 = f(η3) will identify a submanifold Γ⋆
2 ⊂ Γ⋆

1. We will show in Section 3.6 that meeting objective (ii)
above guarantees that each solution (η3(t), η4(t)) on Γ⋆

2 is such that the signal η1(t) = f(η3(t)) oscillates around
η1 = 0 and has time average zero, as required by goal G4.

The design of the virtual constraint f is key to our path following solution. The use of virtual holonomic constraints
for control design in Euler-Lagrange systems underactuated by one control was investigated in [25]. The work in [7]
is also related to our approach because there the authors design an output function to ensure that the resulting
zero-dynamics are orbitally stable.

In order for η1 = f(η3) to be a feasible constraint for (10), we need

η̇1 = η2 = f ′(η3)η4

η̈1 = η̇2 = f ′′(η3)η
2
4 + f ′(η3)v

‖.

Thus, if
µ

ǫ

(

g sin η1 + sin(η1 − ϕ)ϕ′η2
4 + cos(η1 − ϕ)v‖

)
∣

∣

∣

η1=f(η3)

= f ′′(η3)η
2
4 + f ′(η3)v

‖,

then the two-dimensional submanifold

T (Γ⋆
2) := {(η, ξ) : η1 = f(η3), η2 = f ′(η3)η4, ξ = 0} (11)

is controlled invariant. Solving the above equation for v‖, we obtain

v‖ =
µ/ǫ

f ′(η3) −
µ
ǫ

cos(f(η3) − ϕ(η3))

(

g sin f(η3)

+ [sin(f(η3) − ϕ(η3))ϕ
′(η3) −

ǫ

µ
f ′′(η3)]η

2
4

)

.

(12)

The feedback v‖ is smooth if its denominator is bounded away from zero. If there exists a function f satisfying
properties (i) and (ii) above, and such that, for all η3 ∈ S1, f ′(η3) − µ

ǫ
cos(f(η3) − ϕ(η3)) 6= 0, then on the

corresponding controlled invariant set Γ⋆
2 defined by (11), the system meets goal G4. Note that there may be many

choices of f yielding the desired result. We find one such function by imposing that

f ′(η3) =
µ

ǫ
cos(f(η3) − ϕ(η3)) + ϕ′(η3) − δ0, (13)

where δ0 is a positive constant yet to be specified such that the denominator of (12) is bounded away from zero on
Γ⋆

2, i.e., |ϕ′(η3) − δ0| > 0 for all η3 ∈ S1. Letting λ := f − ϕ, the above equation becomes

λ′ =
µ

ǫ
cosλ− δ0,

where prime indicates differentiation with respect to η3. The above is a first-order ODE on S1 which we now explicitly
solve. We begin by assuming that λ is a real variable, in which case the solutions are

λ(x) = −
π

2
+ 2 arctan

(

1

δ 0

(

α tan
(α

2
(K − x)

)

+
µ

ǫ

)

)

,
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where α =

√

δ20 −
(

µ
ǫ

)2
and K is the integration constant. Notice λ(x) has 2π jumps whenever the argument of

tan(·) is ±π/2, but [λ(x)]2π is a smooth function. Next, in order to guarantee that [λ(x)]2π is L-periodic, we impose
that α/2 = π/L, or

δ0 =

√

(

2π

L

)2

+
(µ

ǫ

)2

. (14)

With this choice of δ0, the function f̃(x) :=
[

ϕ([x]L) + λ(x)
]

2π
is L-periodic because it is the sum of two L-periodic

functions. The periodicity of f̃ allows us to define f(η3) by replacing the argument x by η3 in f̃ ,

f(η3) = [ϕ(η3) + λ(η3)]2π =

[

ϕ(η3) −
π

2

+ 2 arctan

(

1

δ 0

(

2π

L
tan

(π

L
(K − η3)

)

+
µ

ǫ

))

]

2π

,

(15)

so that f̃(x) = f([x]L) for all x ∈ R (property (i)). The function f(η3) is smooth, well-defined on S1, and satisfies (13).
Moreover, by inequality (3) in Assumption 1, the choice of δ0 above yields |ϕ′(η3) − δ0| > 0 for all η3 ∈ S1, and so
the feedback v‖ in (12) is smooth. Next, we choose the integration constant K in λ(x) to ensure that f is odd with
respect to θ0 (property (ii)), which occurs when f ′ is even with respect to θ0 and f(θ0) = 0. Letting

η̄3(K) := K −
L

π
arctan

(

Lδ0
2π

−
µL

2πǫ

)

,

we have λ(η̄3(K)) = 0 and it is not hard to see that cosλ(η3) is an even function with respect to η̄3, i.e., cos[λ(η̄3(K)+
η3)] = cos[λ(η̄3(K) − η3)]. By Assumption 1, ϕ′ is an even function with respect to θ0. We choose K so that
η̄3(K) = θ0, i.e.,

K =
L

π
arctan

(

Lδ0
2π

−
µL

2πǫ

)

+ θ0, (16)

so that cosλ(η3) is now even with respect to θ0. With this choice, from (13) we conclude that f ′(η3) is even with
respect to θ0. Since

f(θ0) =
[

ϕ(θ0) + λ(θ0)
]

2π
=
[

ϕ(θ0) + λ(η̄3(K))
]

2π
= [0]2π

and f ′ is even, we have that f(η3) is odd with respect to θ0, i.e.,

f(θ0 + η3) = −f(θ0 − η3), (17)

as required.

To summarize, picking K as in (16), the function f : S1 → R mod 2π given by (15), with δ0 defined in (14), is
smooth, L-periodic, and is odd with respect to θ0. Moreover, the feedback v‖ in (12) is smooth and renders the
submanifold Γ⋆

2 ⊂ Γ⋆
1 defined in (11) invariant. We call this submanifold the roll dynamics manifold. From a physical

point of view, when the state of the PVTOL is on Γ⋆
2, the roll angle x5 (equal to η1) is completely determined by

the position π(y) (equal to η3) of the aircraft on C by means of the virtual constraint η1 = f(η3). Hence, no matter
what the dynamics of the aircraft’s centre of mass on C are, the roll angle does not perform multiple revolutions
about its longitudinal axis.

Remark 3.6. If C is a circle of length L with counterclockwise orientation then, as seen earlier, ϕ(θ) =
[

2π
L
θ+ π

2

]

2π

and θ0 = [−L/4]L. Figure 2 illustrates the configuration of the PVTOL on the roll dynamics manifold when µ/ǫ = 1
and the circle has radius 1. The property of f being odd with respect to θ0 is reflected in the symmetry of the
configuration with respect to the vertical axis passing through the centre of the circle.

3.5 Step 5: Tangential control design

Having identified a submanifold Γ⋆
2 ⊂ Γ⋆

1 on which the roll angle of the PVTOL exhibits desired properties, we use
the tangential input v‖ in (10) to stabilize Γ⋆

2. Define error variables e1 = η1 − f(η3), e2 = η2 − f ′(η3)η4. On Γ⋆
1,

11



−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x1

x3

Fig. 2. Configuration of the PVTOL on the roll dynamics manifold, i.e., when η1 = f(η3) and ξ = 0, for the case when C
is the unit circle. Note the symmetry of the configuration with respect to the vertical axis passing through the centre of the
circle.

stabilizing Γ⋆
2 is equivalent to stabilizing the origin of the error dynamics

ė1 = e2

ė2 = β(η1, η3, η4) −
(

f ′(η3) −
µ

ǫ
cos(η1 − ϕ(η3))

)

v‖,

where

β =
µ

ǫ

(

g sin η1 + [sin(η1 − ϕ(η3))ϕ
′(η3) −

ǫ

µ
f ′′(η3)]η

2
4

)

. (18)

We pick the tangential controller on Γ⋆
1 to be

v‖(η) =
β(η1, η3, η4) − w(e)

f ′(η3) −
µ
ǫ

cos(η1 − ϕ(η3))
, (19)

where w(e) is a continuous function chosen to finite-time stabilize the rotational (since e1 is a variable in R mod 2π)
double integrator ė1 = e2, ė2 = w(e). The expression for w(e) is a slight modification of the control law originally
introduced in [2], and is given by

w(e) := −
1

k2

(

sgn (k2e2)|k2e2|
1
2

+ k
1
3
2 sgn (sin (ψ(e))) | sin (ψ(e))|

1
3

)

,

(20)

where k2 > 0 is a design parameter and

ψ(e) := e1 +
2

3
k

1
2
2 sgn(e2) |e2|

3
2 .

Remark 3.7. The tangential feedback v‖ in (19) is well-defined on the subset of Γ⋆
1 where the denominator is

bounded away from zero. On Γ⋆
2 ⊂ Γ⋆

1, the denominator in question takes the form f ′(η3)− (µ/ǫ) cos(f(η3)−ϕ(η3))
which, by our choice of f , is equal to ϕ′(η3)−δ0 and is bounded away from zero for all η3. Therefore, the denominator
of (19) is bounded away from zero in a neighborhood of Γ⋆

2 in Γ⋆
1. An estimate of this neighborhood is found by

noting that

f ′(η3) −
µ

ǫ
cos(η1 − ϕ(η3)) = ϕ′(η3) − δ0

+
µ

ǫ
[cos(η1 − ϕ)(cos e1 − 1) + sin(η1 − ϕ) sin e1] ,

and thus the left-hand side is bounded away from zero for all those values of e1 such that (µ/ǫ)(|1−cose1|+| sin e1|) <
minη3∈S1(ϕ′(η3) − δ0). By (3), the right-hand side of this inequality is > 0.
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The equilibrium e = ([0]2π, 0) of the rotational double integrator ė1 = e2, ė2 = w(e) with control law (20) is not
globally finite-time stable 1 , for the continuous control law introduces a saddle point at e = ([π]2π, 0). However, the
equilibrium e = ([0]2π , 0) is almost globally finite-time stable, as for any initial condition on S := R mod 2π×R−{e :
ψ(e) = [π]2π} the solution converges to the equilibrium in question in finite time. Finally, there exists a continuous
“settling time” function Te(ζ, k2), [0,+∞) × [0,+∞) → [0,+∞), with the following properties:

(i) For all e(0) ∈ Γ⋆
2 such that ‖e(0)‖ < ζ, e(t) = 0 for all t ≥ Te(ζ, k2).

(ii) Te(ζ, k2) → 0 as k2 → 0+, and Te(0, k1) = 0.

Remark 3.8. We picked the tangential controller v‖ in (19) to achieve desired properties for the roll dynamics on Γ⋆
1,

namely to finite-time stabilize Γ⋆
2. As a result, the controller is only a function of η. While the transversal controller

guarantees that Γ⋆
1 is reached in finite time, it may be desirable to modify v‖ off of Γ⋆

1 to guarantee boundedness of
the roll dynamics during the finite-time transient. This is certainly possible but we do not explore it in this paper.

3.6 Step 6: Motion on the roll dynamics manifold

So far we picked the transversal controller v⋔(ξ) to locally finite-time stabilize the path following manifold Γ⋆
1 defined

in (4), and the tangential controller v‖(η) to locally finite-time stabilize Γ⋆
2 from within Γ⋆

1. What is left is to do is to
investigate the dynamics of the closed-loop system on the two dimensional submanifold Γ⋆

2. On Γ⋆
2, v

‖ is given by (12).
Substituting that expression in (10) and setting η1 = f(η3), η2 = f ′(η3)η4 we obtain the reduced second-order system
describing the motion on the roll dynamics manifold Γ⋆

2,

η̇3 = η4

η̇4 = φ1(η3) + φ2(η3)η
2
4

(21)

where,

φ1(η3) =
(µ/ǫ)g sin f(η3)

ϕ′(η3) − δ0

φ2(η3) =
(µ/ǫ) sin(f(η3) − ϕ(η3))ϕ

′(η3) − f ′′(η3)

ϕ′(η3) − δ0
.

Physically, the dynamics in (21) describe the evolution of the position and velocity of the PVTOL’s centre of mass
along the curve C. In order to meet goal G3, it is necessary for η3 to traverse the entire S1 (which corresponds to the
PVTOL traversing the entire curve C) in a desired direction while η4 remains bounded. We will show that almost
all phase curves of C can be of three types: equilibria, closed curves corresponding to oscillations (i.e., the PVTOL
oscillates back and forth on a segment of C without traversing the entire C), and closed curves corresponding to
complete rotations around S1. The latter is the type we are interested in, and we’ll precisely characterize the domain
of initial conditions of interest. The crucial realization to understanding the dynamics in (21) is that the system is
Hamiltonian with energy function

H(η3, η4) =
1

2
M(η3)η

2
4 + V (η3),

and canonical coordinates (q, p) = (η3,M(η3)η4). The functions M and V are given by

M(η3) = exp

(

−2

∫ η3

0

φ2(τ)dτ

)

V (η3) = −

∫ η3

0

φ1(µ)M(µ)dµ.

Note that M ′(η3) = −2M(η3)φ2(η3) and V ′(η3) = −M(η3)φ1(η3). Using these identities, it immediately follows that
H is a first integral of (21). Moreover, it is easy to see that in (q, p) coordinates (21) takes on the canonical form of
Hamilton’s equations. However, in order for this discussion to make sense, we need to show that M(η3) and V (η3)

1 This is hardly surprising, as it is well-known that no continuous control law can globally stabilize an equilibrium on the
cylinder.
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are well-defined smooth functions on S1. To this end, define M̃, Ṽ : R → R as

M̃(x) = exp

(

−2

∫ [x]L

0

φ2([τ ]L)dτ

)

Ṽ (x) = −

∫ [x]L

0

φ1([µ]L)M̃(µ)dµ,

and note that, for all x ∈ R, M([x]L) = M̃(x) and V ([x]L) = Ṽ (x).

Lemma 3.9. The functions M̃(x) and Ṽ (x) are smooth and L-periodic. Therefore,M(η3) and V (η3) are well-defined
smooth functions S1 → R.

Proof. We have shown in Section 3.4 that the function x 7→ f([x]L) = f̃(x) is smooth. Since f ′′([x]L) = d2f([x]L)/dx2,
the function x 7→ f ′′([x]L) is smooth as well. The map x 7→ ϕ([x]L) is smooth because ϕ([x]L) is the angle of the
tangent vector σ̃′(x) (σ̃ was defined at the beginning of Section 2), and σ̃′(x) is a smooth function. Analogously,

the function x 7→ ϕ′([x]L) is smooth. Since M̃(x) and Ṽ (x) result from integrating compositions of the functions

above, M̃(x) and Ṽ (x) are smooth as well. Next, we turn our attention to the periodicity of M̃ and Ṽ . Obvi-

ously, the function x 7→ φ2([x]L) is L-periodic. Therefore, the function M̃(x) is L-periodic if and only if φ2([x]L)
has zero mean. To show that φ2([x]L) has zero mean, it suffices to show that it is odd with respect to θ0, which
is true if and only if η3 7→ φ2(η3) is odd with respect to θ0. By assumption, ϕ′(η3) is even with respect to θ0,
and so [ϕ′(η3) − δ0]

−1 is even as well. Therefore, to show that φ2(η3) is odd, it suffices to show that the numer-
ator (µ/ǫ) sin(f(η3) − ϕ(η3))ϕ

′(η3) − f ′′(η3) is odd with respect to θ0. Since f ′(η3) is even, f ′′(η3) is odd. Next,
sin(f(η3) − ϕ(η3)) = sinλ(η3). Recall that, by our choice of K in (16), cosλ(η3) is even with respect to θ0, and so
sinλ(η3) is odd. When this function is multiplied by the even function ϕ′, the result is an odd function with respect

to θ0, and so φ2(η3) is odd, as required. Next, we show that Ṽ is L-periodic. Since φ1([x]L) and M̃(x) are L-periodic,

the function Ṽ (x) is L-periodic if and only if the function x 7→ φ1([x]L)M̃([x]L) has zero mean. Once again, we show

that this is the case by proving that φ1([x]L)M̃([x]L) is odd or, what is the same, that φ1(η3)M(η3) is odd. Since
φ2(η3) is odd, the antiderivative

∫ η3

0 φ2(τ)dτ is even, and hence M(η3) is even as well. We are left to show that φ1

is odd, and this follows from the fact that it is proportional to the ratio of an odd function, sin f(η3), and an even
one, ϕ′(η3) − δ0.

The next result characterizes the equilibria on the roll dynamics manifold, and their stability type.

Lemma 3.10. Consider the dynamics in (21) of the PVTOL on the roll manifold. The equilibria are pairs (η⋆
3 , 0)

given by values of η⋆
3 such that either f(η⋆

3) = [0]2π or f(η⋆
3) = [π]2π. There are at least two equilibria corresponding

to η⋆
3 = θ0, θ0 + L/2. The equilibrium at (θ0 + L/2, 0) is always unstable. If there are only two equilibria, then the

equilibrium at (θ0, 0) is stable.

Proof. The equilibria are pairs (η⋆
3 , 0), where the values of η⋆

3 are the extrema of V (η3). We have V ′(η3) = 0 if and
only if either f(η⋆

3) = [0]2π or [π]2π. It can be shown that f(θ0) = [0]2π and f(θ0 + L/2) = [0]2π and so (21) has at
least two equilibria, (θ0, 0), and (θ0 +L/2, 0). The stability type of each equilibrium (η⋆

3 , 0) is determined by whether
η⋆
3 is a minimum (in which case the equilibrium is stable) or a maximum of V (in which case the equilibrium is

unstable). For any extremum η⋆
3 of V , we have

V ′′(η⋆
3) =

(µ/ǫ)M(η⋆
3)

δ0 − ϕ′(η⋆
3)

cos f(η⋆
3)f ′(η⋆

3).

The functionM(·) is always positive and, by (3), so is the denominator of V ′′. Hence, sgn(V ′′(η⋆
3)) = sgn(cos f(η⋆

3)f ′(η⋆
3)).

Using this fact, relation (13), and the identities ϕ(θ0) = [0]2π, ϕ(θ0 + L/2) = [π]2π , we obtain

sgn (V ′′(θ0 + L/2)) = sgn(f ′(θ0 + L/2))

= sgn(−(µ/ǫ) + ϕ′(θ0 + L/2)− δ0).
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Fig. 3. Three phase curves illustrating Lemma 3.12. The high-energy curves γ1 and γ2 are homeomorphic to circles
{η4 = constant}, while the low-energy curve γ3 is homeomorphic to a circle {(η3 − η̄3)

2 + η2
4 = constant}.

By the curvature bound in Assumption 1, − (µ/ǫ)+ϕ′(θ0 +L/2)− δ0 < −µ/ǫ < 0, implying that V ′′(θ0 +L/2) < 0,
and so the equilibrium (θ0 + L/2, 0) is always unstable. On the other hand, depending on the curvature at θ0, the
equilibrium in (θ0, 0) may or may not be stable. If there are exactly two equilibria, then f has exactly two zeros
at η3 = θ0 + L/2 and η3 = θ0. Using the properties that f is odd with respect to θ0, that f ′(θ0) 6= 0, and that
f ′(θ0 + L/2) > 0, we have f ′(θ0) < 0, and so V ′′(θ0) > 0, proving that the equilibrium at (θ0, 0) is stable.

Remark 3.11. In the case that C is a circle of length L, there are two equilibria at (θ0, 0) = ([−L/4]L, 0) and
(θ0 + L/2, 0) = ([L/4]L, 0). They correspond to the south and north poles of the circle. The south pole is stable,
while the north pole is unstable, so if the PVTOL is initialized on the roll manifold near the south pole of the circle
with slow speed, the aircraft oscillates back and forth around this point while maintaining a bounded roll angle.

Lemma 3.12. Let H := minη3∈S1 V (η3) and H := maxη3∈S1 V (η3). Then, all phase curves of (21) in the set

{(η3, η4) ∈ S1 × R : H(η3, η4) > H} are homeomorphic to circles {(η3, η4) ∈ S1 × R : η4 = constant}. On the other
hand, almost all phase curves in the set {(η3, η4) ∈ S1 × R : H < H(η3, η4) < H} are homeomorphic to circles
{(η3, η4) : (η3 − η̄3)

2 + η2
4 = constant}.

In words, almost all phase curves are closed; high-energy phase curves correspond to complete rotations of η3 around
S1 in either direction, while low-energy ones correspond to oscillations around a point in S1, see Figure 3.

Proof. Each phase curve of (21) lies entirely in a level set of H. We have

H−1(h) = {(η3, η4) : |η4| =
√

[2/M(η3)](h− V (η3))}. (22)

If h > H, H−1(h) is homeomorphic to two disjoint circles {η4 = ±1}. The homeomorphism in question is (η3, η4) 7→

(η3, η4/
√

[2/M(η3)](h− V (η3))}. Since |η4| > 0 on H−1(h), it follows that there are no equilibria on this level set,
and so the level set H−1(h) is composed by exactly two disjoint phase curves with opposite orientation (in Figure 3,
the curves γ1 and γ2).

Now suppose that h ∈ (H,H). Then, the set {η3 : V (η3) = h} is non-empty. By Sard’s theorem [8] the set of
regular values of V (η3) (i.e., values h ∈ Im(V ) such that V ′(η3) 6= 0 for all η3 ∈ V −1(h)) has full measure in Im(V ).
Therefore, for almost all h, V ′ 6= 0 on V −1(h). Assume that h is such a regular value of V . Then, the set V −1(h) is
a zero-dimensional closed embedded submanifold of S1. In other words, the set V −1(h) is given by a finite number
(because S1 is compact) of isolated points. In the proof of Lemma 3.9 we have shown that V ′ is odd, and so V is
an even function. Therefore, the set V −1(h) has an even number of points, 2n of them (n ≥ 1), dividing S1 into 2n
intervals. The sign of h− V (η3) is constant over each interval and alternates among any two adjacent intervals. In
particular, there are n disjoint intervals on S1 on which h−V (η3) ≥ 0, with equality holding only at the boundary of
the intervals. Consider any one such interval [η1

3 , η
2
3 ], with V (η1

3) = V (η2
3) = h, and h− V (η3) > 0 on (η1

3 , η
2
3). Since

V ′ 6= 0 on V −1(h), it must be that V ′(η1
3) < 0 and V ′(η2

3) > 0. In light of (22), the set H−1(h) has n components.
Each of them lies in a band [η1

3 , η
2
3 ] × R. Let C = (η1

3 + η2
3)/2 and R = (η2

3 − η1
3)/2 be the centre and radius of the

interval, and consider the map (η3, η4) 7→ (η̃3, η̃4) defined as

(η3, η4) 7→

(

η3, η4

√

R2 − (η3 − C)2

2
M(η3) (h− V (η3))

)

.
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Fig. 4. Phase portrait of the (η3, η4)-dynamics on the roll dynamics manifold Γ⋆

2 in the case when the path to be followed is
the unit circle. For convenience, the phase portrait is displayed on the plane, but actually the η3 axis wraps around, so that
the points on the lines η3 = π/2 and η3 = −(3/2)π in the figure are identified.

The map above is a homeomorphism on (η1
3 , η

2
3) × R. Actually, it is a homeomorphism on [η1

3 , η
2
3 ] × R. To see this,

it suffices to notice that 2/M(η3) is always positive and the limits

lim
η3→η

1,2
3

R2 − (η3 − C)2

h− V (η3)
=

−2(η1,2
3 − C)

−V ′(η1,2
3 )

are both positive numbers. The image of the component of H−1(h) contained in [η1
3 , η

2
3 ] × R is the circle {(η̃3, η̃4) :

(η̃3 −C)2 + η̃2
4 = R2}. Since V ′ 6= 0 on V −1(h), there are no equilibria in H−1(h), and so each component of H−1(h)

coincides with exactly one phase curve of (21) (in Figure 3, the curve γ3).

Remark 3.13. To better illustrate Lemma 3.12, consider the unit circle (length L = 2π) centred at the origin, and
set µ = ǫ = 1. The level sets of H(η3, η4), forming the phase portrait of the motion on the roll dynamics manifold, are
shown in Figure 4. The level set {H(η3, η4) = H} is displayed with a thick dashed line. If the PVTOL is initialized in
the region enclosed by this curve, then the PVTOL oscillates on the circle around the south pole without completing
the revolution on the circle. On the other hand, if the PVTOL is initialized in the region R+ (resp., R−), then
the PVTOL traverses the entire circle in the counterclockwise (resp., clockwise) direction indefinitely and with
bounded speed. All predictions of Lemma 3.12 are consistent with this phase portrait. Figure 4 also illustrates that
the equilibrium (η3, η4) = ([π/2]2π, 0) is unstable, while the equilibrium ([−π/2]2π, 0) is stable, as predicted by
Lemma 3.10.

Corollary 3.14. Let R+ = {(η3, η4) ∈ S1 × R : H(η3, η4) > H, η4 > 0} and R− = {(η3, η4) ∈ S1 × R : H(η3, η4) >
H, η4 < 0}. Then, for any initial condition in R+ (resp., R−), the PVTOL traverses C in the positive (resp.,
negative) direction with angular velocity |η4(t)| bounded away from zero and bounded from above. Moreover, its roll
angle η1(t) = f(η3(t)) is a periodic function with zero mean, implying that the aircraft does not undergo multiple
revolutions about its longitudinal axis.

Proof. By Lemma 3.12, any initial condition in R
+ (R−) gives rise to a closed orbit (η3(t), η4(t)) with η4(t) > 0

(η4 < 0) corresponding to a complete rotation around C in the positive (negative) direction. Since the orbit is closed,
|η4(t)| is bounded from above. Recall (see property (ii) in Section 3.4) that f(η3) is an odd function. This fact,
together with the property that η3(t) is a periodic signal with Im(η3(t)) = S1, implies that t 7→ f(η3(t)) has zero
mean.
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4 Main result

The overall controller designed in the previous section is

[

u1

u2

]

= R−1(x5)D
−1(col(x1, x3))

(

−

[

ḋπ

ḋγ

]

col(x2, x4) + g

[

∂x3π

∂x3γ

]

+

[

v‖

v⋔

])

,

v⋔(ξ) = −
1

k1

(

sgn (k1ξ2)|k1ξ2|
1
2 + sgn (φ(ξ))|φ(ξ)|

1
3

)

,

v‖(η) =
β(η1, η3, η4) − w(e)

f ′(η3) −
µ
ǫ

cos(η1 − ϕ(η3))
,

φ(ξ) = k1ξ1 +
2

3
sgn (k1ξ2)|k1ξ2|

3
2

β(η1, η3, η4) =
µ

ǫ
(g sin η1 + [sin(η1 − ϕ(η3))ϕ

′(η3))

− f ′′(η3)]η
2
4 ,

w(e) = −
1

k2

(

sgn (k2e2)|k2e2|
1
2

+ k
1
3
2 sgn (sin (ψ(e))) | sin (ψ(e))|

1
3

)

,

ψ(e) = e1 +
2

3
k

1
2
2 sgn(e2) |e2|

3
2 .

(23)

Theorem 4.1. The continuous feedback (23), where (η, ξ) are defined in (6), D is as in (5), f(η3) is as in (15) (with
δ0 as in (14), and K as in (16)), solves PFP.

We stress that our solution to PFP is local, in that the controller (23) is guaranteed to work in a neighborhood of
Γ⋆

2. In particular, the PVTOL’s centre of mass should be initialized in a neighborhood of C.

Proof. The transversal controller meets goal G1 and G2. Suppose we want to solve PFP by following C in the
positive direction. We select an open set U of initial conditions as follows. Fix ε2 > ε1 > 0 and let R+

ε1,ε2
be the

subset of points in R+ whose distance from the boundary of R+ is at least ε1, but no more than ε2. Fix ζ > 0,
and define the bounded sets Uη := {η : (η3, η4) ∈ R+

ε1,ε2
, |e1| = |η1 − f(η3)| < ζ, |e2| = |η2 − f ′(η3)η4| < ζ}

and U ξ = {ξ : ‖ξ‖ < ζ}. Trajectories ξ(t) of the transversal subsystem converge to zero in a finite time which is
uniform over compact sets of initial conditions. Therefore, there exists T1 > 0 such that all trajectories ξ(t) with
‖ξ(0)‖ < ζ converge to zero in less than time T1. If ζ is small, then T1 is small and therefore η(T1) − η(0) is small.
In particular, if η(0) is in Uη, then |e1(T1)| and |e2(T1)| are slightly larger than ζ, but of order ζ. The tangential
controller has the same finite-time convergence properties as the transversal one, so there exists a time T2 > T1 such
that e1(T2) = e2(T2) = 0 for all η(0) ∈ Uη. If ζ is small, then so is T2, and therefore ‖η(T2)− η(0)‖ is small of order
ζ, for all η(0) ∈ Uη. Since (η3(0), η4(0)) is in the interior of R+, with distance at least ε1 from the boundary, one
can pick ζ small enough that (η3(T2), η4(T2)) is still in R+. Then, by Corollary 3.14, for all t ≥ T2, the PVTOL
traverses C in the positive direction with bounded speed, and the roll angle η1(t) is a periodic function with zero
mean. Therefore, goals G3 and G4 are met. In conclusion, the set U of initial conditions is defined as T−1(Uη ×U ξ).
If necessary, it can be made smaller so that U ⊂ V , the domain of definition of T . Note that h(U) contains C because,
in (η, ξ) coordinates, h−1(C) = {ξ1 = 0}.

5 Implementation issues and examples

In this section we discuss implementation details for the feedback controller (23) and present simulation results
for two examples. The control law (23) requires the computation of the coordinate transformation (x1, . . . , x6) 7→
(η1, . . . , η4, ξ1, ξ2) defined in Equation (6). Since η1 = x5 and η2 = x6 in (6), only the computation of the states η3,
η4, ξ1, ξ2 requires further explanation. The definition of these variables relies on
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(i) a unit speed speed parametrization σ̃(t) of C,
(ii) an implicit representation of C, C = {y : γ(y) = 0}, and
(iii) the function π : R

2 → S1 mapping a point (x1, x3) in a neighborhood of C to the arc length θ characterizing
the closest point on C.

In practice, it is often the case that a parametrization of C is available which does not have unit speed, and it may
be impossible to find a unit speed parametrization in closed form. Additionally, while an implicit representation
of a planar Jordan curve is guaranteed to exist, the curve may be provided in parametrized form. In the next two
sections, we discuss how to compute η3, η4, ξ1, and ξ2 from (x1, . . . , x6) in the two cases when C is only given in
parametrized form, but does not have unit speed, and when an implicit representation of C is available (but, again,
the parametrization does not have unit speed).

5.1 Parameterized curves

Suppose the regular Jordan curve C of length L is given as the image of a smooth T -periodic parametrization
σ̂ = col(σ̂1, σ̂2) : R −→ R

2, which does not necessarily have unit speed (and hence T 6= L). We begin with
the computation of η3 = π(x1, x3) = argminθ∈S1 ‖ col(x1, x3) − σ(θ)‖, where σ(θ) is the unknown unit speed
parametrization of C.

(a) Numerically calculate

t⋆ = π̂(x1, x3) :=

[

arg min
t∈[0,T ]

‖ col(x1, x3) − σ̂(t)‖

]

T

. (24)

where T > 0 is the period of σ̂. Analogously to the function π defined in Section 3.2, the function π̂ : R
2 → [0, T ]

is well-defined in a tubular neighbourhood Cε of C. The calculation in (24) is a line search problem which can
be effectively implemented because the derivative of ‖ col(x1, x3) − σ̂(t)‖ with respect to t is available in closed
form.

(b) Numerically compute the integral

g(t) :=

∫ t

0

‖σ̂′(τ)‖dτ. (25)

(c) The state η3 = π(x1, x3) can now be computed as η3 = g ◦ π̂(x1, x3) = g(t⋆).

Next, we turn to the computation of ξ1. Computing ξ1 amounts to finding an implicit representation of C, C = {γ(y) =
0}, from the parametrization σ̂. For any η3 ∈ S1, define τ(η3) := Rπ

2
σ′(η3), where Rπ

2
is the counter-clockwise

rotation by π/2. This way, τ(η3) represents the unit normal vector to C at the point σ(η3), and {σ′(η3), τ(η3)} is the
Frenet-Serret frame for C. Let y = col(x1, x3); since the vector y − σ(η3) is parallel to τ(η3), we can write

y = σ(η3) + τ(η3)ξ1
= σ(π(y)) + τ(π(y))ξ1.

(26)

Solving the above equation for ξ1, we get an implicit representation of C:

ξ1 = 〈τ(π(y)), y − σ(π(y))〉

=

〈

Rπ
2

σ̂′(t⋆)

‖σ̂′(t⋆)‖
, y − σ̂(t⋆)

〉

∣

∣

∣

∣

∣

t⋆=π̂(y)

=
1

‖σ̂′(t⋆)‖

〈

Rπ
2
σ̂′(t⋆), y − σ̂(t⋆)

〉
∣

∣

t⋆=π̂(y)
=: γ(y).

The expression above follows from the fact that σ′(π(y)) = σ̂′(π̂(y))/‖σ̂′(π̂(y))‖ and that σ ◦ π = σ̂ ◦ π̂. To calculate
ξ2 and η4, we take derivatives of (26)

ẏ = σ′(π(y)) 〈dπy, ẏ〉 + τ ′(π(y)) 〈dπy, ẏ〉 ξ1 + τ(π(y))ξ̇1

= σ′(π(y))η4 + τ ′(π(y))η4ξ1 + τ(π(y))ξ2 ,
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(a) The curve C and the configuration of the PVOTL
on the roll dynamics manifold. Notice the symmetry of
the configuration with respect to the vertical axis passing
through the centre of the curve.
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(b) Simulation results of the path following controller us-
ing the numerical procedures presented in Section 5.1.

Fig. 5. Path following for the cubic spline example in Section 5.1.

and note that τ ′(π(y)) = −ϕ′(π(y))σ′(π(y)) where ϕ′(π(y)) is the signed curvature of C at σ(π(y)). It then follows
that

ẏ = σ′(π(y)) (1 − ϕ′(π(y))ξ1) η4 + τ(π(y))ξ2.

The equation above can be solved for (η4, ξ2) on the neighborhood of C, {y ∈ R
2 : |1 − ϕ′(π(y))ξ1| > 0},

η4 =
1

(1 − ϕ′(π(y))ξ1)
〈σ′(π(y)), ẏ〉

ξ2 = 〈τ(π(y)), ẏ〉 .

(27)

In conclusion, η4 and ξ2 are calculated as follows

ϕ′(π(x1, x3)) =
σ̂′

1(t
⋆)σ̂′′

2 (t⋆) − σ̂′′
1 (t⋆)σ̂′

1(t
⋆)

‖σ̂′(t⋆)‖3

∣

∣

∣

∣

∣

t⋆=π̂(x1,x3)

η4 =
1

(1 − ϕ′(π(x1, x3))ξ1)

(σ̂′(t⋆))
⊤

‖σ̂′(t⋆)‖

[

x2

x4

] ∣

∣

∣

∣

∣

t⋆=π̂(x1,x3)

ξ2 =
(σ̂′(t⋆))

⊤

‖σ̂′(t⋆)‖

[

x4

− x2

] ∣

∣

∣

∣

∣

t⋆=π̂(x1,x3)

.

As an example, consider the case in which σ̂ is a cubic spline (a C2 function defined piecewise by cubic polynomials).
Splines allow one to define regular curves passing though a set of assigned points in R

2 and are a useful tool for
trajectory planning. In this example, we set µ/ǫ = 1. Figure 5(a) represents the periodic cubic spline passing trough
points y1 = col (4, 0), y2 = col (0, 4), y3 = col (−4, 0), y4 = col (0,−2). This spline has a vertical symmetry axis
passing through the origin, therefore part (i) of Assumption 1 is satisfied. Moreover, its length is L = 22.06 and its
maximum curvature is less than 0.75, so part (ii) is also satisfied. Figure 5(a) also illustrates the configuration of the
PVTOL on the roll dynamics manifold, while Figure 5(b) shows some PVTOL trajectories obtained with our path
following controller.

5.2 Implicitly represented curves

When the curve C is given in implicit form, C = {y : γ(y) = 0}, with ‖dγy‖ not necessarily unit length for y ∈ C, the
calculations of the transversal states ξ1 and ξ2 are simplified. However, in such cases a smooth parameterization of
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C is still needed in order to compute the tangential states η3, η4. Suppose that C has a sufficiently smooth (at least
C3) parametric representation 2 , i.e., C = Im (σ̂) where σ̂ : R → R

2 is not necessarily a unit speed parametrization.
The transversal states can be computed directly with the help of symbolic algebra software to obtain

ξ1 =
γ(x1, x3)

‖dγ(x1,x3)‖

ξ2 =
[

∂x1

γ(x1,x3)
‖dγ(x1,x3)‖

∂x3

γ(x1,x3)
‖dγ(x1,x3)‖

]

col (x2, x4)

The calculation of η3 can be done as presented in Section 5.1: η3 = g ◦ π̂(x1, x3). For η4, we use the following
calculations

η4 = dπ(x1,x3)

[

x2

x4

]

=
dg

dt

∣

∣

∣

∣

π̂(x1,x3)

dπ̂(x1,x3)

[

x2

x4

]

= ‖σ̂′(π̂(x1, x3))‖dπ̂(x1,x3)

[

x2

x4

]

.

Next, we need to find an expression for dπ̂. First, we note that, using arguments completely analogous to those in

the proof of Lemma 3.2,
(

dπ̂(x1,x3)

)⊤
= k(x1, x3)σ̂

′(π̂(x1, x3)) where k : Cε → R is a smooth scalar function. To find
k(x1, x3), we differentiate the identity π̂(x1, x3) = π̂ (σ̂ (π̂(x1, x3))) to get

dπ̂(x1,x3) = dπ̂σ̂◦π̂(x1,x3)σ̂
′(π̂(x1, x3))dπ̂(x1,x3),

which implies dπ̂σ̂◦π̂(x1,x3)σ̂
′(π̂(x1, x3)) = 1, or

k(x1, x3) (σ̂′(π̂(x1, x3)))
⊤
σ̂′(π̂(x1, x3)) = 1,

and therefore k(x1, x3) = 1/‖σ̂′(π̂(x1, x3))‖
2. Hence, dπ̂(x1,x3) = (σ̂′(π̂(x1, x3)))

⊤
/‖σ̂′(π̂(x1, x3))‖

2 and so

η4 =
(σ̂′(π̂(x1, x3)))

⊤

‖σ̂′(π̂(x1, x3))‖

[

x2

x4

]

.

To illustrate the required calculations, consider Cassini’s oval [11]. The Cartesian equation of this curve is C :=

{(x1, x3) ∈ R
2 : γ(x1, x3) =

(

x2
1 + x2

3 + a2
)2

− 4a2x2
1 − b4 = 0}. The curve is illustrated in Figure 6(a) for a = 3 and

b = 1.05a. The curve C has a smooth parametric representation where σ̂ : R → R
2 is given by

σ̂(t) :=

[

R(t) cos (t)

R(t) sin (t)

]

R(t) :=

√

a2 cos (2t) +

√

b4 − (a2 sin (2t))
2
.

(28)

It is easy to check that the curve (28) is regular, has length L = 21.518 and period T = 2π. Based on Figure 6(a) it
is clear that there is a vertical axis of symmetry corresponding to the x3 axis and hence part (i) of Assumption 1 is
satisfied with θ0 = [−L/4]L = 3L/4 = 16.1385. Figure 6(b) shows that when µ/ǫ = 1, part (ii) of Assumption 1 is
also satisfied. Figure 7 shows the PVTOL trajectories obtained from the path following controller.

2 If C is connected then there is a regular parameterized curve σ̂ whose image is the whole of C [22].
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(a) The desired path for the PVTOL’s centre of mass, a
Cassini oval with a = 3 and b = 1.05a. The figure also illus-
trates the configuration of the PVTOL on the roll dynamics
manifold.
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Fig. 6. Path to be followed in Section 5.2.
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Fig. 7. Simulation results of the path following controller and Cassini’s oval.
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