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I. SOME PRELIMINARY ISSUES ON DETERMINISTIC 
NONLINEAR STATE ESTIMATION 

Let us consider the discrete-time dynamic system 

where C~ E R" ,xt R" , and gt E RP are the state, 
control, and measurement vectors, respectively. The initial 
state 5 is unknown. We assume that 5 E X and 5 E U ,  
where X and U are compact sets. 

Now, let us consider a sliding-window observer. This 
means that, a t  a given stage t and for a given temporal win- 
dow of length N stages, we have to recovery c ~ - ~  on the 
basis of the last N + 1 measurement vectors SbN,.  . . ,g, 
and the last N control vectors, % L t - N , .  . . ,%-l. For 
t = N ,  N + 1,. . . , let us introduce the following systems 
of nonlinear equations 

A where "0" denotes composition, $-h = col { g t - N ,  
g t -N+l, .  . . , s - ~ }  (similarly, in the following, we let 
t n  

!!t-N - Col{! ! t -WIYt-N+l ," ' ,Yt)  1, and, as in [l], 
A 

- f"$(E:,> =f(%,%). 
To state the estimation problem in a time-invariant con- 

text, we need that, besides U, also X be time-invariant. 
This is ensured by ithe following 
A s s u m p t i o n  1. ]For any c E X and for any 14 E U ,  

The following observability definition can now be stated 

Definition. The .system ( I )  and (2) is uniformly N + 1- 
observable with respect to X and U if there exists an in- 
teger N such that, for any TL;~,, E U N ,  the mapping 
- H (zt-.,,g;1,,) : IC -t R P ( ~ + ' )  is injective. 

In order to test the above observability property, we can 
use the following global univalence sufficient conditions [2]. 

Theorem 1. Suppose that, for any E U N ,  
the mapping & (~X,-~,?~;L:_L) is differentiable with re- 
spect to c ~ - ~  E X and define the Jacobian matrix 

, gt-N E X I  Then, 

- f(c, 14) E x . 

[I]. 

t-1 A aH E I W p ( N + l ) x n  
D(?&N, E t - N )  = -- 

&+AI 
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for any stage t 2 N ,  the following two cases can be ad- 
dressed: 
1) If there exists an integer N 2 n such that n = p ( N  + 1) 
and X is a rectangular set, then, for any t$& E U N ,  - H 
is globally univalent on X if D(gt-N,t i ; -&) is either a 
P-matrix or an N-matrix, Vc,-, E X, t~i-k E U N .  

2) If an integer N 2 n such that n = p(N + 1) does not 
exist, and X is a convex set, then, for any giIh E U N ,  
- H is globally univalent on X if there exists a matrix A E 

has the following (row) Diagonal Dominance Property: 
t-1 A such that C ( C t - N ,  Ett-N) = Eiza) 

R n x d N + l )  

l c % S ( ~ - N 9 & I & ) l  > ICt3(C.t-N,dZh)I,  vgt-N E x, 
3:3#t 

where c13 denotes the i-th row, j-th column element of 
matrix C. 

Let us now define the set Y 4 h(X), Y c Rp. The 
N + l-observability of (1),(2) implies the possibility of 
solving the nonlinear system (3) uniquely for any vec- 
tor in YNtl x U N  and for any stage t 2 N .  This 
means the existence of the time-invariant mapping gtt-N = 
I(t!i-N,gtzh), which constitutes an order N + l  dead-beat 
observer for (1),(2). Clearly, in the general nonlinear case, 
computing I(g-N,&Ih) in analytical form is a hard, al- 
most impossible task. In [I], a Newton's algorithm to solve 
(3) is described. Under suitable assumptions, it is shown 
that this algorithm gives rise to an asymptotic observer for 

11. STATE ESTIMATION ON THE BASIS OF NOISY MEASURES 

( 1 ) W  

Let us consider the case in which an additive noise affects 
the measurement channel. Then, (2) becomes 

3 = h(c,)+71t, t = 0 , 1 ,  ... (4) 

We assume the statistics of the random sequence {%, t = 
O , l ,  ...} to be unknown. However, we also assume that 
2, E E c R' , where E is a known compact set. As an exact 
recovery of the state vector is now impossible, by following 
a traditional least-squares approach, for t = N, N + 1,. . . , 
we define the following sliding-window estimation error: 

t 

i=t--N 

where zit, i = t - N , .  . . , t ,  is the estimate of ci derived at 
the stage t on the basis of t~i-k, and the prediction 

p is a positive scalar that expresses our belief in the 
ratio between the prediction error and the magnitudes of 



the measurement noises. i& is an arbitrary vector belonging 
to x. 

Now, let us define the compact set Y = (2 E R P :  g = 
h(z) + y, V g  E X ,  V z  E E } .  Define also the set of optimal 
predictions (see Problem 1 below) as X f .  Then, we can 
state the following 
Problem 1. At any stage t = N , N  + 1 ,..., 
find the optimal state estimator - ~ ~ - ~ ( g ~ - ~ ,  
? / i - N , ~ t - N ) :  X,P x YN+' x U N  R" that minimizes 
the cost (5) under the constraints 

A 

- 0 0  

t - 1  

&%+I+ = f ( Z , , , E J ,  i = t - N , . . . , t - l  ( 6 )  

The minimizations are linked sequentially by the optimal 
predictions 

Solving Problem 1 enables one to  generate a sequential 
state estimator. 

111. A CONDITION FOR THE CONVERGENCE OF THE STATE 
ESTIMATE 

Define the set of optimal estimates 2; as Xp and intrc- 
duce the following 

A s s u m p t i o n  2. There exists a compact set 8 such that 
8 2 xu (U:: xt") . 

Let us now introduce some notations and useful quanti- 
ties. Given a matrix A = AT > 0, let us denote by Amin(A) 
and Xm,,(A) the minimum and maximum eigenvalues of 
A, respectively. Given a generic matrix B ,  IIBllmax = 
llBll = ,/- and llBllmin e d-. Fur- 
ther, let us define the set X as the closed convex hull 
of 2. Let us assume f and & to be Lipschitz func- 
tions on X with the constants k j  and kh, respectively. 

A 

2 I/';; + . . . + kL+, , where 6; > 0 are suitable scalars 

V g i - N ,  ~ y - ~  E X ;  Vu:::, 6 U N  (the z i  do exist as we 
are addressing composition of Lipschitz functions). Finally, 
the following further assumption is needed: 
Assumption 3. There exists an integer N such that, for 
any u:Ik E U , the mapping g ( E ~ - ~ , & I L )  : X --t 

R"(~+ ' )  is an injective immersion. 
Then, we can state the following results. 

N 

Theorem 2. Suppose that Assumptions 1,2, and 3 are 
verified. Denote by ct-N = gt-N - &:q-N,t the es- 
timation error a t  stage t - N .  Consider the largest 
closed ball N(r,) of radius re and with the center in 
the origin such that E N(r,), and define the scalar 

A 

A max 
?7r -N, . . . l" t€EN+1 

llcol(yt-N,. . . , g t ) l [ .  If there exists a r,, = 

choice of p for which the inequalities 

(1 - k f ) 2 p 3 + ( 3 + k ;  - 4 k j ) 6 2 p 2  

+(364 - 2 k f b 4  - 8kk2k3fr,) p + S6 > 0 (8) 

( k j  - l ) p  < (9) 
are satisfied, the second-order equation 

has the two real positive roots <- and tt, with 4- < t t .  
inequality 

Then, if the choice of p yields also the fulfilment of the 

we have 

It is worth noting that Assumption 2 has been introduced 
such that the constants kj, kh, 6, and A are well-defined on 
the compact set X ,  but it does not influence the convergence 
of the estimation error. In other terms, if the inequalities 
introduced in Theorem 2 are satisfied so that the bound 
(11) holds true, it is easy to show that Assumption 2 is 
verified. 

As the statement of Problem 1 does not impose any par- 
ticular way of computing &:-N,  we have two possibilities: 

1 )  On-line computation. Problem 1 can be regarded as a 
nonlinear programming one. The main advantage of this 
approach is that many well-established nonlinear program- 
ming techniques are available to  solve this problem. 
2 )  OJJZine computation. This approach implies that the 
function Ii-N(g:-N,t!i-N,&I&) has to  be computed "a 
priori" and stored in the observer's memory. This enables 
the optimal estimates to be determined on line "instanta- 
neously". Clearly, the off-line computation has advantages 
and disadvantages that are opposite to  the ones of the on- 
line approach. No on-line computational effort is requested 
from the observer, but a large amount of computer memory 
may be required to  store the estimation law. 

Iv. THE NEURAL APPROXIMATION FOR THE NONLINEAR 
OBSERVER AND A SIMULATION EXAMPLE 

To state the problem in a time-invariant context, we need 
a further assumption (analogous to Assumption 2). 
Assumpt ion  4. There exists a set Xp such that XP _> 
(U:=; Xt") * 

If Assumption 4 is verified, in virtue of the time- 
invariance of (1),(2), and (5), the index t - N  can be dropped 
from the function and the stationary estimation law 
- Y o ( Z ~ - , N , g i - N , g ~ ~ & )  can be addressed. Then, without 
loss of generality, we consider the stage t = N , hence we 
state Problem 1 in the following equivalent way: 
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Problem 1’. Find the optimal estimation law = 
~ o ( ~ , & N , ~ N - ’ )  that minimizes the cost (5) under the con- 
straints (6) for any j$ € Xp,&N € Y N t l ,  %N-’ € UN. 

As Problem 1’ cannot in general be solved analytically, 
we propose to approximate ~ “ ( g ,  &N, aN-’) by a function 
- ?(%,& ,% ,g), CO which we assign a given structure. 
- w IS a vector of para,meters to be optimized. Among vari- 
ous possible approximating functions, we choose multilayer 
feedforward neural networks (in this case, g is the vector 
of the synaptic weighits). 

Theorem 2 can be extended [3] to the case of approxi- 
mate solutions of PrlDblem 1 (i.e., to Problem 1’). Shortly 
put, a positive scalar E, denoting the maximum approxi- 
mation error, can be computed for which a result analo- 
gous to that of Theorem 2 holds true. Therefore, we have 
to specify the magnitudes of the errors generated by the 
law &, = ~ ( ~ , & N , & - l , ~ ) .  To this end, we assume that 
the approximating neural function contains only one hid- 
den layer composed of U neural units, and that the output 
layer is composed of linear activation units. We denote such 

N N--3 

a function by I(”)(%, g, g-’, tu). Then, we can state the 
following 
Theorem 3. Assume that the optimal estimation function 
~o(~,&N,z&N-l> is iunique and that it is a C [ X p  x YNtl x 
v N ,  ~ “ 1  function. Then, for any E E R, E > 0 ,  there exist 
an integer v and a weight vector w such that 

The above theorem has been derived from a well-known 
property, according to  which continuous functions can be 
approximated, to any degree of accuracy, on a given com- 
pact set by feedforward neural networks based on sigmoidal 
functions, provided that the number Y of neural units is 
sufficiently large. In order to guarantee the aforementioned 
uniform bound to  the approximation error, the following 
min-max problem is stated. 
Problem 2. Find the number v* of neural units such that 

As to  the number v* of neural units, rather a naive trial- 
and-error procedure for determining them is the following: 
increase v until the, term on the left-hand side of (13) is 
less than or equal tal 6. 

To show the effectiveness of the proposed neural approach 
to the nonlinear state estimation problem, let us consider 
a Target Motion Analysis (TMA) problem, in particular, 
the class of nonlineatr passive tracking problems known as 
Bearings Only Measurements Problems (BOMPs). A mo- 
bile target Q is moving at velocity gq, while an observer 
P, moving at  velocity g p ,  is trying to  track it by using 
only noisy measurements of the line-of-sight angle p. Let 
us denote by ct the relative position of Q with respect to 
P and by pt the corresponding relative velocity. The sys- 
tem can be modelled by a linear equation cttl = Act + 
BE, + it, t = 0 , 1 , .  . . , where ct =  col(^,, , uz l ,  rY1,  uy l ) ,  

A 

a 3 = COI(U,~, uyl)  in the acceleration vector, and matrices 
A and B can be easily computed on the basis of the sam- 
pling period T = 0.1s. The nonlinear observation channel 

is given by pt = arctan(ryt/rZt)+qt, t = 0,1,. . . . Moreover 
N N ( ( 2 . 2 , 2 , 2 . 2 , - 2 ) T , C , , ) ,  qt *v N (O,a:), with 

E,, = diag (0.08,0.0008,0.08,0.0008) and 0: = 0.3 
It is assumed that the target is travelling at a constant 
speed of 0.8ms-’ in the 45’ direction, while the observer 
is traversing a multileg maneuver consisting of known peri- 
odic changes in the components of gt .  

The RMS estimation errors on T,, of the neural observer 
(derived by the mini-max technique) and of the EKF are 
compared in Fig. 1. Similar behaviors can be shown con- 
cerning the other state variables. 

I 
ab neural ODserYBr 

I b) EKF 

c) EKF with inaccurate 
wanamss maaces 

temporal stape 

Fig. 1. Behaviors of the estimates of rzl generated by the 
neural observer and by the EKF. 

It can be seen that the neural observer, after a certain 
number of temporal stages, behaves better than the EKF. 
This can be easily explained by considering that the EKF 
has a complete knowledge on the statistics of the random 
variables. Instead, the initial value &, is chosen arbitrar- 
ily, possibly quite far from the corresponding true value. 
Moreover, the EKF turns out to be quite sensitive to the 
statistics of the random variables as is shown in diagram c) 
where incorrect initializations of the covariances matrices 
are considered. 

Of course, more complete theoretical and experimental 
results are needed to establish under what conditions (i.e., 
strong nonlinearities and large noises) the neural observer 
performs better than the EKF. 

REFERENCES 
[I] P. E. Moraal and J. W. Grizzle, UObserver design for 

nonlinear systems with discrete-time measurements,” 
IEEE Trans. on Automatic Control, Vol. 40, No. 3, pp. 

J. M. Fitts, “On the observability of nonlinear systems 
with applications to nonlinear regression analysis,” In- 
formation Sciences, Vol. 4, pp. 129-156, 1972. 
A. Alessandri, M. Maggiore, T. Parisiii, and R. Zop 
poli, “A condition for the error convergence of an 
asymptotic nonlinear state estimator,” DIST Tech. Re- 
port No. 96/1, 1996. 

395-404, 1995. 
[2] 

[3] 

1463 


