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Abstract

We consider the problem of controlling the position
of a platen levitated using linear motors in the three-
dimensional space. This theoretical study relies on a
model developed in [3] and provides two controllers
that solve the set-point stabilization problem. The first
controller is derived by decomposing the model in two
subsystems, applying feedback linearization to one of
them, and using the invariance principle to prove at-
tractiveness of the origin of the second subsystem. The
second controller is found by feedback linearizing the
entire system dynamics and using a recent result on
invariance control to guarantee that the state of the
system does not exit the set where the feedback lin-
earizing transformation is well-defined.

1 Introduction
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Figure 1: Configuration with three LSMs to achieve three
degrees of freedom

In order to use linear motors in ultra-clean environ-
ments, the use of bearings and mechanical transmis-
sions must be avoided. Bearings can be replaced by
magnetic levitation, which has been already success-
fully implemented in [1]. In this paper, we present a
different solution which deploys commercial technology
and presents a challenging control problem. Our con-
trol design is based on the model developed in [3], which
describes the setup shown in Figure 1, where three
PMLSMs (Permanent Magnet Linear Synchronous Mo-
tors) are used to control the position of the platen. The

1This work was supported by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC)

model is given by

ẋ1 = x2

ẋ2 = G− φ(x1)[2u
2
1 + u2

2 + 2u2
3 + u2

4]

− χ̃(x1) − ψ(x1)[2u3 + u4]
ẋ3 = x4

ẋ4 = γ(x1)u2

ẋ5 = x6

ẋ6 = 2γ(x1)u1,

(1)
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π
τ
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]
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π
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χ̃(x1) = χΓ(x1)B
2
pmy(x1)

(2)

Γ(·), Bpmy(·) andKc(·) are smooth nonlinear functions,
ν,k, hm, i, χ and κ are known constants, and u1 . . . u4

are the control inputs.

The state is x = [x1, x2, x3, x4, x5, x6]
T =

[g, ġ, x, ẋ, z, ż]T , where g is the motors’ airgap length
and x and z are the platen’s displacements in the x
and y directions. Table 1 lists the values of the con-
stants used in simulation.

Table 1: Simulation parameters for the 3DOF system

i 130.0188 χ 124,500
ν 4645.7 k 19.5617
κ 0.0079 η 0.7071
ζ 0.0017 hm 0.002

The functions χ̃(r) and φ(r) share the same sign, which
is determined by Γ(r). ψ(r) has the same sign as
φ(r) for r > −hm. Due to both these properties and
the squared inputs, stabilizing controls exist only for a
range of values of x1 - consider the problem of making
ẋ2 = 0 when u1 and u2 are given.



We investigate the set-point stabilization problem for
system (1) through two nonlinear approaches. The first
approach, presented in Section 2, is based on partial
feedback linearization and Lyapunov theory. In Section
3, full feedback linearization and invariance control are
applied. Each section presents simulation results. Fi-
nally, after a comparison of the performance of both
controllers, Section 5 presents a brief discussion.

2 Lyapunov Control

System (1) is composed of three subsystems, two of
which are feedback linearizable. Let xd = [xd

1, . . . , x
d
6]

T

be the coordinates of the desired equilibrium point. De-
fine x̃ = x − xd.

Theorem 1 The controller

u1 =
v2

2γ(x1)

u2 =
v1

γ(x1)

u3 = 0

u4 = −
ψ(x1) ±

√

ψ(x1)2 + 4φ(x1)R(x̃1)

2φ(x1)

R(x̃) = ε̃ (x̃1 + x̃2) [x̃2
1 + x̃2

2] + x̃2

− φ(x1)U(x̃) +G− χ̃(x1)

U(x̃) = 2

(

v2(x̃
2)

2γ(x̃1 + xd
1)

)2

+

(

v1(x̃
2)

γ(x̃1 + xd
1)

)2

[

v1
v2

]

= −Kx̃2

(3)

makes xd an attractive equilibrium point of (1), and

the set Vd × W =
{

x̃1 ∈ R2
∣

∣

∣

x̃2

1

2 + (x̃1+x̃2)
2

2 ≤ d
}

×
{

x̃2 ∈ R4|ω1 ≥ |x̃i|, i = 3, . . . , 6
}

is contained in its
domain of attraction, where the values of d and ωi de-
pend on the set-point xd and are specified in the proof.

Proof. The closed-loop system reads as

x̃1 :

{

˙̃x1 = x̃2

˙̃x2 = −ε̃ (x̃1 + x̃2) [x̃2
1 + x̃2

2] − x̃2
(4)

x̃2 :















˙̃x3 = x̃4

˙̃x4 = v1
˙̃x5 = x̃6

˙̃x6 = v2

(5)

where x̃1 := [x̃1, x̃2]
T , x̃2 := [x̃3, . . . , x̃6]

T , and the
parameter ε̃ adjusts the speed of convergence of the
nonlinear dynamics.

The system x̃2 is written in matrix form as

˙̃x2 = Acx̃
2 +Bcv (6)

where v = [v1, v2]
T and (Ac, Bc) is controllable. A

state feedback of the form v = −Kx̃2 can stabilize
(6), where K can be obtained, e.g., by LQR design.
Choose, for instance, R = I4 and Q = diag(10, 1, 10, 1)
(these values are used in our simulation in Section 2.1).
Provided γ(x1) 6= 0, the closed-loop linear subsystem
is exponentially stable and u1 and u2 are bounded.

By applying the transformation

z1 = x̃1

z2 = x̃1 + x̃2.
(7)

to subsystem (4), we get

ż1 = z2 − z1
ż2 = −ε̃z2[(z2 − z1)

2 + (z1)
2].

(8)

Consider now the Lyapunov function candidate V (z) =
1
2z

2
1 + 1

2z
2
2 whose derivative is given by

V̇ (z) = −z2
1 + z1z2 − ε̃z2

2 [z2
1 + (z2 − z1)

2] (9)

≤ −
z2
1

2
−

{

ε̃
[

z2
1 + (z2 − z1)

2
]

−
1

2

}

z2
2 .

V̇ (z) is negative definite outside the ellipsoid Ω =
{

z ∈ R2|z2
1 + (z2 − z1)

2 ≤ 1
2ε̃

}

and, therefore, V de-
creases in Ω.

Let Vd = {z ∈ R2|V (z) ≤ d} and notice that d = 1√
2ε̃

is the smallest real number guaranteeing that Ω ⊂ Vd.
From this observation, and since V̇ < 0 outside of Vd,
V̇ < 0 ∀V > 1√

2ε̃
; hence, Vd is positively invariant for

all d > 1√
2ε̃

.

Consider now the function VE(z) =
z2

2

2 , then

V̇E(z) = −ε̃z2
2 [(z2 − z′1)

2 + z2
1 ] ≤ 0, ∀z ∈ R

2 (10)

Let E = {z ∈ Vd|V̇E(z) = 0} = {z ∈ Vd|z2 = 0}. For
any trajectory in E, the dynamics of (8) are given by

ż1 = −z1
ż2 = 0

(11)

(11) proves E invariant; therefore, by LaSalle theorem,
every solution starting in Vd approaches E as t → ∞.
Moreover, from (11), z1 → 0 on E. Since Vd is compact,
all trajectories are bounded and it follows that, for all
z(0) ∈ Vd, z(t) → 0. Again, this holds for all d such
that d > 1√

2ε̃
.

The determination of an estimate of the DOA of
the origin x̃ = 0 requires the computation of the



set where the control input is well defined: D =
{

x̃ ∈ R6|u4 ∈ R, φ(x1) 6= 0, γ(x1) 6= 0
}

. From (3)

D =
{

x̃ ∈ R
6 | 0 ≤ R′(x̃), φ(x1) 6= 0, γ(x1) 6= 0

}

(12)

where

R′(x̃) = ψ2(x̃1 + xd
1) + 4φ(x̃1 + xd

1)R(x̃). (13)

Since (12) includes the full state, it describes a set that
is hard to visualize. It is possible, however, to obtain a
simple, although conservative, inner approximation of
such set by bounding v(x̃2), which implies bounding
x̃2(0).

More specifically, let φ(t, x̃2
0), with x̃2

0 = x̃2(0), be the
solution of the closed-loop linear system (5) under the
action of linear state feedback. Then, we have that

v(x̃2) = −Kφ(t, x̃2
0). (14)

Let {e1, . . . e4} denote the natural basis in R4, and let
φj(t) = φ(t, ej) be the response of the system subject
to the initial condition ej. Since the closed-loop linear
system is stable, all solutions φj(t) are bounded. Let
x̃j(0) be the entries of x̃2

0. Because of linearity, we have
that

x̃2(t) =

4
∑

j=1

x̃j(0)φj(t), (15)

and hence

v(x̃2(t)) = −K
4

∑

j=1

x̃j(0)φj(t). (16)

By denoting K = [KT
1 KT

2 ]T , it follows that

‖vi(x̃
2(t))‖2 =

∥

∥Ki[φ1(t), . . . , φ4(t)]x̃
2
0

∥

∥

2
, i = 1, 2

(17)
Since vi(x̃) enter into (12) squared, it is sufficient to
find upper bounds to their 2-norms:

sup
t

‖vj(x̃)‖2 = sup
t

∥

∥Ki[φ1(t), . . . , φ4(t)]x̃
2
0

∥

∥

2
(18)

≤

∥

∥

∥

∥

Ki[sup
t

|φ1(t)|, . . . , sup
t

|φ4(t)|]x̃
2
0

∥

∥

∥

∥

2

. (19)

Then, an upper bound to ‖vj(x̃
2(t))‖2 is given by

‖vj(x̃
2(t))‖2 ≤

∥

∥Ki[λ1, . . . , λ4]x̃
2
0

∥

∥

2
, v̄i (20)

where the values λj = supt |φj(t)| are computed numer-
ically by constraining the initial condition x̃2

0 inside a
set W =

{

x̃2
0 ∈ R4

∣

∣|x̃i| ≤ ωi, i = 3, . . . , 6
}

, for prede-
fined values of ωi. Choice of ω3 = 0.1, ω4 = 1, ω5 =
0.1, ω6 = 1 yields v̄1 = v̄2 = 3.0226.
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Figure 2: Estimate of the DOA for xd
1 = 0.025m
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Figure 3: Estimate of the DOA for xd
1 = 0.04m

Then, U(x̃), defined in (3), satisfies

U(x̃) ≤ Ū(x̃1) , 2

(

v̄2

2γ(x̃1 + xd
1)

)2

+

(

v̄1

γ(x̃1 + xd
1)

)2

(21)
Since φ(x1) ≥ 0 in the range of interest, it follows that

R(x̃) ≥ R̄(x̃1) ,ε̃ (x̃1 + x̃2) [x̃2
1 + x̃2

2] + x̃2

− φ(x1)Ū(x̃1) +G− χ̃(x1)
(22)

which implies that

R′(x̃) ≥ R̄′(x̃1) , ψ2(x̃1 + xd
1) + 4φ(x̃1 + xd

1)R̄(x̃1).
(23)

Hence, the set

D̂ =
{

x̃1 ∈ R
2 | 0 ≤ R̄′(x̃1), φ(x1) 6= 0, γ(x1) 6= 0

}

(24)
is an inner approximation of the projection of D
onto the x̃1 coordinates. Moreover, since the set
can now be easily plotted, it can be verified that on
{

x̃1 ∈ R2 | 0 ≤ R̄′(x̃1)
}

, φ(x1) 6= 0,γ(x1) 6= 0, and
hence

D̂ =
{

x̃1 ∈ R
2 | 0 ≤ R̄′(x̃1)

}

(25)

In conclusion, for given xd
1 and ε̃, the largest value of d

such that Vd ⊂ D̂ determines an estimate of the DOA of



the origin of (4). Furthermore, given x(0) ∈ Vd ×W ⊂
D, the trajectories x̃1(t) are bounded inside Vd. Since
E is attractive and E ⊂ Vd, which is positively invari-
ant, the trajectories x̃(t) → E as t→ ∞. Furthermore,
inside E, x̃(t) → 0 as t → ∞. Since (5) is exponen-
tially stable, the origin of the closed-loop system given
by (4) and (5) is attractive for any initial condition
lying inside Vd ×W , as stated on Theorem 1. �

In Figures 2 and 3, the shaded areas are parts of the
set D̂, the solid ellipses represent the Lyapunov level
surfaces V = d for d = 8.5× 10−5 and d = 3.95× 10−4

respectively, while the dashed ellipses represent the Ω
sets given by ε̃ = 8, 500 and ε̃ = 1, 650 respectively.

Remark: Note that the result of Theorem 1 guaran-
tees boundness of x and attractiveness of the equilib-
rium xd, but not Lyapunov stability.

2.1 Simulation Results

Figures 4 and 5 show the state response and Fig-
ure 6 shows the control inputs of the closed-loop sys-
tem when x0 = [0.047, 0,−0.05, 0, 0.05, 0]T, xd =
[0.055, 0, 0, 0, 0, 0]T , and ε̃ = 1, 650.
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Figure 4: Transient position under Lyapunov control
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Figure 5: Transient speed under Lyapunov control
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Figure 6: Control inputs u1,u2, and u4 under Lyapunov
control

3 Invariance control design

Consider again the controller (3), but consider a new
control input u4 replacing R(x̃1) in (3) by

R(x̃1) = −u− φ(x1)U +G− χ̃(x1). (26)

The new controller fully linearizes system (1) so that
the x̃1 dynamics become

x̃1 :

{

˙̃x1 = x̃2

˙̃x2 = u.
(27)

Control law (26), together with proper stabilizing feed-
back u = −Kx̃1, guarantees exponential stability of
(4), provided that the value of u4 exists. Accord-
ingly, invariance of an estimate N of the set M =
{

x ∈ R6|u4 ∈ R
}

is pursued. In order to enlarge N , we
employ the method presented in [2] with some modifi-
cations in order to handle the fact that the size of M is
directly affected by the control in the transformed in-
put domain, u. Specifically, rather than (26), consider
the dynamic feedback

R(x̃1) = −z − φ(x1)U +G− χ̃(x1) (28)

ż = u, (29)

so that the argument of the square root in (3) depends
only on the state and not on the input. As a result,
the x̃1 subsystem becomes

x̃1 :







˙̃x1 = x̃2

˙̃x2 = z
˙̃z = u

(30)

From (29), M = {x̃1 ∈ R2, z ∈ R |ψ(x̃1+x
d
1)

2+4φ(x̃1+
xd

1)
[

−z − φ(x̃1 + xd
1)U +G− χ̃(x̃1 + xd

1)
]

≥ 0}. Since
M does not anymore depend on u, invariance control



can now be applied. First, define the transformation





ξ1
ξ2
y



 =





x̃1

x̃2

k1x̃1 + k2x̃2 + k3z



 (31)

and the passifying feedback

u =
1

k3

(

v − (2QT
12P11 −Q21)[ξ1, ξ2]

T −Q22y
)

(32)

where v is an external input, k1, k2, k3,
Q11, Q12, Q21, Q22, P11 are as defined in [2] with

T =

[

1 0 0
0 1 0

]

W11 = I2.

The transformation (31) and the feedback (32) map
(30) to

ξ̇ =

[

0 1

−k1

k3

−k2

k3

]

ξ +

[

0
1
k3

]

y

ẏ = −2QT
12P11[ξ1, ξ2]

T + v,

which is exponentially stable for any feedback of the
form v = −α(t)y for any switched constant α(t) > 0.
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Figure 7: Projection of M and N on the (x1, z) plane

In order to apply the methodology in [2], we need to
approximate M by a set N ⊂ M with desired prop-
erties. Let Φ : R3 → R be a C1 function such that
N = {(ξ1, ξ2, y)|Φ(ξ1, ξ2, y) ≤ 0}. For a large N ,
choose

Φ(ξ1, ξ2, y) =a(ξ1 + xd
1 − x′1)

2 + bξ22 − r2

+ c(x′1 − ξ1 − xd
1)ξ2 + dy2

(33)

which describes a 3D ellipsoid centered at (x′1, 0, 0).
The positive constants a, b, c, d and x′1 determine the
shape and size of the set N . Figure 7 shows both
M and N in original x1, z coordinates for a given
set of parameters. Positive invariance of N requires

Φ̇(ξ1, ξ2, y) < −ε < 0, ε ∈ R+ at ∂N , the boundary of
N . Differentiation of Φ and Young inequality yield

Φ̇ ≤

{

a+
c

2k3
(k2 + k1)

}

(ξ1 − x′1 + xd
1)

2

+

{

a− c+
ck2

2k3
+

b

k3
(k1 − 2k2)

}

ξ22

+
k1

k3

(

b+
c

2

)

ξ21 + F (y)

(34)

where F (0) = 0. Then, k1, k2, and k3 determine
whether Φ̇(ξ1, ξ2, y = 0) < 0, yielding a set of linear
inequalities whose solution can be found through the
linear programming problem

min
Aopk ≤ bop

k > 0

CTk (35)

where C = [c1, c2, c3] is a vector of design parameters,
bop = −[κ, κ]T , κ ∈ R+ and

Aop =

[

c c 2a
2b c− 4b 2a− 2c

]

. (36)

Because the weighting vector C introduces extra de-
grees of freedom, solving the set of inequalities as an
LP problem conveys two advantages. First, it allow
us to individually affect the speeds of convergence of
x̃1, x̃2 and z. Second, the geometric characteristics of
the zero dynamics plane (y = 0) can be freely set.

Following [2], switching of α every time that the trajec-
tory hits ∂N guarantees asymptotic stability for y 6= 0.
In addition, α must be positive in order to maintain
stability of the closed loop system. A choice of α that
satisfies both requirements at the j−th switching is

αj =
ε+ ∂Φ

ξ1

ξ̇1 + ∂Φ
ξ2

ξ̇2 − 4dyQT
12P11[ξ1, ξ2]

T

2dy2
(37)

3.1 Simulation Results

The simulation of the invariance controller used the
set of values: r = 0.12, a = 80, b = 0.5, c = −5,
d = 2, x′1 = 0.048, C = [0.1, 1, 1]T , κ = 1, µ = 0.001,
α(0) = 1 and ε = 1×10−6. The LP algorithm generated
k = [0.1175, 0.4025, 0.01]T.

Figures 8 and 9 show the x1 and x2 response for
x0 = [0.047, 0.05,−0.05, 0, 0.05, 0]T , z(0) = 0 and
xd = [0.055, 0, 0, 0, 0, 0]. Figure 10 presents the respec-
tive control inputs u1,u2, and u4. Figure 11 shows the
evolution of the trajectory (the bold curve) making no-
ticeable that it remains inside the set N , whose bound-
ary is given by the 3D ellipsoid also depicted there. For
this simulation, two switchings occurred.



1 2 3 4 5 6 7 8 9

−0.05

0

0.05

time [s]

D
is

pl
ac

em
en

ts
 [m

]

x
1

x
3

x
5

Figure 8: Transient position under invariance control
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Figure 9: Transient speed under invariance control

4 Controllers’ comparison

The first controller has steady state currents of up to
1.3A and, in the best case, the DOA is limited inside
0.02 < x1 < 0.06. Its speed of response significantly
varies with the initial conditions. On the other hand,
the invariance controller also requires currents as large
as 1.3A for steady state and 1.5A for transient. The
corresponding DOA lies inside 0.035 < x1 < 0.07. The
speed of convergence also depends on the initial con-
ditions but it is faster when switching does not occur.
Therefore, when compared to the first nonlinear con-
troller, the invariance-based one achieves the fastest
response but also higher control effort.

5 Conclusions

We have introduced and analyzed two nonlinear con-
trollers achieving set-point stabilization for a three
degrees-of-freedom magnetic levitation system. Be-
cause, under non-ideal conditions, the device does not
prevent rotation of the platen, an apparatus with 5
controlled DOF will replace this design. Future work
will also design robust adaptive controllers taking into
account disturbances and model uncertainties. An ex-
perimental setup is being built to test the designed con-
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Figure 10: Control inputs u1,u2, and u4 under invariance
control
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Figure 11: System’s trajectory under invariance control

trollers.
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