
Optimized Learning with Bounded Error for
Feedforward Neural Networks

A. Alessandri, M. Sanguineti, and M. Maggiore

Abstract

A learning algorithm for feedforward neural networks is presented that is based on a parameter estimation approach. The algorithm is
particularly well-suited for batch learning and allows one to deal with large data sets in a computationally efficient way. An analysis of its
convergence and robustness properties is made. Simulation results confirm the effectiveness of the algorithm and its advantages over learning
based on backpropagation and extended Kalman filter.

Keywords

Feedforward neural networks, learning algorithms, batch learning, nonlinear approximation, optimization.

I. Introduction

After the development of backpropagation (BP, for short) [1], plenty of algorithms have been proposed to train
feedforward neural networks. Although BP has been successfully applied in a variety of areas (see, e.g., [2]-[10]), its
convergence is slow, thus making high-dimensional problems intractable. Its slowness is to be ascribed to the use of
the steepest–descent method, which performs poorly in terms of convergence in high-dimensional settings [11], and to
the fixed, arbitrarily chosen step length. For these reasons, algorithms using also the second derivatives have been
developed (see, e.g., [12]) and modifications to BP have been proposed (see, e.g., the acceleration technique presented
in [13] and the approach described in [14], which is aimed at restoring the dependence of the learning rate on time).
The determination of the search direction and of the step length by using methods of nonlinear optimization has been
considered, for example, in [15]. The effects of adding noise to inputs, outputs, weights connections and weights changes
during backpropagation training have also been studied (see, e.g., [16]).

Further insights can be gained by regarding the learning of feedforward neural networks as a parameter estimation
problem. Following this approach, training algorithms based on the extended Kalman filter (EKF, for short) have
been proposed (see, e.g., [17]-[19]) that show faster convergence than BP and do not need the tuning of parameters.
However, the advantages of EKF-based trainings are obtained at the expense of a notable computational burden (as
matrix inversions are required) and a large amount of memory.

In this paper, the learning of feedforward neural networks is regarded as a parameter estimation problem. Some
recent results concerning nonlinear estimation [10] are exploited to develop a novel learning algorithm. Its convergence
and robustness properties are investigated. Unlike EKF–based training, the proposed algorithm does not require matrix
inversions. It is based on the minimization of a cost function composed of two contributions: a fitting penalty term
and a term related to changes in the parameters. Bounds on the rate of convergence of the algorithm are provided
and its robustness against errors in the minimization of the cost function is investigated. Simulation results show that
the optimization of the proposed cost function outperforms backpropagation-based algorithms. The learning based on
the extended Kalman filter yields comparable results but involves a much higher computational load. Moreover, as the
proposed algorithm works according to a sliding–window scheme, only a portion of the data is processed at each time
(the past is summarized in one prediction), thus making the method computationally tractable.

The paper is organized as follows. Section II defines neural-network learning as a parameter estimation problem
and describes the basic algorithm. Its convergence and robustness properties are investigated in Sections III and IV,
respectively. A formulation of the algorithm tailored to batch learning is illustrated in Section V. Section VI reports
simulation results comparing the proposed approach with BP-based and EKF-based learnings.

A. Alessandri is with the Naval Automation Institute (IAN–CNR), National Research Council of Italy, Via De Marini 6, 16149 Genova,
Italy (e-mail: angelo@ian.ge.cnr.it).

M. Sanguineti is with Department of Communications, Computer and System Sciences (DIST), University of Genoa, Via Opera Pia 13,
16145 Genova, Italy (e-mail: marcello@dist.unige.it).

M. Maggiore is with the Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Rd., M5S 3G4
Toronto, Canada (e-mail: maggiore@control.toronto.edu).

A. Alessandri and M. Sanguineti were partially supported by the MURST Project “New Techniques for the Identification and Adaptive
Control of Industrial Systems” and by the CNR-Agenzia 2000 Project “New Algorithms and Methodologies for the Approximate Solution of
Nonlinear Functional Optimization Problems in a Stochastic Environment.”

Published in IEEE Transactions on Neural Networks, vol. 13, no. 2, 2002, pp. 261–273

2

II. Algorithm description

We consider feedforward neural networks (in the following, for the sake of brevity, often called “neural networks” or
simply “networks,”) composed of L layers, with νs computational units in the layer s (s = 1, . . . , L). The input–output
mapping of the q-th unit of the s-th layer is given by

yq(s) = g

[

νs−1
∑

p=1

wpq(s)yp(s− 1) + w0q(s)

]

,

s = 1, . . . , L ; q = 1, . . . , νs (1)

where g : R → R is called activation function. The coefficients wpq (s) and the so-called biases w0q (s) are lumped
together into the weights vectors ws . We let

w
4
= col

(

w1 , w2 , . . . , wL
)

∈ W ⊂ R
n

where

n
4
=

L
∑

s=0

νs+1 (νs + 1)

is the total number of weights. The function implemented by a feedforward neural network with weights vector w is
denoted by γ (w, u) , γ : R

n×R
m → R

p , where u ∈ U ⊂ R
m is the network input vector.

The data set consists of input/output pairs (ut, yt) , t = 0, 1, . . . , P−1, where ut ∈ U ⊂ R
m and yt ∈ Y ⊂ R

p represent
the input and the desired output of the neural network at the time t, respectively (hence, ν0 = m and νL = p). If one
assumes the data to be generated by a sufficiently smooth function f : R

m −→ R
p , i.e., yt = f(ut) (suitable smoothness

hypotheses on f can be assumed according to the process generating the data), then the approximation properties of
feedforward neural networks guarantee the existence of a weights vector w∗ ∈W ⊂ R

n such that

f(u) = γ(w∗, u) + η , ∀u ∈ U (2)

where η is the network approximation error and U ⊂ R
m (see, e.g., [20]-[23]). Now, let ηt be the error made in approxi-

mating f by the neural network implementing the mapping γ, for the input ut. Such a network can be represented, for
t = 0, 1, . . . , P − 1 as

{

wt+1 = wt
y
t = γ (wt, ut) + η

t

(3)

where the network weights play the role of a constant state equal to the “ideal” network weights vector w∗, i.e.,

w0 = w1 = . . . = wP
4
= w∗ , and ηt ∈ K ⊂ R

p is a noise. Equations (3) allows one to regard the supervised learning of
feedforward neural networks according to a set of data as the problem of estimating the state of a nonlinear system. The
measurement equation defines the nonlinear relationship among inputs, outputs, and weights according to the function
γ implemented by the network.

The representation (3) will be used in the following as the departure point to derive a training algorithm as a recursive
state estimator for the system representing the network. More precisely, the algorithm will be obtained as a sliding-
window state estimator for system (3), with an estimation cost defined as

Jt
4
= µ ‖ŵt − w̄t‖2 +

t
∑

i=t−N

∥

∥y
i − γ (ŵt, ui)

∥

∥

2
,

t = N,N + 1, . . . , P − 1 (4)

where ‖.‖ denotes the Euclidean norm, µ > 0 is a scalar whose choice will be discussed later on, ŵt is the estimate of
the “ideal” weights vector w∗ at the time t, and w̄t = ŵt−1 is called prediction. The estimator has a finite memory,
i.e., the estimation of the network weights relies on the last N input/output patterns. The minimization of Jt at each
temporal stage is based on the information vector, expressed as

It
4
= col

(

w̄◦
t , yt−N , . . . , yt , ut−N , . . . , ut

)

∈ R
n+(N+1)(p+m) , t = N,N + 1, . . . , P − 1 (5)

where w̄◦
t

4
= ŵ◦

t−1 denotes the prediction (see the formulation of the learning algorithm below); w̄◦
N represents the “a

priori” prediction, i.e., the weights values before training. The learning algorithm is obtained as a sequential state
estimator for system (3) on the basis of the minimization of cost (4).

3

Algorithm OL (Optimized Learning). Given the information vector It, determine for each t = N ,N + 1 , . . ., the
estimate ŵ◦

t (It) of the network weights by minimizing cost (4).
�

When a new input/output pattern (ut, yt) becomes available, the information vector

It+1

4
= col

(

w̄◦
t+1, yt−N+1 , . . . , yt+1 , ut−N+1 , . . . ut+1

)

is used to generate the new estimate ŵ◦
t+1(It+1) of the “ideal” weights vector w∗ .

As regards the choice of the positive scalar µ, it should be noted that it expresses the relative importance of the
prediction with respect to the last N +1 patterns. Therefore, if µ is increased, the first term of Jt attaches an increasing
importance to the prediction w̄t. This turns out to be useful in the case of large noises and accurate initial prediction.
The minimization of a cost function with the structure of (4) has been first proposed in [10] to derive a sliding-window
estimator for a class of nonlinear dynamic systems.

Note that the mapping γ is invariant to certain permutations of the weights [26]. Nevertheless, we only require the
estimator to find one of the weights vectors that minimize cost (4): all the weights vectors obtained through permutations
of a given vector can be regarded as being equivalent.

In Section III, we shall investigate the convergence of algorithm OL, supposing that the minimization of cost (4) is
performed exactly. In Section IV, we shall show that the algorithm is robust to errors on the minimization of cost (4).
The formulation of the algorithm within a batch–learning context will be considered in Section V.

III. Convergence analysis

Let

H
(

w, utt−N
) 4

=

γ
(

w, ut−N
)

γ
(

w, ut−N+1

)

...
γ (w, ut)

∈ R
p(N+1) (6)

where utt−N
4
= col

(

ut−N , ut−N+1, . . . , ut
)

∈ UN+1 (recall that ut ∈ U ⊂ R
m). Similarly, let ytt−N

4
= col

(

y
t−N , yt−N+1, . . . , yt

)

.
Given a square matrix A, λmin(A) and λmax(A) denote its minimum and maximum eigenvalues, respectively. For a

generic matrix B, let ‖B‖ 4
=

√

λmax(BTB) and ‖B‖min
4
=

√

λmin(BTB) .
From now on we suppose that the network activation function in (1) belongs to class C1 (R) and, using the notation

of [10], we define the matrix

D(w, utt−N)
4
=
∂H

∂w
∈ R

p(N+1)×n

and the scalars

δ
4
= min
w∈W,ut

t−N
∈UN+1

‖D(w, utt−N)‖min,

∆
4
= max

w∈W,ut

t−N
∈UN+1

‖D(w, utt−N)‖.

Moreover, we let

rη
4
= max

η
t−N

,...,η
t
∈K

‖col (ηt−N , . . . , ηt)‖

and

k̄
4
= k

√
N + 1

where k > 0 is a scalar such that

∥

∥

∥

∂γ(w, u)

∂w
(w′, u) − ∂γ(w, u)

∂w
(w′′, u)

∥

∥

∥
≤ k ‖w′ − w′′‖

∀w′, w′′ ∈W , ∀u ∈ U.

Finally, for ξ ∈ R, let us consider the inequalities:
(

δ4 − 8k̄∆2rη
)

µ+ δ6 > 0 (7)

µ2 + 2
(

δ2 − k̄∆ ξ
)

µ+ δ4 − 2k̄∆2 rη > 0 (8)

2µ2 +
(

4 δ2 − 3 k̄∆ ξ
)

µ+ 2 δ4 − 2 k̄∆2 rη

− δ2 k̄∆ ξ > 0 (9)

4

and the second-order equation in ξ

2∆k̄µ2 ξ2 +
[

4k̄∆2µrη − δ2(µ+ δ2)2
]

ξ

+2k̄∆3r2η + ∆(µ+ δ2)2rη = 0 . (10)

The paramters δ and ∆ can be estimated on the basis of the sets W (representing a constraint on the size of the
weights) and U (representing a constraint on the size of the inputs). The parameter k can be estimated in terms of
the set W , the set U , and the number of computational units in the network.
rη represents the maximum approximation error incurred by the network γ(w∗, u) in approximating the mapping

f that generates the data (suitable hypotheses about the smoothness of such a mapping can be made on the basis of
the process generating the data). As regards the possibility of estimating the value of rη , there exist many results
expressing the approximation error as a function of the number of computational units in the network. For the sake of
simplicity and without loss of generality, let us consider the case of a one-hidden layer network with ν computational
units in the hidden layer and a data set of input/output pairs (ut, yt) generated by a mapping f : R

m −→ R. For a
large variety of smoothness properties of the mapping f generating the data, the existence of an upper bound of the

order of O
(

1√
ν

)

on the approximation error has been proved (see, e.g., [32], [27], [28], [29], and [30]). Exploiting such

results, once the number ν of computational units in the network has been fixed, one can obtain an estimate from above
of the approximation error, hence of rη.

The following proposition is obtained by applying [10, Theorem 1] to system (3).

Proposition 1 (Bounds on the weights estimation error by algorithm OL). Suppose that there exists an integer
N such that, for any utt−N ∈ UN+1 , rankD(w, utt−N) = n . Let ŵ◦

t be the estimate of the weights vector w∗ at stage

t obtained by applying algorithm OL, and let êt
4
= w∗ − ŵ◦

t be the weights estimation error at stage t. Consider the
largest closed ball N(r̂e) of radius r̂e and centered in the origin, such that êN ∈ N(r̂e) . If there exists a choice of µ
satisfying (7), then the second-order equation (10) has two real positive roots, ξ− < ξ+. If µ satisfies also (8) and (9)
with ζ ∈ (ξ−, ξ+) , then the following holds for the network’s learning by algorithm OL:
(i) r̂e ≤ ζ =⇒ ‖êt‖ ≤ ξt t = N,N + 1, . . . , P − 1
(boundedness of the estimation error)

(ii) r̂e ≤ ζ =⇒ limt→+∞ ‖êt‖ ≤ ξ−,
(asymptotic bound on the estimation error for P → ∞)

where ξN
4
= r̂e and ξt, t = N,N + 1, . . . , is a monotonically decreasing sequence given by

ξt =
2∆k̄µ2

(µ+ δ2)3
ξ2t−1 + µ

[(µ+ δ2)2 + 4k̄∆2rη]

(µ+ δ2)3
ξt−1

+
2k̄∆3r2η + ∆(µ+ δ2)2rη

(µ+ δ2)3
.

�

Some remarks can be made about the way how the various quantities contained in equations (7) to (10) influence the
bounds on the weights estimation error associated with algorithm OL. Towards this end, let k̄ and ∆ take on some fixed
values, and let us study the influence of δ and rη. If δ4/rη ≥ 8k̄∆2, then (7) is satisfied for any µ ≥ 0; if δ4/rη < 8k̄∆2,
then (7) is fulfilled for µ ∈ (µ+,+∞), where µ+ = δ6/(8k̄∆2rη − δ4). The analyses of (8) and (9) are less easy, for they
depend on the roots of (10), i.e., ξ− and ξ+, which, in turn, depend on µ. However, in general, a higher value of the ratio
δ4/rη determines a wider range for µ, in which (8) and (9) are satisfied. The situation can be summarized as follows.
Larger values of rη are allowed by larger values of δ, such that inequalities (7), (8), and (9) are satisfied for some range
of values of µ. As ξ− and ξ+ depend on µ, this parameter has to be chosen such as to obtain the largest possible value
of ξ+ (recall that r̂e ≤ ζ < ξ+) and the smallest possible value of ξ− (recall that ξ− is an asymptotic upper bound on
the weights estimation error). In other words, the choice of µ should allow the smallest possible upper bound ξ− on the
asymptotic weights estimation error and the largest possible upper bound ξ+ on the initial weights estimation error.

Let us discuss the requirement that, for any utt−N ∈ UN+1 , the matrix D(w, utt−N) be of rank n . As, by definition,

D
(

w, utt−N
)

=
∂H

∂w

(

w, utt−N
)

=

∂γ

∂w

(

w, ut−N
)

∂γ

∂w

(

w, ut−N+1

)

...
∂γ

∂w
(w, ut)

∈ R
p(N+1)×n ,

5

the bigger p(N + 1) , the “easier” for the above matrix to be of rank n. In this context, the condition p (N + 1) � n
(i.e., choosing a large window size in algorithm OL, as compared with the size of the weights vector), used in the field of
parameter estimation, can be related to the behavior of the error of a network with n parameters (the weights), trained
to learn an unknown mapping on the basis of P input/output pairs. Recall that the overall error between the network
and the target function, called generalization error, consists of two contributions (see, e.g., [24], [25]). The first one is the
approximation error, which refers to the distance between the target function and the closest neural–network function
of a given architecture. The second contribution is the estimation error, which measures the distance between the best
network function (obtained by an ideally infinite data set) and the function estimated on the basis of the P training data
(recall the P ≥ N + 1). In practice, the generalization error, i.e., the ability of the network to “generalize” to new data
(not observed as not belonging to the training set), stems from a tradeoff between the accuracy of the approximation
and the accuracy of the empirical fit to the theoretical approximation (see, e.g., [24], [25]).

Note that also the choice of N is important for the fulfilment of the condition on rankD.
Finally, we remark that the choice of µ is crucial for the behavior of the estimate. In particular, small values of µ

imply a low dependence of the estimate on the prediction, whereas larger values of µ result in a higher dependence and
in a smaller influence of new input/output patterns on the estimate. The problem of a suitable choice of µ for different
noise levels will be addressed in detail in Section VI by means of extensive simulations.

IV. Robustness analysis

The minimization of cost (4) can be performed by using a nonlinear programming iterative algorithm. We are
interested in evaluating the robustness of algorithm OL when such a minimization is not performed exactly. Let w̃◦

t

be the estimate of the “ideal” network weights vector w∗ (see (2)) obtained by algorithm OL when the minimization of
cost (4) is not exactly accomplished. Setting

εt
4
= ŵ◦

t − w̃◦
t ,

the learning process can be considered to be perturbed by εt, which causes a “perturbed estimation error” ẽt
4
= w∗−w̃◦

t =
êt + εt . Thus, the estimate w̃◦

t of the network’s “ideal” weights w∗ is obtained, rather than by using INt (see (5)), by
relying on the “modified information vector”

Ĩt
4
= col

(

¯̄w◦
t , yt−N , . . . , yt , ut−N , . . . ,

ut
)

∈ R
n+(N+1)(p+m) t = N,N + 1, . . . , P − 1

where ¯̄w◦
t

4
= w̃◦

t−1 denotes the prediction.
Let us consider the inequalities:

µ+ δ2 − k̄∆ε̄ > 0 (11)

−8k̄∆ ε̄ µ2 + (δ4 − 8k̄∆2rη − 16k̄∆δ2ε̄)µ+ δ6 > 0 (12)

µ2 +
(

2δ2 − 2k̄∆ ξ̃ − 4k̄∆ε̄
)

µ+ δ4 − 2k̄∆2 rη

−4k̄∆δ2 ε̄ > 0 (13)

2µ2 +
(

4 δ2 − 3 k̄∆ ξ̃ − 5 k̄∆ε̄
)

µ+ 2 δ4 − 2 k̄∆2 rη

−5k̄∆δ2 ε̄− δ2k̄∆ ξ̃ > 0 (14)

where ε̄
4
= max

t∈{N,N+1,...,P−1}
‖εt‖ and ξ ∈ R, and the second-order equation

(2k̄∆µ2) ξ̃2 +
[

4k̄∆2µrη + 8µk̄∆(µ+ δ2)ε̄

− δ(µ+ δ2)2
]

ξ̃ + 2k̄∆3r2η + ∆(µ+ δ2)2rη

+ 8k̄∆(µ+ δ2)2ε̄2 + (µ+ δ2)3ε̄

+ 8k̄∆2(3µ+ 2δ2)rη ε̄ = 0 . (15)

Applying [10, Theorem 2] to system (3), the following proposition is obtained.

Proposition 2 (Robustness of the weights estimate by algorithm OL). Suppose that there exists an integer N
such that, for any utt−N ∈ UN+1 , rankD(w, utt−N) = n . Let w̃◦

t be the estimate of the weights vector w∗ at stage t

obtained by applying algorithm OL with an approximate minimization of cost (4), and let ẽt
4
= w∗ − w̃◦

t be the weights
estimation error at stage t. Consider the largest closed ball N(r̃e) of radius r̃e and centered in the origin, such that

6

ẽN ∈ N(r̃e) . If there exists a choice of µ satisfying (11) and (12), then the second-order equation (15) has two real
positive roots, ξ̃− < ξ̃+ . If the choice of µ satisfies also (13) and (14) with ζ̃ ∈ (ξ̃−, ξ̃+), then the following holds for
the network’s learning by algorithm OL:
(i) r̃e ≤ ζ̃ =⇒ ‖ẽt‖ ≤ ξ̃t , t = N,N + 1, . . .
(boundedness of the perturbed estimation error)

(ii) r̃e ≤ ζ̃ =⇒ limt→+∞ ‖ẽt‖ ≤ ξ̃−

(asymptotic bound on the perturbed estimation error for P → ∞)
where ξ̃N = r̃e and ξ̃t , t = N,N + 1, . . . , is a monotonically decreasing sequence given by

ξ̃t =
2µ2k̄∆

(µ+ δ2)3
ξ̃2t−1 +

1

(µ+ δ2)3

[

µ(µ+ δ2)2 + 4µk̄∆2rη

+ 8µk̄(µ+ δ2)ε̄
]

ξ̃t−1 +
[

2k̄∆3r2η + ∆rη(µ+ δ2)2

+ 8k̄∆(µ+ δ2)2ε̄2 + (µ+ δ2)3ε̄

+ 8k̄∆2rη(µ+ δ2)ε̄
] 1

(µ+ δ2)3
.

�

According to Proposition 2, when the minimization required by algorithm OL is not performed exactly, the boundedness
of the estimation error during the network training is preserved.

As regards the influence of the various scalars on the bounds on the weights estimation error, considerations similar to
those after Proposition 1 can be made. In particular, the presence of ε̄ in inequalities (11) to (14) results in a narrower
range of admissible values of µ. Further, ε̄ > 0 in (15) determines values of the roots ξ̃− and ξ̃+ that are, respectively,
larger and smaller than the values of ξ− and ξ+ in equation (10). This means that an approximate minimization of cost
(4) results in a larger upper bound on the asymptotic weights estimation error and reduces the allowed initial weights
estimation error.

V. Batch learning

So far, sufficient conditions guaranteeing the existence of an upper bound on the weights estimation error have been
provided, assuming that the temporal window in cost (4) moves one stage at a time. Let us now consider a temporal
window moving d stages at a time, where 1 ≤ d ≤ N . The corresponding estimator is called d-step estimator. We
consider the following estimation cost (recall the definition of H given by (6))

Jd(t−N)+N = µ
∥

∥

∥
ŵd(t−N)+N − w̄d(t−N)+N

∥

∥

∥

2

+
∥

∥

∥

yd(t−N)+N
d(t−N)

−H
(

ŵd(t−N)+N , u
d(t−N)+N
d(t−N)

)∥

∥

∥

2

, t = N,N + 1, . . . , t̄

(16)

and the information vector

I
N
d(t−N)+N = col

(

w̄◦
d(t−N)+N , y

d(t−N)+N
d(t−N) ,

ud(t−N)+N
d(t−N)

)

∈ R
n+(N+1)(p+m) , t = N,N + 1, . . . , t̄

where t̄ is the largest integer such that t̄+N + 1 ≤ P , w̄◦
d(t−N)+N

4
= ŵ◦

d(t−N−1)+N is the optimal prediction (see the

formulation of the batch training algorithm below) and w̄◦
N denotes the “a priori” prediction, i.e., the weights values

before training.

Algorithm OBL (Optimized Batch Learning). Given the information vector INd(t−N)+N , determine, for each

t = N,N + 1, . . ., the estimate ŵ◦
d(t−N)+N

(

INd(t−N)+N

)

of the network weights by minimizing cost (16).

�

The estimator makes use of an optimization window of size N + 1, which slides d temporal stages at a time (see Fig. 1.
Since the definitions of the constants k̄, δ,∆, and rη are the same as for the one-step estimator, Propositions 1 and

2 hold true also for the d−step estimator. Nevertheless, the performance of algorithm OBL varies on the basis of the
different choices of d, as will be clarified by the numerical results reported in Section VI.
Given a fixed number of iterations, say t, the one-step estimator explores N + t patterns of the data set, whereas the
N -step estimator uses N t+ 1 patterns (generally, the d-step estimator explores N + 1 + (t− 1)d patterns), as depicted
in Fig. 2.

7

Fig. 1. Collection of the information vector for the d-step estimator.

Fig. 2. Comparison between t iterations of the one-step and the N-step estimators (t > N).

Note that the N -step estimator maximizes the number of patterns explored with the same number of iterations. This
turns out to be useful whenever the data set is very large and the application of gradient methods over an entire epoch
becomes computationally unmanageable. Batch training overcomes the problem of a large data set by dividing the
patterns into data batches of fixed length and by training the network with each data batch [31]. In this situation, the
prediction term in cost (16) relates the current estimate of the weights vector to the last one and, consequently, the
current batch to the previous one.

VI. Numerical results

In this section, the problem of identifying a nonlinear dynamic system on the basis of a set of input/output data is
considered to evaluate the effectiveness of algorithm OBL in comparison with widely used training algorithms. Algorithm
OBL is compared with classical backpropagation, with learning based on the extended Kalman filter, and with Levenberg-
Marquardt training, all using data batches. More precisely, a sequence of input/output pairs is generated and all the
above-mentioned algorithms are applied to fit the data according to a sliding-window strategy, for the same window size
(i.e., the same batch length). In the following, the algorithms will be referred to as Back-Propagation Batch Learning
(BPBL), Extended Kalman Filter Batch Learning (EKFBL), and Levenberg-Marquardt Batch Learning (LMBL). Both
BPBL and LMBL are available in the Matlab Neural Networks Toolbox. EKFBL has been coded according to [18],
using standard Matlab functions. OBL relies on the fminu routine of the Matlab Optimization Toolbox. The initial
weights vector has been chosen by using the initff function of Matlab.

The input/output pairs of the dynamic system to be indentified represent a nonlinear dynamics describing the rotation
of a mass in water with asymmetric drag coefficients. The system dynamics is expressed by:

ψ̇ = r (17)

Iz ṙ = −bl (r) r − bs (r) r |r| +M (18)

where ψ is the yaw angle, r is the yaw rate (i.e., the angular speed), M is the torque, and Iz = 50.0Kgm2 is the
inertia. The linear and quadratic coefficients, bl (r) and bs (r) , respectively, depend on the direction of rotation:

bl (r)
4
=

{

b+l , for r ≥ 0
b−l , for r < 0

(19)

and

bs (r)
4
=

{

b+s , for r ≥ 0
b−s , for r < 0

(20)

where b+l = 3.0 kgm2 / sec , b−l = 10.0 kgm2 / sec , b+s = 5.0 kgm2/rad , and b−s = 10.0 kgm2/rad . The measures
of both ψ and r are corrupted by additive Gaussian random noises with zero mean and dispersions equal to σψ

8

and σr . Moreover, an additive Gaussian random noise with zero mean and dispersion equal to σz acts on (18). If
a simple Euler’s discretization for a sample time equal to T = 0.1 sec is applied to (17) and (18), one obtains the
pairs [(ψi, ri,Mi) , (ψi+1, ri+i)] , i = 0, 1, . . . , where ψi , ri , and Mi are the values of ψ , r , and M at the time
i T , respectively. A pseudo-random binary sequence has been chosen for the torque, with maximum amplitude equal to
5N m .

Three data sets (each made up of 5000 input/output pairs) have been generated for different levels of magnitude of

the noise η
i

4
= col (η1i, η2i, η3i) , i = 0, 1, . . . , where η1i , η2i , and η3i are independently Gaussian distributed with

dispersions σψ , σr , and σz , respectively: a low noise level with σψ = 1 deg , σr = σz = 1 deg/sec ; a medium noise
level with σψ = 2 deg , σr = σz = 2 deg/sec ; a high noise level with σψ = 5 deg , σr = σz = 5 deg/sec . In the
numerical simulations, all the algorithms have been applied to the same training set, given by the repetition of the
5000 input/output pairs for 100 times. This training set is well-suited to dealing with different operating conditions of
algorithm OBL, i.e., different values of d and µ .

We have considered the following performance indices for the purpose of comparing the various algorithms. At each
time instant t = N,N + 1, . . . , we have computed the summed squared approximation error (SSE) on the data. At the
end of the training, we have computed both the final SSE and the total number of floating-point operations (expressed
in MFOs, with 1 MFO = 106 floating-point operations). The termination criterion for the BPBL, LMBL, and OBL
trainings is the decrease in the respective cost functions, i.e., the optimization routines end if the cost decreases less
than 0.1% (this is not the case with the EKFBL algorithm, as it works without an optimization routine).

Two types of feedforward neural networks have been considered, with a linear output layer and one hidden layer
having 2 and 5 hidden neurons, respectively, and the activation function tanh(·) . The diagonal covariance error matrix
for the estimates of the optimal weights by the EKFBL algorithm has been initialized with the value 10−2 for all the
weights and computed by using [18, p. 962, formulas (35) and (36), with Tmax equal to 1000].

noise µ = 1 µ = 5 µ = 10 µ = 50 µ = 100
level SSE MFO SSE MFO SSE MFO SSE MFO SSE MFO
low 4.89∗ 8975 5.62 8886 5.93 8873 6.24 8746 6.42 8645

medium 12.32 9044 11.86∗ 8920 12.13 8901 12.53 8808 12.59 8714
high 41.76 9259 41.61 9005 40.38 8951 39.99∗ 8855 40.39 8796

TABLE I

Final SSEs and MFOs of the OBL algorithm with a 2–neuron network for d = 15 , N = 15 , and different choices of µ .

noise µ = 1 µ = 5 µ = 10 µ = 50 µ = 100
level SSE MFO SSE MFO SSE MFO SSE MFO SSE MFO
low 3.94∗ 27906 4.76 27575 4.70 27463 4.78 26727 4.90 25973

medium 11.60 28371 10.89∗ 27817 10.90 27739 11.09 27196 11.29 26626
high 52.33 29826 41.12 28220 39.74 28094 39.14∗ 27485 39.83 27202

TABLE II

Final SSEs and MFOs of the OBL algorithm with a 5–neuron network for d = 15 , N = 15 , and different choices of µ .

Tables I and II give the results obtained by the OBL algorithm for different choices of the parameter µ and for the
two above-described networks. As can be noticed, a larger µ results in better performances in the presence of a high
noise level (the superscript ∗ denotes the lowest SSE value in each row of Tables I and II. Tables III and IV show the SSE
performances and the computational loads for different choices of the number d of sliding steps. A lower SSE is provided
by a smaller value of d but, in such a case, the training turns out to be more demanding in terms of computational
load. On the other hand, the SSE decreases more slowly if d is taken smaller because the data batches are processed at
a lower rate (see Figs. 3 and 4). Such a behavior may be ascribed to the degree of overlapping due to the parameter d :
a smaller value of d involves a larger overlapping of two consecutive data batches. Thus, the data processing is slower
but, for a fixed number of stages, the optimization is carried out on a larger amount of data. As a consequence, the
learning is more effective, generally resulting in a smaller value of the final SSE at the end of the training. Of course,
the computational effort increases. On the contrary, in general a larger value of d results in a larger final SSE, but is
less demanding in terms of the computational load.

9

d SSE MFO
1 5.36 133130
2 5.52 66576
3 5.51 44333
4 5.79 33304
5 5.87 26599
6 5.79 22160
7 5.90 19003
8 5.79 16654
9 5.84 14760
10 5.98 13306
11 5.93 12096
12 5.90 11095
13 6.02 10238
14 6.01 9514
15 5.93 8873

TABLE III

Final SSEs and MFOs of the OBL algorithm with a 2–neuron network for N = 15 , µ = 10, a low noise level, and different

choices of d.

d SSE MFO
1 10.79 389824
2 10.78 196593
3 10.80 131486
4 10.82 99069
5 10.84 79278
6 10.87 66226
7 10.85 56839
8 10.88 49815
9 11.00 44252
10 11.05 39983
11 10.98 36412
12 11.12 33244
13 11.20 30765
14 11.19 28552
15 11.29 26626

TABLE IV

Final SSEs and MFOs of the OBL algorithm with a 5–neuron network for N = 15 , µ = 100, a medium noise level, and

different choices of d.

Comparison results among the various training algorithms are presented in Tables V and VI and in Figs. 5, 6, 7, and
8, for data batches corresponding to those processed by OBL with d = 15 and N = 15 (the results obtained by the OBL
training for suitable choices of µ correspond to the entries with the superscript ∗ in Tables I and II). OBL outperforms
both LMBL and BPBL (note that LMBL shows a fast rate of decrease in the SSE but the final SSE value is the largest).
As regards the comparison with EKFBL, OBL yields better or similar results (see Tables V and VI). However, it should
be stressed that the performance of the EKFBL is obtained at the expense of a much higher computational load.

We now focus on Figs. 5, 6, 7, and 8. First of all, note that LMBL has a final SSE almost one order of magnitude
larger than those of the other algorithms. Hence, let us neglect the results of LMBL and consider the final SSE for
BPBL, which is the algorithm with the worst performance among EKFBL, OBL, and BPBL. The purpose is to compare
the computational loads required by the three algorithms, to achieve the BPBL accuracy. From Tables V and VI with a
medium noise level, it turns out that the final SSEs for BPBL are equal about to 17.71 and 11.46 for the 2–neuron and
5–neuron networks, respectively. After obtaining from Figs. 5 and 7 the iteration steps associated with these SSE values

10

0 100 200 300 400 500 600 700 800
0

500

1000

1500

2000

2500

3000

3500
OBL

S
S

E

iteration step

d=1
d=2
d=4
d=8
d=12
d=15

100 200 300 400 500 600 700 800
5

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6
OBL (zoom)

S
S

E

iteration step

d=1
d=2
d=4
d=8
d=12
d=15

Fig. 3. SSEs for OBL with a 2–neuron network for different choices of d , N = 15 , µ = 10 , and a low noise level.

0 200 400 600 800 1000 1200
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
OBL

S
S

E

iteration step

d=1
d=2
d=4
d=8
d=12
d=15

200 400 600 800 1000 1200
10.4

10.6

10.8

11

11.2

11.4

11.6

11.8

12
OBL (zoom)

S
S

E

iteration step

d=1
d=2
d=4
d=8
d=12
d=15

Fig. 4. SSEs for OBL with a 5–neuron network for different choices of d , N = 15 , µ = 100 , and a medium noise level.

for the various algorithms, by Figs. 6 and 8 we can compare the computational loads required by BPBL, EKFBL, and
OBL to achieve such errors. Algorithm OBL shows a better performance also according to this comparison criterion:
its computational load is the lowest.

Finally, the prediction capabilities of the different training algorithms are presented in Figs. 9, 10, 11, and 12 for the
angle prediction and in Figs. 13, 14, 15, and 16 for the angular speed prediction (with data batches corresponding to
those processed by OBL with d = 15 and N = 15). Also this comparison shows that OBL outperforms both LMBL
and BPBL. Its performance is comparable with that of EKFBL but is much less demanding in terms of computational
load.

Acknowledgments

The authors are grateful to the anonymous Reviewers for their constructive comments.

References

[1] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representation by error propagation,” in Parallel Distributed
Processing: Explorations in the Microstructures of Cognition, Vol. I: Foundations, D. E. Rumelhart, J. L. McClelland, and the PDP
Research Group, Eds., pp. 318–362. MIT, Cambridge, MA, 1986.

11

noise BPBL EKFBL LMBL OBL
level SSE MFO SSE MFO SSE MFO SSE MFO µ

low 8.32 7438 5.48 1.23 ·104 71.90 6829 4.89 8975 1
medium 17.71 7340 11.59 1.23 ·104 88.65 6834 11.86 9044 5

high 51.49 7408 38.54 1.23 ·104 953.70 6958 39.99 8855 50

TABLE V

Final SSEs and MFOs of the training algorithms with 2–neuron networks.

noise BPBL EKFBL LMBL OBL
level SSE MFO SSE MFO SSE MFO SSE MFO µ

low 4.27 1.61 ·104 2.70 3.24 ·104 52.80 1.48 ·104 3.94 2.79 ·104 1
medium 11.46 1.60 ·104 9.13 3.24 ·104 60.61 1.48 ·104 10.89 2.78 ·104 5

high 41.60 1.60 ·104 36.97 3.24 ·104 395.34 1.56 ·104 39.14 2.75 ·104 50

TABLE VI

Final SSEs and MFOs of the training algorithms with 5–neuron networks.

[2] T. Parisini, and R. Zoppoli, “Neural networks for feedback feedforward nonlinear control systems,” IEEE Trans. Neural Networks, vol.
67, pp. 275–302, 1994.

[3] A. Alessandri, T. Parisini, and R. Zoppoli, “Neural approximators for finite-memory state estimation,” Int. J. Control, vol. 70, pp.
275–302, 1997.

[4] T. Parisini, M. Sanguineti, and R. Zoppoli, “Nonlinear stabilization by receding-horizon neural regulators,” Int. J. Control, vol. 70, pp.
341–362, 1998.

[5] S. R. Chu, R. Shoureshi, and M. Tenorio, “Neural networks for system identification,” IEEE Control Syst. Mag., vol. 10, pp. 31–35,
1990.

[6] R. Zoppoli, M. Sanguineti, and T. Parisini, “Approximating networks and extended Ritz method for the solution of functional opti-
mization problems,” J. of Optimization Theory and Applications, vol. 112, February 2002.

[7] K. S. Narendra and K. Parthasarathy, “Identification and control of dynamic systems using neural networks,” IEEE Trans. Neural
Networks, vol. 1, pp. 4–27, 1990.

[8] T. J. Sejnowski and C. R. Rosenberg, “Parallel networks that learn to pronounce English text,” Complex Syst., vol. 1, pp. 145–168,
1987.

[9] D. J. Burr, “Experiments on neural net recognition of spoken and written text,” IEEE Trans. Acoustics, Speech, and Signal Processing,
vol. 30, pp. 1162–1168, 1988.

[10] A. Alessandri, M. Baglietto, T. Parisini, and R. Zoppoli, “A neural state estimator with bounded errors for nonlinear systems,” IEEE
Trans. Automat. Contr., vol. 44, pp. 2028–2042, 1999.

[11] R. Fletcher, Practical Methods of Optimization, Wiley, Chichester, 1987.
[12] R. Battiti, “First- and second-order methods for learning: between steepest descent and Newton’s method,” Neural Computation, vol.

4, pp. 141–166, 1992.
[13] T. Tollenaere, “SuperSAB: fast adaptive backpropagation with good scaling properties,” Neural Networks, vol. 3, pp. 561–573, 1990.

500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

S
S

E

iteration step

BPBL, EKFBL, LMBL, and OBL

BPBL
EKFBL
LMBL
OBL

500 1000 1500 2000 2500 3000
0

10

20

30

40

50

60

70

80

90

84
118

184

S
S

E

iteration step

BPBL, EKFBL, LMBL, and OBL (zoom)

BPBL
EKFBL
LMBL
OBL

Fig. 5. SSEs for BPBL, EKFBL, LMBL, and OBL with 2–neuron networks and medium noise levels.

12

500 1000 1500 2000 2500 3000
0

2000

4000

6000

8000

10000

12000

M
F

O

iteration step

BPBL, EKFBL, LMBL, and OBL

BPBL
EKFBL
LMBL
OBL

50 100 150 200 250
0

100

200

300

400

500

600

700

800

900

1000

1100

84 118 184

OBL x
BPBL x

EKFBL x

BPBL, EKFBL, LMBL, and OBL (zoom)

M
F

O

iteration step

BPBL
EKFBL
LMBL
OBL

Fig. 6. MFOs for BPBL, EKFBL, LMBL, and OBL with 2–neuron networks and medium noise levels.

500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

S
S

E

iteration step

BPBL, EKFBL, LMBL, and OBL

BPBL
EKFBL
LMBL
OBL

500 1000 1500 2000 2500 3000
0

10

20

30

40

50

60

70

228 660 806

BPBL, EKFBL, LMBL, and OBL (zoom)

S
S

E

iteration step

BPBL
EKFBL
LMBL
OBL

Fig. 7. SSEs for BPBL, EKFBL, LMBL, and OBL with 5–neuron networks and medium noise levels.

[14] R. A. Jacobs, “Increased rates of convergence through learning rate adaption,” Neural Networks, vol. 1, pp. 295–307, 1988.
[15] J. W. Denton and M. S. Hung, “A comparison of nonlinear optimization methods for supervised learning in multilayer feedforward

neural networks,” European Journal of Operational Research, vol. 93, pp. 358–368, 1996.
[16] G. An, “The effects of adding noise during backpropagation training on a generalization performance,” Neural Computation, vol. 8, pp.

643–674, 1996.
[17] S. Singhal and L. Wu, “Training multilayer perceptrons with the extended Kalman algorithm,” in Advances in Neural Information

Processing Systems 1, D. S. Touretzky, Ed., pp. 133–140. Morgan Kaufmann, San Mateo, CA, 1989.
[18] Y. Iiguni, H. Sakai, and H. Tokumaru, “A real-time learning algorithm for a multilayered neural network based on the extended Kalman

filter,” IEEE Trans. Signal Processing, vol. 40, pp. 959–966, 1992.
[19] D. W. Ruck, S. K. Rogers, M. Kabrisky, P. S. Maybeck, and M. E. Oxley, “Comparative analysis of backpropagation and the extended

Kalman filter for training multilayer perceptrons,” IEEE Trans. Pattern Anal. Machine Intell., vol. 14, pp. 686–691, 1992.
[20] M. Stinchcombe and H. White, “Approximation and learning unknown mappings using multilayer feedforward networks with bounded

weights,” in Proc. Int. Joint Conf. on Neural Networks, 1990, pp. III7 – III16.
[21] K. Hornik, “Some new results on neural network approximation,” Neural Networks, vol. 6, pp. 1069–1072, 1993.
[22] V. Kůrková, “Approximation of functions by perceptron networks with bounded number of hidden units,” Neural Networks, vol. 8, pp.

745–750, 1995.
[23] V. Kůrková, “Neural networks as nonlinear approximators,” in Proc. ICSC Symposia on Neural Computation, pp. 29–35, 2000.
[24] P. Niyogi and F. Girosi, “On the relationship between generalization error, hypothesis complexity and sample complexity for radial

basis functions,” Neural Computation, vol. 8, pp. 819–842, 1996.
[25] A. R. Barron, “Approximation and estimation bounds for artificial neural networks,” Machine Learning, vol. 14, pp. 115–133, 1994.
[26] H. J. Sussmann, “Uniqueness of the weights for minimal feedforward nets with a given input–output map,” Neural Networks, vol. 5,

pp. 589–593, 1992.
[27] A. R. Barron, “Universal approximation bounds for superpositions of a sigmoidal function,” IEEE Trans. Inform. Theory, vol. 39, pp.

930–945, 1993.
[28] V. Kůrková and M. Sanguineti, “Comparison of worst-case errors in linear and neural network approximation,” IEEE Trans. Inform.

Theory, vol. 48, 2002.

13

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

228 660 806

OBLx
BPBLx

EKFBL x

M
F

O

iteration step

BPBL, EKFBL, LMBL, and OBL

BPBL
EKFBL
LMBL
OBL

Fig. 8. MFOs for BPBL, EKFBL, LMBL, and OBL with 5–neuron networks and medium noise levels.

0 50 100 150 200 250 300 350 400 450 500
−1500

−1000

−500

0

500

1000

1500

2000

2500

[d
eg

]

time [s]

 y1 − BPBL

output
predicted output

0 10 20 30 40 50 60 70 80 90 100

−1600

−1400

−1200

−1000

−800

−600

−400

−200

0

200

400

[d
eg

]

time [s]

 y1 − BPBL (zoom)

output
predicted output

Fig. 9. y1 prediction for BPBL (5–neuron network) with a medium noise level.

[29] V. Kůrková and M. Sanguineti, “Bounds on rates of variable-basis and neural-network approximation,” IEEE Trans. Inform. Theory,
vol. 47, pp. 2659-2665, 2001.

[30] F. Girosi and G. Anzellotti, “Rates of convergence for radial basis functions and neural networks,” in Artificial Neural Networks for
Speech and Vision, R. J. Mammone, Ed., pp. 97–113. Chapman & Hall, 1993.

[31] T. Heskes and W. Wiegerinck, “A theoretical comparison of batch-mode, on-line, cyclic, and almost-cyclic learning,” IEEE Trans.
Neural Networks, vol. 7, pp. 919–925, 1996.

[32] F. Girosi, M. Jones, and T. Poggio, “Regularization theory and neural networks architectures,” Neural Computation, vol. 7, pp. 219–269,
1995.

14

0 50 100 150 200 250 300 350 400 450 500
−1500

−1000

−500

0

500

1000

1500

2000

2500
[d

eg
]

time [s]

 y1 − EKFBL

output
predicted output

0 10 20 30 40 50 60 70 80 90 100

−1600

−1400

−1200

−1000

−800

−600

−400

−200

0

200

400

[d
eg

]

time [s]

 y1 − EKFBL (zoom)

output
predicted output

Fig. 10. y1 prediction for EKFBL (5–neuron network) with a medium noise level.

0 50 100 150 200 250 300 350 400 450 500
−1500

−1000

−500

0

500

1000

1500

2000

2500

[d
eg

]

time [s]

 y1 − LMBL

output
predicted output

0 10 20 30 40 50 60 70 80 90 100

−1600

−1400

−1200

−1000

−800

−600

−400

−200

0

200

400

[d
eg

]

time [s]

 y1 − LMBL (zoom)

output
predicted output

Fig. 11. y1 prediction for LMBL (5–neuron network) with a medium noise level.

Angelo Alessandri was born in Genova, Italy, in 1967. He received the “Laurea” degree in electronic engineering in
1992 and the PhD degree in electronic engineering and computer science in 1996, both from the University of Genoa.
Since 1997, he has been Adjunct Professor of System Analysis at DIST (Department of Communications, Computer
and System Sciences), University of Genoa. Since 1996, he has been a Research Scientist at the Naval Automation
Institute of the National Research Council of Italy, Genova (IAN-CNR). In 1998, he was a Visiting Scientist at the Naval
Postgraduate School, Monterey, California. His research interests include neural networks, optimal control, estimation
and fault diagnosis.

Dr. Alessandri is currently an Associate Editor for the IEEE Control Systems Society Conference Editorial Board.

15

0 50 100 150 200 250 300 350 400 450 500
−1500

−1000

−500

0

500

1000

1500

2000

2500
[d

eg
]

time [s]

 y1 − OBL

output
predicted output

0 10 20 30 40 50 60 70 80 90 100

−1600

−1400

−1200

−1000

−800

−600

−400

−200

0

200

400

[d
eg

]

time [s]

 y1 − OBL (zoom)

output
predicted output

Fig. 12. y1 prediction for OBL (5–neuron network) with a medium noise level.

0 50 100 150 200 250 300 350 400 450 500
−30

−20

−10

0

10

20

30

40

50

60

[d
eg

 /
se

c
]

time [s]

 y2 − BPBL

output
predicted output

0 10 20 30 40 50 60 70 80 90 100
−30

−20

−10

0

10

20

30

40

50

60

[d
eg

 /
se

c
]

time [s]

 y2 − BPBL (zoom)

output
predicted output

Fig. 13. y2 prediction for BPBL (5–neuron network) with a medium noise level.

Marcello Sanguineti was born in Chiavari (Genova), Italy, in 1968. He received the “Laurea” degree in electronic
engineering in 1992 and the Ph.D. degree in electronic engineering and computer science in 1996, both from the
University of Genoa, Italy. Since 2000, he has been Adjunct Professor of System Analysis and of Functional Analysis
for Optimization at DIST (Department of Communications, Computer and System Sciences), University of Genoa.
Since 1997, he has spent several periods as Visiting Scientist at the Institute of Computer Science, Czech Academy of
Sciences, Prague. He is currently a Research Associate at DIST.

His research interests include optimal control, neural networks, nonlinear approximation, and nonlinear dynamic systems.

Manfredi Maggiore received the “Laurea” degree in Electronic Engineering in 1996 from the University of Genoa,
Italy, and the PhD degree in Electrical Engineering from the Ohio State University, USA, in 2000. He is currently
Assistant Professor in the Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of
Toronto, Canada. His research interests include various aspects of nonlinear control, such as output feedaback control
and output tracking, and nonlinear estimation.

16

0 50 100 150 200 250 300 350 400 450 500
−30

−20

−10

0

10

20

30

40

50

60

[d
eg

 /
se

c
]

time [s]

 y2 − EKFBL

output
predicted output

0 10 20 30 40 50 60 70 80 90 100
−30

−20

−10

0

10

20

30

40

50

60

[d
eg

 /
se

c
]

time [s]

 y2 − EKFBL (zoom)

output
predicted output

Fig. 14. y2 prediction for EKFBL (5–neuron network) with medium noise level.

0 50 100 150 200 250 300 350 400 450 500
−30

−20

−10

0

10

20

30

40

50

60

[d
eg

 /
se

c
]

time [s]

 y2 − LMBL

output
predicted output

0 10 20 30 40 50 60 70 80 90 100
−30

−20

−10

0

10

20

30

40

50

60

[d
eg

 /
se

c
]

time [s]

 y2 − LMBL (zoom)

output
predicted output

Fig. 15. y2 prediction for LMBL (5–neuron network) with a medium noise level.

Fig. 16. y2 prediction for OBL (5–neuron network) with a medium noise level.

