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Abstract

State Based Control of Timed Discrete Event Systems using Binary Decision Diagrams

Ali Saadatpoor

Master of Applied Science

Graduate Department of Electrical and Computer Engineering

University of Toronto

2004

This thesis discusses a new synthesis approach to the supervisory control of Timed

Discrete Event Systems (TDES).

The new approach is much more efficient than the existing synthesis approaches. Us-

ing this method, many practical systems can be synthesized using a personal computer.

Besides, it is shown that the number of nodes in the Binary Decision Diagram (BDD)

representing a TDES can be a better measurement of the complexity of the TDES than

the number of states and transitions.

The structural information of the timers in a given TDES together with the reduction

properties of BDDs are exploited to help this new method achieve more efficient perfor-

mance. The algorithm is based on the fact that each flat structure can be divided into

smaller structures.

The success of our new approach is illustrated with very large versions of existing exam-

ples taken from the literature.
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Chapter 1

Introduction

In this chapter a brief introduction to Discrete-Event Systems (DES), Timed Discrete-

Event Systems (TDES) and related research work is provided. Section 1.1 is an intro-

duction to DES. In Section 1.2 TDES are introduced. Section 1.3 presents the objective

of this thesis.

1.1 Discrete-Event Systems

Discrete event systems (DES) encompass a wide variety of physical systems that arise in

technology. These include manufacturing systems, traffic systems, logistic systems ( for

the distribution and storage of goods, or the delivery of services), database management

systems, communication protocols, and data communication networks. Typically the

processes associated with these systems may be thought of as discrete ( in time and state

space ), asynchronous ( event-driven rather than clock-driven ), and in some sense non-

deterministic. The underlying primitive concepts include events, conditions and signals

[29].

In the last two decades, DES have been studied by researchers from different fields and

with respect to modeling, analysis and control. Quite a few models have been proposed

and investigated. These models can be classified as untimed DES models and timed DES

1



Chapter 1. Introduction 2

models.

In an untimed model, when considering the state evolution, only the sequence of

states visited is of concern. That is, we are only interested in the logical behavior of the

system, for instance, whether or not the system will enter a particular state, but we don’t

care when the system enters that state or how long the system remains there.

In a timed model, both logical behavior and timing information are considered. That

is, we are concerned not only with the problem of whether or not the system will enter

a particular state, but also with when the system enters that state and how long the

system will remain there. Timed models are often used for performance analysis.

1.2 Timed Discrete Event Systems

Timing introduces a new dimension of discrete-event system modelling and control, of

considerable applied interest but also of significant complexity. Many approaches are

possible. The first that we know to have been proposed in the setting of [26] is that

of Moller [21], who assigns time delays to events but does not explore their implication

for control. In the framework of [26] , Li and Wonham [15] investigate the effects of

temporal delays. Brave and Heyman [6] introduce time intervals for the possible occur-

rence of enabled events, relative to the time instant at which the current state is entered,

and demonstrate how temporal features and logic-based features of behavior might be

separated for independent treatment. An alternative perspective on timed models for

controlled DES may be found in [10], which treats hierarchical layering induced by em-

pirical separation of time scales.

Brandin and Wonham [5] adjoins to the structure of [26] the timing features of timed

transition models (TTM)[23][22][24]. The BW framework, which we use in this thesis,

retains the concept of maximally permissive supervision introduced in [26] , allows the

timed modelling of DES, admits subsystem composition, admits forcing and disablement
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as means of control and allows modular supervision, possibly under the constraint of

partial observation.

1.3 Objective of the Thesis

In Ramadge-Wonham theory, an automaton (in practice, finite) is used to model both the

plant to be controlled and the specification. The RW approach successfully showed the

existence and theoretical synthesis procedure of the nonblocking supervisory controller.

Different kinds of synthesis methods are developed and implemented as software CTCT

1 for untimed models and TTCT for timed models to compute optimal controllers such

that the controlled system not only satisfies the specifications but is also as permissive as

possible. However, this implementation of RW theory can only solve problems of small

state size. This is because an exhaustive list is used to represent the whole model of a

system in TCT. Given that many practical systems have a great number of states, TCT

has a very limited use in the synthesis of practical control problems. The inefficiency

of this approach is directly related to the assumption of ignorance of all the structural

information in a real world system. TCT uses the easiest way to achieve nonblocking,i.e.

exhaustive search of entire reachable state space. This has been considered infeasible in

its computational aspect.

In [30], the exhaustive search is optimized by using the structural properties for untimed

models. This optimization was implemented by Integer Decision Diagrams using a soft-

ware called STCT. For complex DES systems, STCT offers far better performance than

CTCT.

The goal of this thesis is to extend the method in [30] to Timed-DES. We want to show

that the structural information present in the structure of a TDES can be used to op-

1CTCT stands for “C based Toy Control Theory”. Originally there was a TCT written in Pascal,
which was given the name “toy” because of its limited ability to deal with large scale systems. Later it
was rewritten in C and thus got the name CTCT.
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timize the exhaustive search through the entire state space of the TDES, which grows

much faster than untimed models. In order to achieve this goal, we use state-based con-

trol of Timed-DES instead of language-based control using predicates. Then we provide

an algorithm for structurally searching the reachable state space. After that we use Bi-

nary Decision Diagrams in order to represent the predicates in compressed form. At the

end of the thesis, we will show the efficiency of this new method in comparison with the

previous implementation TTCT.



Chapter 2

Supervisory Control of Timed

Discrete Event Systems

Timed discrete event systems (TDES) are introduced in order to deal with not only

logical specifications but also temporal specifications. A variety of frameworks for the

representation of TDES have been presented in computer science and engineering dis-

ciplines. However, most of them are developed for the verification of the system, such

as Timed Petri Nets and Timed Transition Models. For synthesis purposes, a timed

automaton [25][4][5] is introduced.

2.1 Timed Discrete Event Systems

In this section, the Brandin and Wonham TDES model will be reviewed. First, we

consider a finite automaton Gact = (A, Σact, δact, a0, Am), called an activity transition

graph (ATG) to describe the untimed behavior of the system. In Gact, A is the finite

set of activities, Σact is the finite set of events, a partial function δact : A× Σact −→ A is

the activity transition function, a0 ∈ A is the initial activity, and Am ⊆ A is the set of

marked activities.

In order to construct a TDES model, timing information is introduced into Gact. Let

5
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N denote the set of all nonnegative integers. In Σact, each event σ will be equipped

with a lower time bound lσ ∈ N and an upper time bound uσ ∈ N ∪ {∞} such that

lσ ≤ uσ. Then the set of events is decomposed into two subsets Σspe = {σ ∈ Σact|uσ ∈ N}
and Σrem = {σ ∈ Σact|uσ = ∞}. Σspe (respectively Σrem ) is the set of prospective

(respectively, remote) events whose upper time bounds are finite (respectively, infinite).

The lower time bound would typically represent a delay, in communication or in control

enforcement; while an upper time bound is a hard deadline, imposed by legal specification

or physical necessity.

For each σ ∈ Σact, the timer interval Tσ is defined as

Tσ =





[0, uσ] if σ ∈ Σspe

[0, lσ] if σ ∈ Σrem

The TDES defined by Brandin and Wonham [5] is a finite automaton

G = (Q, Σ, δ, q0, Qm)

which can be displayed by timed transition graph (TTG). The state set Q is defined as

Q = A×
∏
{Tσ|σ ∈ Σact}

A state q ∈ Q is of the form q = (a, {tσ|σ ∈ Σact}), where a ∈ A and tσ ∈ Tσ. The initial

state q0 ∈ Q is defined as q0 = (a0, {tσ,0|σ ∈ Σact}) where

tσ,0 =





uσ, if σ ∈ Σspe

lσ, if σ ∈ Σrem

The set Qm ∈ Q is given by a subset of Am×
∏{Tσ|σ ∈ Σact}. The event set Σ is defined

as Σ = Σact ∪ {tick},where the additional event tick represents the passage of one time

unit. The state transition function δ : Q×Σ −→ Q is defined as follows. For any σ ∈ Σ

and any q = (a, {tτ |τ ∈ Σact}) ∈ Q, δ(q, σ) is defined, written δ(q, σ)!, if and only if one

of the following conditions holds:
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• σ = tick and ∀τ ∈ Σspe; δact(a, τ)! ⇒ tτ > 0

i.e. no deadline of a prospective event in q is 0.

• σ ∈ Σspe and δact(a, σ)! and 0 ≤ tσ ≤ uσ − lσ

i.e. if σ is defined at activity a in Gact and the delay in its occurrence has been

passed, it can occur but it should occur before its deadline.

• σ ∈ Σrem and δact(a, σ)! and tσ = 0

i.e. if σ is defined at activity a in Gact and the delay in occurring it has been

passed, it can occur.

When δ(q, σ)!,q′ = δ(q, σ) = (a′, {t′τ |τ ∈ Σact}) is defined as follows:

1. If σ = tick, then a′ := a and, for each τ ∈ Σact,

• if τ ∈ Σspe,

t′τ :=





uτ , if δact(a, τ) is not defined

tτ − 1, if δact(a, τ)! and tτ > 0

• if τ ∈ Σrem,

t′τ :=





lτ , if δact(a, τ) is not defined

tτ − 1, if δact(a, τ)! and tτ > 0

0, if δact(a, τ)! and tτ = 0

2. if σ ∈ Σact, then a′ := δact(a, σ) and for any τ ∈ Σact,

• if τ 6= σ and τ ∈ Σspe,

t′τ :=





uτ , if δact(a
′, τ) is not defined

tτ , if δact(a
′, τ)!

• if τ = σ and τ ∈ Σspe, t′τ := uσ.

• if τ 6= σ and τ ∈ Σrem,

t′τ :=





lτ , if δact(a
′, τ) is not defined

tτ , if δact(a
′, τ)!
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• if τ = σ and τ ∈ Σrem, t′τ := lσ.

In order to prevent a tick transition from being preempted indefinitely by repeated

execution of an activity loop within a fixed unit time interval, a TDES should be activity-

loop-free (alf) [29] ,i.e.

(∀q ∈ Q)(∀s ∈ Σ+
act) δ(q, s) 6= q

For the readers who are familiar with zeno loops [14], an activity loop behavior is similar

to a zeno loop, in that with an activity loop, an unbounded number of events can occur

in a single tick interval.

Let Σ∗ be the set of all finite strings of elements in Σ, including the empty string ε. The

function δ can be generalized to δ : Q×Σ∗ → Q in the natural way. The closed behavior,

the strings that are generated by G, and marked behavior, the strings that are generated

by G and lead us to a marker state, of the TDES G are defined by

L(G) = {s ∈ Σ∗| δ(q0, s)!}

and

Lm(G) = {s ∈ Σ∗| δ(q0, s) ∈ Qm},

respectively. The term closed behavior is so called because it is a prefix-closed [29]

language.

2.2 Controllability of TDES

Brandin and Wonham have developed a supervisory control framework for TDES [5]. As

in the untimed supervisory control framework, the set Σact is partitioned into two subsets

Σc and Σu of controllable and uncontrollable events, respectively, where Σc ⊆ Σrem,

because the prospective events can not be disabled and they should occur before their

deadline. An event σ ∈ Σact that can preempt the event tick is called a forcible event.

The set of forcible events is denoted by Σfor. A forcible event can be either controllable
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or uncontrollable. By forcing an enabled event in Σfor to occur, we can disable the event

tick. In this framework a supervisor decides to disable or enable each event in Σc∪{tick}.
The simplest way to visualize the behavior of a TDES G under supervision is first to

consider the infinite reachability tree of G before any control is operative [29]. Each node

of the tree corresponds to a unique string s of L(G). At each node of the tree we can

define the subset of eligible events by

EligG(s) := {σ ∈ Σ| sσ ∈ L(G)}

In order to define the notion of controllability we should consider a language K ⊆
L(G)and write

EligK(s) := {σ ∈ Σ| sσ ∈ K̄)}

K is controllable with respect to G if, for all s ∈ K̄

EligK(s) ⊇





EligG(s) ∩ (Σu ∪ {tick}), if EligK(s) ∩ Σfor = ∅
EligG(s) ∩ Σu, if EligK(s) ∩ Σfor 6= ∅

(2.1)

Thus K controllable means that an event σ (in the full alphabet Σ including tick) may

occur in K if σ is currently eligible in G and either (i) σ is uncontrollable, or (ii) σ = tick

and no forcible event is currently eligible in K.

The difference between controllability in TDES and in untimed DES is in the event tick.

Event tick acts as an uncontrollable event in the states where no forcible event is present,

but in the states with one or more forcible events, tick can be preempted (disabled) by

a forcible event. So an event σ can occur in K if σ is currently eligible in G and either

σ is uncontrollable or σ = tick and no forcible event is currently eligible in K.

A supervisory control for G is any map

V : L(G) → 2Σ
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such that, for all s ∈ L(G),

V (s) ⊇





Σu ∪ ({tick} ∩ EligG(s)), if V (s) ∩ EligG(s) ∩ Σfor = ∅
Σu, if V (s) ∩ EligG(s) ∩ Σfor 6= ∅

Actually, V decides after each string s of L(G) which events can be enabled: no uncon-

trollable event can ever be disabled, nor can tick be disabled if there is no forcible event

defined after s. The pair (G,V) will be written V/G, to suggest “G under the supervi-

sion of V”. The closed behavior of V/G is defined to be the language L(V/G) ⊆ L(G)

described as follows

1. ε ∈ L(V/G).

2. if s ∈ L(V/G), σ ∈ V (s), and sσ ∈ L(G) then sσ ∈ L(V/G).

3. No other strings belong to L(V/G).

That is, V/G only generates the strings of L(G) that are admitted by V .

The marked behavior of V/G is

Lm(V/G) = L(V/G) ∩ Lm(G)

Thus the marked behavior of V/G consists exactly of the strings of Lm(G) that survive

under supervision by V .

2.3 Supremal Controllable Sublanguage

Our control objective is, for the given plant language L(G) and the specification lan-

guage E (in computation, also represented by an automaton), to find a supervisor such

that the closed loop language is, in the sense of set inclusion, the largest sublanguage of

E ∩ Lm(G) which is controllable w.r.t G and also nonblocking.
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Let G be a controlled TDES with Σ partitioned as in the previous section. Let

E ⊆ Σ∗. We introduce the set of all sublanguages of E that are controllable with respect

to G:

C(E) = {K ⊆ E| K is controllable wrt G}

Proposition 2.3.1 [29] There exists a unique supremal element in C(E), supC(E), which

can be described as supC(E) =
⋃{K| K ∈ C(E)}.

Proposition 2.3.2 [29] Let E ⊆ Σ∗, and let K=supC(E∩Lm(G)). If K 6= ∅, there exists

a marking nonblocking supervisory control (MNSC) V for G such that Lm(V/G) = K.

Thus K is (if nonempty) the maximally permissive (or minimally restrictive) solution

of the problem of supervising G in such a way that its behavior belongs to E and control

is nonblocking. For more details see [29].



Chapter 3

Introduction to Binary Decision

Diagrams

Binary Decision Diagrams (BDD) were introduced by Akers [1]. Then Bryant [7] in-

troduced operations and algorithms that utilize the ordering of the variables in BDDs.

Bryant showed that an interesting subset of Boolean functions could be represented by

function graphs in size polynomial rather than exponential in the number of variables.

After that, many different diagrams similar to BDDs have emerged. The most important

objective for these types of decision diagrams has been, so far, to derive constructions

that will reduce the complexity of verifying hardware implementing arithmetic (integer)

functions.

The material in this chapter is based on the article by Bryant [7] in which Boolean

functions are represented by Boolean function graphs.

12
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3.1 Function Graphs

In order to define the BDDs, we first present the definition of a function graph.

Definition 3.1.1 Function Graph

1. A function graph is a rooted, directed graph with vertex set V containing two types

of vertices, nonterminal and terminal. A nonterminal vertex v has as attributes

an argument index index (v) ∈ {1 , ..., n} and children child(v , i) ∈ V , 0 ≤ i <

range(v), where n, range(v)∈ Z+. A terminal vertex v has as attribute a value

value(v) ∈ {0, ...,M − 1}, where M ∈ Z+.

2. For any nonterminal vertex v, if child(v, i) is also non-terminal, then index(v) <

index(child(v, i)).

3. The range of a vertex v is equal for all vertices having the same index.

¤

Note that the restriction on indexes makes the function graphs acyclic since any path

from the root vertex to one of the terminal vertices must have strictly increasing index

values.

In order to clarify the above definition, we present a simple example in Figure 3.1. The

vertical axis to the left shows the indices for the vertices. We denote a vertex by vi,j

where i is the index starting from the top with i = 1 and j is the horizontal order in the

picture starting from the left with j = 0. The edge labels in the picture identify each

child of a vertex. If there are more than one label on the same line, then there are several

edges connecting the same pair of vertices. The terminals are placed at the bottom of

the graph, and indicated by a T on the vertical axis. The values of terminals are written

inside the vertices. The range of all the vertices in this example is 2.

We have the following for this function graph:
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index(v1,0) = 1, the root

child(v1,0, 0) = v2,0

child(v1,0, 1) = v2,1

child(v2,0, 0) = v3,0

child(v2,0, 1) = v3,0

child(v2,1, 0) = v3,0

child(v2,1, 1) = vT,1

child(v3,0, 0) = vT,0

child(v3,0, 1) = vT,1

value(vT,0) = 0

value(vT,1) = 1

Figure 3.1: A simple function graph

Now we define the correspondence between the function graphs and functions.
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Definition 3.1.2 Function Graph to Function Connection

A function graph G having a root vertex v denotes a function fv : R1 ×R2 × ...×Rn →
{0, ..., M − 1} where Ri = {0, ..., range(v′)− 1}, index(v′) = i and i ∈ {1, ..., n}, defined

recursively as follows.

1. If v is a terminal vertex, then fv = value(v).

2. If v is a nonterminal vertex with index(v) = i, then fv : Ri × Ri+1 × ... × Rn →
{0, ..., M − 1}, with Ri as above, is the function

fv(xi, xi+1, ..., xn) = fchild(v,xi)(xi+1, ..., xn)

where the function variable xi ∈ (0, 1, ..., range(v) − 1), 1 ≤ i ≤ n, and n is the

maximum index of vertices in G.

¤

The function related to the graph in Figure 3.1 is shown in Table 3.1. The number of

variables of the function is equal to the maximum of the indices of the vertices, namely 3

in this example. x1, x2 and x3 correspond to indices 1,2 and 3. So we start from the root

of the function graph and assign the edge labels to the corresponding function variable

until we reach to a terminal. The value of the terminal will be the value of the function.

x1 x2 x3 f(x1, x2, x3)

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1
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Table 3.1: Function represented by Figure 3.1

The definition above defines fv as an evaluation following one path from the root

vertex down to a terminal vertex. In this general form we have no symbolic representation

of the final fv for the complete graph G. Symbolic representation will be formulated later

in next section.

To be able to form the function graphs with canonical properties (of which the definition

follows) we have to provide some definitions before we can state the theorem on canonical

function graph.

Definition 3.1.3 Isomorphic Function Graphs

The function graphs G and G′ are isomorphic if there exists a one-to-one function θ

from vertices of G onto vertices of G′ such that for any vertex v if θ(v) = v′, then either

both v and v′ are terminal vertices with

value(v) = value(v′)

or both v and v′ are non-terminal vertices with

index(v) = index(v′)

and

θ(child(v, i)) = child(v′, i) 0 ≤ i < range(v)

¤

Remark: Note that range(v) = range(v′).

The mapping θ is in fact quite constrained since a root vertex must be mapped to

another root, and the order of the children must be preserved. The only freedom in the

mapping is that a graph G can be either a tree where all vertices have only one parent, or

vertices can be connected more than once to several parents if that is possible according

to the rules in Definition 3.1.1.
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Definition 3.1.4 Subgraph

For any vertex v in a function graph G, the subgraph rooted at v is defined as the graph

consisting of v and all of its descendants.

Lemma 3.1.1 If G is isomorphic to G′ by the mapping θ, then for any vertex v in G,

the subgraph rooted by v is isomorphic to the subgraph rooted by θ(v).

Definition 3.1.5 Reduced Function Graph

A function graph G is reduced if it contains no vertex v with

child(v, 0) = child(v, 1) = ... = child(v, range(v)− 1),

nor does it contain distinct vertices v and v′ such that the subgraphs rooted by v and v′

are isomorphic.

Lemma 3.1.2 For every vertex v in a reduced function graph, the subgraph rooted by

v is itself a reduced function graph.

We are now ready for the main result about function graphs. For any function f over

a finite domain with a fixed order of variables, there exists a unique (up to isomorphism)

reduced function graph denoting f , and any other function graph denoting f contains

more vertices. This is called a canonical form. The following theorem shows that a

reduced function graph is a canonical form for the corresponding function.

Theorem 3.1.1 [27] Reduced function graph is a canonical form.

3.2 Binary Decision Diagrams

For the case of Boolean functions and variables we use a special form of the reduced

function graph called binary decision diagram (BDD) [7]. The basic idea used in bi-

nary decision diagrams is to rewrite a Boolean expression in a recursive form and reuse
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common subexpressions. In the case of Boolean expressions this leads to highly efficient

computations in most cases.

Suppose we have a Boolean expression f(x1, ..., xn). We can then rewrite it using Shan-

non’s expression formula:

f(x1, ..., xn) = ((¬x1) ∧ f(0, x2, ..., xn)) ∨ (x1 ∧ f(1, x2, ..., xn))

We continue with this recursively for each of the functions f(0, x2, ..., xn) and f(1, x2, ..., xn)

w.r.t x2 and then x3,etc.. Let g1
0(x2, ..., xn) , f(0, x2, ..., xn), g1

1(x2, ..., xn) , f(1, x2, ..., xn)

and generally gi
x′1,...,x′i

(xi+1, ..., xn) , f(x′1, ..., x
′
i, xi+1, ..., xn), where x′1, ..., x

′
i are fixed

boolean numbers. Then we obtain

f(x1, ..., xn) = ( ¬x1∧(...((¬xn ∧ α)︸ ︷︷ ︸
gn−1
0,...,0(xn)

∨ (xn ∧ β)︸ ︷︷ ︸
gn−1
0,...,1(xn)

))

︸ ︷︷ ︸
g1
0(x2,...,xn)

...)∨( x1∧(...((¬xn ∧ γ)︸ ︷︷ ︸
gn−1
1,...,0(xn)

∨ (xn ∧ δ)︸ ︷︷ ︸
gn−1
1,...,1(xn)

))

︸ ︷︷ ︸
g1
1(x2,...,xn)

...)

where α, β, γ, δ ∈ {0, 1}.
We see that we obtain several subexpressions with progressively fewer variables. In

fact, all expressions gi
x′1,...,x′i

above are Boolean expressions in the variables {xi+1, ..., xn}.
In case some of these expressions are equal we should not have to repeat this part more

than once, but instead substitute a reference to this common subexpression.

This is achieved by constructing a reduced function graph G for the function f , where

each nonterminal vertex v with index(v) = i corresponds to the variable xi and the

functions corresponding to the subgraphs of v are each equal to one of the subexpressions

gi
x′1,...,x′i

(xi+1, ..., xn).

The recursive Boolean expression from above can be visualized as a binary tree, where

each vertex corresponds to the ∨, and where the gi
x′1,...,x′i

expressions in principle are

subtrees. This is the basis for the name BDD.

From Theorem 3.1.1 we know that a BDD is a canonical representation of a Boolean

function for a given variable ordering. According to Definition 3.1.1 we have for BDDs
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that range(v) = 2 for all vertices and there are only two terminals, i.e., M = 2.

By changing the order in which we expand with respect to the variables we usually

get large differences in the number of vertices (nodes). The ordering is called variable

ordering and plays a significant role in lowering the representational complexity of the

functions. A simple example is given below.

Suppose we have a 4-variable function F : (x1, x2, x3, x4) → {0, 1}, where xi ∈ {0, 1}, i ∈
{1, 2, 3, 4}. F is defined as

x1 x2 x3 x4 F

0 0 0 1 1

1 1 0 1 1

Table 3.2: Function F

The value of F for other values of (x1, x2, x3, x4) is 0.

The two BDDs representing F , using different variable ordering, are shown in Figure 3.2.

Obviously the ordering x1, x2, x3, x4 is better than the ordering x1, x4, x3, x2 ( 6 nodes vs

8 nodes ).

Figure 3.2: BDDs for representing function F with different variable ordering

Definition 3.2.1 BDD to Function Connection

A BDD G having root vertex v denotes a function fv defined recursively as

1. If v is a terminal vertex, then fv = value(v) ∈ {0, 1}.
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2. If v is a non-terminal vertex with index(v) = i, then fv is the function

fv(xi, xi+1, ..., xn) = ¬xi ∧ flow(v)(xi+1, ..., xn) ∨ xi ∧ fhigh(v)(xi+1, ..., xn)

where low(v) = child(v, 0) and high(v) = child(v, 1).

¤

Remark: Here we assume that the maximum index of vertices in G is n.



Chapter 4

Synthesis Algorithm Based on

Predicates

4.1 Predicates

In order to place conditions on the states of the system G, it will be convenient to use a

logic formalism. A predicate P defined on Q is a function P : Q → {0, 1}. P can always

be identified with the corresponding state subset (“Truth Set”)

QP := {q ∈ Q | P (q) = 1}.

For clarity, if P (q) = 1, we write q ² P , otherwise q 2 P .

Note: Pred(Q) is the set of all the predicates on Q.

For s ∈ Σ∗ we say t ∈ Σ∗ is a prefix of s, and write t ≤ s, if s = tu for some u ∈ Σ∗. We

define the closed language L(G, P ) induced by a predicate P ∈ Pred(Q) to be

L(G, P ) := {w ∈ L(G) | (∀v ≤ w)δ(q0, v) ² P}

That is, the set of strings that are generated by G and leads us to a state which satisfies

P through a path of states that all satisfy P .

21
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and the marked language Lm(G, P ) induced by a predicate P ∈ Pred(Q) to be

Lm(G, P ) := {w ∈ L(G, P ) | δ(q0, w) ∈ Qm}

That is, the set of strings in L(G, P ) that lead us to the marker states.

The following definitions will help us to introduce the controllability and nonblocking

property related to predicate P .

Definition 4.1.1 Reachability

For a given predicate P , a state q is reachable iff

(∃w ∈ L(G, P ))(δ(q0, w) = q)

That is, it can be reached from the initial state through a path of states that all satisfy

P .

Definition 4.1.2 Coreachability

For a given predicate P , a state q is coreachable iff

(∃w ∈ Σ∗)(δ(q, w) ∈ Qm) and (∀v ≤ w)(δ(q, v) ² P )

That is, from that state a marker state can be reached through a path of states that all

satisfy P .

Suppose we have a simple TDES system, whose plant and specification are both given

in the form of a single automaton:

• Plant: Gp = (Qp, Σ, δp, qp,0, Qp,m)

• Specification: Gs = (Qs, Σ, δs, qs,0, Qs,m)

Note that we consider that the event sets of the plant and specification are the same.

Suppose that these event sets are different and denoted as Σp and Σs respectively. Then
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we should at least have Σp ⊇ Σs, because it makes no sense to add “imaginary events” in

the specification. And if Σp ⊃ Σs, actually it will cause an ambiguity in the modelling,

i.e., the events in Σp − Σs are not known to be freely enabled or totally disabled [30].

For the common behavior of the plant and the specification, the meet[29] of Gp and Gs

can be expressed as

Gmeet = meet (Gp,Gs) = Reachable states of (Qp ×Qs, Σ, δp × δs, (qp,0, qs,0), Qp,m ×Qs,m)

where

δp × δs((qp, qs), σ) = (δp(qp, σ), δs(qs, σ))

Note: The closed behavior(marked behavior) of Gmeet is the intersection of the closed

behaviors(marked behaviors) of the plant and the specification.

Remark: The predicates can also be defined on a “2-dimensional” set. For example:

L(Gmeet, P ) = {w ∈ L(Gmeet) | (∀v ≤ w)(δp(qp,0, v), δs(qs,0, v) ) ² P}

where P ∈ Pred(Qp ×Qs).

Definition 4.1.3 Controllability

For the given Gp and Gs, P is controllable iff L(Gmeet, P ) is controllable with respect

to L(Gmeet).

That is, at each state of Gmeet an uncontrollable transition will lead us to a state that

satisfies P . The uncontrollable transition can be by an uncontrollable event or by tick

when there is no forcible event defined at that state.

Definition 4.1.4 Nonblocking

For the given Gp and Gs, P is nonblocking iff Lm(Gmeet, P ) = L(Gmeet, P )

That is, from each state of Gmeet that satisfies P you can reach to a marker state through

a path of the states that all satisfy P .

In order to extend the theorems in untimed models to timed models, we define a

forcing-free predicate.
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Definition 4.1.5 forcing-free predicate

The forcing-free predicate F on Qp ×Qs is defined as follows:

(qp, qs) ² F ⇔ (@σ ∈ Σfor) δs(qs, σ)!

where Qp and Qs are the state sets of the plant and the specification.

That is, there is no forcible event that is eligible in Gs in the forcing-free states of Gmeet.

Lemma 4.1.1 For the given Gp and Gs, P is controllable iff

( ∀(qp, qs) ² P, ∀σ ∈ Σu )(δp(qp, σ)!) ⇒ (δs(qs, σ)! ∧ (δp(qp, σ), δs(qs, σ)) ² P )

and

( ∀(qp, qs) ² (P ∧ F) )(δp(qp, tick)!) ⇒ (δs(qs, tick)! ∧ (δp(qp, tick), δs(qs, tick)) ² P )

That is, at each state of Gmeet that satisfies P , if an uncontrollable transition is eligible

in Gp then it is also eligible in Gs and the target state also satisfies P . An uncontrollable

transition occurs by an uncontrollable event or by tick at the forcing-free states.

Proof: For simplicity let K := L(Gmeet, P ) and G := Gmeet. Obviously we have K = K.

(if). We need to show

EligK(s) ⊇





EligG(s) ∩ (Σu ∪ {tick}), if EligK(s) ∩ Σfor = ∅
EligG(s) ∩ Σu, if EligK(s) ∩ Σfor 6= ∅

Given a string s ∈ K , let qp = δp(qp,0, s) and qs = δs(qs,0, s). Then (qp, qs) ² P . Now

there are two possible cases:

1. (qp, qs) ² F ,let σ ∈ Σu ∪ {tick}. Now we have again two cases:

• δp(qp, σ)!, then δs(qs, σ)! and (δp(qp, σ), δs(qs, σ)) ² P . Therefore σ ∈ EligG(s)∩
(Σu ∪ {tick}) and also σ ∈ EligK(s).

• δp(qp, σ) is undefined. Then σ /∈ EligG(s) ∩ (Σu ∪ {tick}).
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2. (qp, qs) 2 F ,let σ ∈ Σu. There are two possible cases:

• δp(qp, σ)!, then δs(qs, σ)! and (δp(qp, σ), δs(qs, σ)) ² P . Therefore σ ∈ EligG(s)∩
(Σu ∪ {tick}) and also σ ∈ EligK(s).

• δp(qp, σ) is undefined. Then σ /∈ EligG(s) ∩ (Σu ∪ {tick}).

(Only if). Given K is controllable w.r.t G, suppose the contrary of the conclusion ,i.e.

(∃(qp, qs) ² P, σ ∈ Σu)(δp(qp, σ)! ∧ ((¬δs(qs, σ)!) ∨ (δp(qp, σ), δs(qs, σ)) 2 P ))

It is obvious that now we have s ∈ K,sσ ∈ L(G), but sσ /∈ K, therefore K is not

controllable w.r.t L(G). This contradicts the assumption.

For the second condition, the proof is exactly the same.

¤

Lemma 4.1.2 For the given Gp and Gs, P is nonblocking iff

(∀(qp, qs) ² P )((qp, qs) is reachable) ⇒ ((qp, qs) is coreachable)

Proof: (If). We have to show that Lm(Gmeet, P ) = L(Gmeet, P ).

First we show Lm(Gmeet, P ) ⊆ L(Gmeet, P ). given a string s ∈ Lm(Gmeet, P ), there exists

s′ ∈ Lm(Gmeet, P ) such that (∃u ∈ Σ∗) s′ = su. Thus (δp(qp,0, s), δs(qs,0, s)) ² P and

then s ∈ Lm(Gmeet, P ) because we always have s ∈ L(Gmeet).

Now we show Lm(Gmeet, P ) ⊇ L(Gmeet, P ). Given a string s ∈ L(Gmeet, P ), we need

to show there exists a string w, such that δp(qp,0, sw) ∈ Qp,m, δs(qs,0, sw) ∈ Qs,m. It is

enough to show (∃w ∈ Σ∗)(δp(δp(qp,0, s), w) ∈ Qp,m, δs(δs(qs,0, s), w) ∈ Qs,m) . This is

obviously true because (δp(qp,0, s), δs(qs,0, s)) is reachable, and thus coreachable.

(Only If). Suppose the contrary, i.e. (∃(qp, qs) ∈ Qp × Qs)), (qp, qs) is reachable but not
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coreachable. Then there exists s, such that δp(qp,0, s) = qp, δs(qs,0, s) = qs, but there

doesn’t exist any w such that δp(qp, w) ∈ Qp,m, δs(qs, w) ∈ Qs,m. Thus

Lm(Gmeet, P ) ⊂ L(Gmeet, P )

which gives us a contradiction.

¤

Now we are ready to present the main result of this chapter:

Theorem 4.1.1 Given Gp and Gs, there exists a predicate Psup such that

• Lm(Gmeet, Psup) = supC(L(Gp), Lm(Gs)).

• Psup is nonblocking.

Proof: The proof is done constructively.

Given Gp and Gs, we will present a synthesis algorithm for finding Psup. As mentioned

before, each predicate can be identified by its corresponding state subset. In this algo-

rithm the predicates are determined by their truth set.

1. Pgood1 = 1

2. [Qp ×Qs]Pbad1
:= {(qp, qs) | (qp, qs) 2 Pgood1

or

(∃σ ∈ Σu)(δp(qp, σ)! ∧ ¬δs(qs, σ)!)

or

(qp, qs) ² F ∧ δp(qp, tick)! ∧ ¬δs(qs, tick)!

or

(∃σ ∈ Σu)((δp(qp, σ), δs(qs, σ)) 2 Pgood1)

or

(qp, qs) ² F ∧ (δp(qp, tick), δs(qs, tick)) 2 Pgood1}
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3. [Qp ×Qs]Pbad2
:= {(qp, qs) | (∃w ∈ Σ∗

u)( (δp(qp, w), δs(qs, w)) ² Pbad1 )

or

((qp, qs) ² F) ∧ (∃σ ∈ Σu ∪ {tick})((δp(qp, σ), δs(qs, σ)) ² Pbad1)}

4. [Qp ×Qs]Pre
:= {(qp, qs) | (∃w ∈ Σ∗)(δp(qp,0, w) = qp, δs(qs,0, w) = qs)∧

(∀v ≤ w)(δp(qp,0, v), δs(qs,0, v)) 2 Pbad1 ∨ Pbad2}

5. [Qp ×Qs]Pcr
:= {(qp, qs) | (∃w ∈ Σ∗)(δp(qp, w) ∈ Qp,m, δs(qs, w) ∈ Qs,m)∧

(∀v ≤ w)(δp(qp, v), δs(qs, v)) 2 Pbad1 ∨ Pbad2}

6. Pgood2 = Pre ∧ Pcr

7. If Pgood2 ⊂ Pgood1, repeat steps 2-7 with Pgood1 := Pgood2. Otherwise let Psup =

Pnewgood and the algorithm terminates here.

• The algorithm will terminate in finite steps. Define |P | to be the number of states

where a predicate P holds. Obviously in each cycle, if the algorithm does not

terminate, |Pbad| must increase by at least 1 at step 7. Therefore, the algorithm

can iterate at most |Qp| × |Qs| times, which is finite.

• Lm(Gmeet, Psup) ⊆ supC(Lm(Gp), Lm(Gs))

- Psup is nonblocking, because we know that Pgood2 = Pre∩Pcr ,i.e. the states which

satisfy Pgood2 are both reachable and coreachable, so Psup is nonblocking.

- Psup is controllable.

Suppose

(∃(q′p, q′s) ² Psup)(∃σ ∈ Σu)(δp(q
′
p, σ)! ∧ ¬δs(q

′
s, σ)!)

then according to step 2, (q′p, q
′
s) ² Pbad1 which contradicts (q′p, q

′
s) ² Psup, so

we have

(∀(qp, qs) ² Psup)(∀σ ∈ Σu)(δp(qp, σ)! ⇒ δs(qs, σ)!) (4.1)
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Now suppose that

(∃(q′p, q′s) ² Psup)(∃σ ∈ Σu)((δp(q
′
p, σ), δs(q

′
s, σ)) 2 Psup)

then (q′p, q
′
s) ² Pbad2, which contradicts (q′p, q

′
s) ² Psup, so we have

(∀(qp, qs) ² Psup)(∀σ ∈ Σu)((δp(qp, σ)!∧δs(qs, σ)!) ⇒ ( (δp(qp, σ), δs(qs, σ)) ² Psup )

(4.2)

For the states of Gmeet that satisfy F , by the same reasoning we can conclude

that

(∀(qp, qs) ² (Psup ∧ F))(∀σ ∈ Σu ∪ {tick})(δp(qp, σ)! ⇒ δs(qs, σ)!) (4.3)

and

(∀(qp, qs) ² (Psup ∧ F))(∀σ ∈ Σu ∪ {tick})

((δp(qp, σ)! ∧ δs(qs, σ)!) ⇒ ( (δp(qp, σ), δs(qs, σ)) ² Psup ) (4.4)

Equations 4.1,4.2,4.3,4.4 show that Psup is controllable ( Lemma 4.1.2).

- Lm(Gmeet, Psup) ⊆ Lm(Gmeet) = Lm(Gp) ∩ Lm(Gs), so we have

Lm(Gmeet, Psup) ⊆ supC(Lm(Gp), Lm(Gs))

• supC(Lm(Gp), Lm(Gs)) ⊆ Lm(Gmeet, Psup)

We have to show that

(∀K ⊆ L(Gmeet))(K is controllable & nonblocking)K ⊆ Lm(Gmeet, Psup)

Suppose the contrary. Then we can find a K ′, which is controllable and nonblocking

but K ′ * Lm(Gmeet, Psup) i.e. (∃s ∈ K ′)(s /∈ Lm(Gmeet, Psup)). Let qp = δp(qp,0, s)

and qs = δs(qs,0, s). We have (qp, qs) 2 Psup.

We know that our algorithm has a loop (steps 2-7). We write Pgood1(i), Pgood2(i),Pbad1(i)
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, Pbad2(i) for their values in cycle i.

Now we want to show that:

If

(∃s ∈ K ′)( (δp(qp,0, s), δs(qs,0, s)) 2 Pgood2(n) )

then

(∃s′ ∈ K ′)( (δp(qp,0, s
′), δs(qs,0, s

′)) 2 Pgood1(n) )

In order to show the above statement we get (q̂p, q̂s) = (δp(qp,0, s), δs(qs,0, s)). If

(q̂p, q̂p) 2 Pgood1(n), then we get s′ = s. Otherwise (i.e. (q̂p, q̂p) ² Pgood1(n) ) we

have (q̂p, q̂s) 2 Pre(n) or (q̂p, q̂s) 2 Pcr(n). Suppose we have (q̂p, q̂s) 2 Pre(n). Then

either

(q̂p, q̂s) ² (Pbad1(n) ∪ Pbad2(n))

or

(∃w ≤ s)( (δp(qp,0, w), δs(qs,0, w)) ² (Pbad1(n) ∪ Pbad2(n)) )

If the former is true, let (q̃p, q̃s) = (q̂p, q̂s) and s1 = s; otherwise let (q̃p, q̃s) =

(δp(qp,0, w), δs(qs,0, w)) and s1 = w ( w ∈ K ′ ).

Similar reasoning can also be applied if (q̂p, q̂s) 2 Pcr(n) Now we have

(∃s1 ∈ K ′)( (q̃p, q̃s) = (δp(qp,0, s1), δs(qs,0, s1)), (q̃p, q̃s) ² Pbad1(n) ∪ Pbad2(n) )

If (q̃p, q̃s) 2 Pbad1(n), we must have (q̃p, q̃s) 2 Pbad2(n) thus

(∃s2 ∈ Σ∗)( (δp(q̃p, s2), δs(q̃s, s2)) ² Pbad1(n) )

In this case let (q′p, q
′
s) = (δp(q̃p, s2), δs(q̃s, s2)) and s3 = s1s2. Otherwise, i.e.

(q̃p, q̃s) ² Pbad1(n), let (q′p, q
′
s) = (q̃p, q̃s) and s3 = s1. Now we have

(∃s3 ∈ K ′)((q′p, q
′
s) = (δp(qp,0, s3), δs(qs,0, s3)), (q

′
p, q

′
s) ² Pbad1(n) )

Based on the definition of Pbad1, there are 5 possible cases:
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- (q′p, q
′
s) 2 Pgood1(n). In this case s3 is what we want.

- (∃σ ∈ Σu)( (δp(q
′
p, σ)!) ∧ (¬δs(q

′
s, σ)!) ) This is impossible because this will make

K ′ uncontrollable.

- ((q′p, q
′
s) ² F) ∧ ( (δp(q

′
p, tick)!) ∧ (¬δs(q

′
s, tick)!) )This is also impossible because

this will make K ′ uncontrollable.

- (∃σ ∈ Σu)( (δp(q
′
p, σ), δs(q

′
s, σ)) 2 Pgood1(n) ). In this case we must have s3σ ∈ K ′

because K ′ is controllable . Also we have (δp(qp,0, s3σ), δs(qs,0, s3σ) 2 Pgood1(n).

So s3σ is what we want.

- ((q′p, q
′
s) ² F) ∧ ( (δp(q

′
p, tick), δs(q

′
s, tick)) 2 Pgood1(n) ). So s3(tick) is what we

want.

Because Pgood1(n) = Pgood2(n − 1), this process can continue inductively until we

finally reach n = 1,i.e. it must be true that

(∃s′ ∈ K ′)( (δp(qp,0, s
′), δs(qs,0, s

′)) 2 Pgood1(1) )

But this is impossible, because we have Pgood1(1) ≡ 1.

Thus the conclusion is proved.

¤

4.2 Implementation of Supervisory Controller by Pred-

icates

As mentioned before, a supervisory control for G is any map

V : L(G) → 2Σ

such that, for all s ∈ L(G),

V (s) ⊇





Σu ∪ ({tick} ∩ EligG(s)), if V (s) ∩ EligG(s) ∩ Σfor = ∅
Σu, if V (s) ∩ EligG(s) ∩ Σfor 6= ∅
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Thus it can also be expressed as

V ′ : Q× Σ → {0, 1}

where

V ′(q, σ) =





1, if σ ∈ V (s)

0, Otherwise

if q = δ(q0, s) and σ ∈ Σa ∪ {tick}.
We can express V ′ in the form of n + 1 scalar functions:

V ′ ≡ {V ′
i : Q → {0, 1}, i ∈ {0, 1, ..., n} }

where n is the number of events except tick, V ′
i is the predicate corresponds to event σi,

σ0 = tick and σi ∈ Σa for i = 1, ..., n.

Thus V ′ is nothing but n + 1 predicates. Therefore supervisory control can be imple-

mented by predicates in a straightforward way.

The V ′ defined above can be obtained as follows:

Let

Q := Qp ×Qs

q = (qp, qs)

∆(q, σ) = (δp(qp, σ), δs(qs, σ))

We define

V ′
i (q) =





1, if q ² Psup & ∆(q, σi)! & ∆(q, σi) ² Psup

0, otherwise

Thus the state q satisfies the predicate for event σi if q satisfies Psup and we can reach

from q to another state that satisfies Psup by the event σi.

Obviously, for any σi ∈ Σu,V
′
i = 1, because Psup is controllable. If q ² F , then V ′

0(q) = 1

because Psup is controllable. Also, clearly L(V ′/G) = L(G, Psup) and Lm(V ′/G) =

Lm(G, Psup), since exactly the same constraints are imposed upon G by V ′ and by Psup.
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BDD based implementation

5.1 Motivation

As shown in the previous chapter, all the computations needed for finding the supremal

controllable sublanguage can be realized by using predicates. However, if we use the naive

representation of predicates, the value table, we gain no advantage compared with the

previous implementations like TCT and TTCT. Fortunately, Binary Decision Diagrams

[8] can be used here so that we can actually represent the predicates in compressed form.

The approach using Integer Decision Diagrams (an extended form of BDDs) has been

applied to Discrete Event Systems in [13]. The focus of that work is the relational

representation, not the computation. A direct and efficient algorithm based on IDDs,

namely STCT, is presented in [30].

All these works deal with untimed models. The BW framework for Timed DES has its

own difficulties. A TDES can be much bigger in size compared to the corresponding

untimed model. We present a very simple example to illustrate this [20]. Assume that a

public parking spot is modelled as shown in Figure 5.1. It may be interpreted as follows.

If the parking spot is idle then a car may be parked in it. If the parking spot is occupied

then the car may be unparked.

32
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Figure 5.1: A Car parking setup and specification

However if the car remains parked for longer than a certain duration of time then a

traffic officer may give it a ticket for traffic violation. Of course the car may be unparked

even after receiving a ticket (we assume that the cars do not get towed). A desirable

specification from the point of view of a car driver is also shown in Figure 5.1. It simply

says “Avoid getting a ticket”. Parking and unparking are controllable events but getting

a ticket is uncontrollable. This is the case where a timed model is essential because

the parking specification is uncontrollable if we use an untimed model. So let us define

time bounds for each event: (park, 30,∞), (unpark, 7,∞), (ticket, 950, 999). This may

be interpreted as follows. It takes at least 30 ticks to park a car; it takes at least 7 ticks to

unpark; it is safe to park for 950 ticks but it is possible not to get ticketed for a further 49

ticks. If we use the timed transition graph (TTG) of the system and assume that unpark

is a forcible event, the parking specification is now controllable and the supervisor simply

forces the car owner to unpark the car before 950 ticks. For this simple example we see

that the timed transition graph has 1052 states and 2115 transitions!

So the problem of state explosion is more obvious in timed models, and with the previous

implementations we cannot deal with big examples. For example TTCT cannot find the

Timed Transition Graph(TTG) for the Activity Transition Graphs with time bounds

greater than 1000. So in this work we will use Binary Decision Diagrams for reducing

the size of our data structures , in order to work with much bigger examples in a fast

way.
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In this chapter, first we describe the method which is used in previous implementations

and then describe our new approach for attacking this problem in two major steps:

• Converting an ATG to its corresponding TTG.

• Finding the supremal controllable and nonblocking sublanguage.

5.2 Previous Implementation

Although the original theoretical results in discrete event systems were presented in terms

of formal languages, the actual computation can only be done in terms of finite state ma-

chines. In TCT and TTCT, any finite state machine, for example G, is described by an

object which has a list of all its states and transitions. So the space required for storing

a DES or TDES is proportional to number of states [11]. In almost all cases, the plant is

modelled by a set of finite state machines, i.e. by synchronizing all the plant component

models into one finite state machine. The specification can also be found by synchronizing

smaller specifications. Finally the supremal controllable sublanguage can be computed by

using the supcon procedure. As far as complexity is concerned in both time and space,

the procedure TDES3 = sync(TDES1, TDES2) which computes the synchronous

product of two TDES (DES), has complexity of O(Number of states of TDES1 ×
Number of states of TDES2). Theoretically the number of states of the synchronous

product of two TDES is less than or equal to the product of their number of states. But

in reality it is often much less than their product for a nontrivial system. Therefore we

often need to allocate much more space than is actually required to store the result. For

example if two systems have 10,000 states each, we will need space of size 100,000,000,

even though the result may only have 50,000 states.

What makes matters worse is that the first step in computing supcon(plant,specification)

is computing the synchronous product of the plant and the specification, and this is often

prohibitive in practice. This complexity problem for untimed DES is solved by STCT
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[30], which is many times faster and smaller in the sense of memory usage than TCT.

STCT does not need an exhaustive list of the entire state space and thus is able to achieve

a performance far beyond that of TCT.

For a timed model this complexity problem is more critical, because as we saw in the pre-

vious section state explosion is much faster in untimed models than timed ones. Clearly

for large systems an exhaustive list of the entire state space cannot be used.

5.3 Converting ATG to TTG

Constructing the TTG from the ATG of the TDES is based on the definition of δ(q, σ).

Actually we should find the reachable states of the TDES. As we saw in chapter 2, each

state of the TDES has two kinds of component: activity and timer of each event. Thus

each state would be an n + 1 tuple, where n is the number of events in the system.

The natural way to find these states is to start from the initial state q0 = (a0, {tσ,0|σ ∈
Σact}) where

tσ,0 =





uσ, if σ ∈ Σspe

lσ, if σ ∈ Σrem

and find the reachable states by the rules given in the definition of δ. In this method,

we should go through all the states and check the conditions to find the next states in

the graph. If the time bounds of events are big, the number of states will be much big-

ger. Using this exhaustive search method would not be efficient and fast. Additionally,

using the tables for storing these states would be much too memory-consuming. Instead

we convert the rules for defining the transitions in TDES to logical operations that can

be applied to predicates. By these logical operations, all the possible transitions in the

system which satisfy the rules, can be found in the form of predicate. After finding the

transition predicates, the reachable states can be found by applying suitable logical op-

erations as we will discuss later.
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5.3.1 Transition Predicates

All the transitions of the TDES can be presented by a predicate. For example; in case

q′ = δ(q, σ), then this transition can be expressed as:

T ≡ (current = q) ∧ (event = σ) ∧ (next = q′)

where current, event and next are variables. If we have more transitions in the system,

we can disjunct them together. For the TDES in Figure 5.2 we can write:

T ≡ ( (current = 1) ∧ (event = tick) ∧ (next = 2) )

∨ ( (current = 2) ∧ (event = α) ∧ (next = 3) )

∨ ( (current = 3) ∧ (event = β) ∧ (next = 1) )

∨ ( (current = 3) ∧ (event = tick) ∧ (next = 4) )

Figure 5.2: Transition predicate

For our purpose, the predicate would be more complex, because each state as men-

tioned before has some timers. So we have

current = (act = a) ∧ (tσ1 = t1) ∧ ... ∧ (tσn = tn)

and

next = (act′ = a′) ∧ (t′σ1
= t′1) ∧ ... ∧ (t′σn

= t′n)

where a, a′ ∈ Σact; if σ ∈ Σrem, tσ ∈ [0, lσ]; and if σ ∈ Σspe, tσ ∈ [0, uσ]

Now we have to figure out how to change the conditions of transitions in TDES to logical
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operations on these predicates. This will be done for prospective events, remote events

and tick independently.

If q = (a, {tτ |τ ∈ Σact}), q′ = (a′, {t′τ |τ ∈ Σact}) ∈ Q, we have:

• σ = tick.

δ(q, tick)! ⇔ ( (∀τ ∈ Σspe)δact(a, τ)! ⇒ tτ > 0 )

Thus the timer value of the prospective events that are defined in a should be

greater than zero for occurring event tick. So the current state in the transition

predicate for event tick will have the form:

current = (act = a) ∧ (
∧

τ∈Σspe,δact(a,τ)!

(tτ > 0) )

We will reach state q′ from q after occurring event tick:

δ(q, tick) = q′ ⇔ a′ = a and for each τ ∈ Σact,

– if τ ∈ Σspe, t′τ :=





uτ , if δact(a, τ) is not defined

tτ − 1, if δact(a, τ)! and tτ > 0

– if τ ∈ Σrem, t′τ :=





lτ , if δact(a, τ) is not defined

tτ − 1, if δact(a, τ)! and tτ > 0

0, if δact(a, τ)! and tτ = 0

Thus the activity of the next state (act′) will not change and the timer value of

the events which are not defined at activity a in Gact will be their default value

in the next state. The timer value of the events that are defined at activity a will

be decreased by one unit in the next state if it is positive and will remain zero if

it is zero ( the latter case is only for the remote events ). So the next state in the

transition predicate for event tick will have the form:

next = (act′ = a)∧(
∧

δact(a,τ)!∧tτ >0

(t′τ = tτ−1) ) ∧(
∧

¬δact(a,τ)!

(t′τ = tτ,0) )∧(
∧

δact(a,τ)!∧tτ=0

(t′τ = 0) )

The transition predicate of tick for the states of the TDES whose activity is “a”

will be current∧ (event = tick)∧next. In order to find the transition predicate for
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all the tick transitions of the TDES, we should find the disjunction of the transition

predicates of tick transitions for the states with different activities. So Ttick can be

defined according to

Ttick =
∨

∀a∈A

{ {(act = a) ∧ (
∧

τ∈Σspe,δact(a,τ)!

(tτ > 0) ) }

∧ { (event = tick) }

∧ { (act′ = a) ∧ (
∧

δact(a,τ)!∧tτ >0

(t′τ = tτ − 1) ) ∧

(
∧

¬δact(a,τ)!

(t′τ = tτ,0) ) ∧ (
∧

δact(a,τ)!∧tτ=0

(t′τ = 0) ) } }

• σ is prospective.

δ(q, σ)! ⇔ δact(a, σ)! ∧ 0 ≤ tσ ≤ uσ − lσ

That is, a prospective event can occur in state q if that event is defined in the

untimed model at activity a and the delay for occurring it has been passed(tσ ≤
uσ − lσ). So the current state in the transition predicate for prospective event σ is:

current = (act = a) ∧ (0 ≤ tσ ≤ uσ − lσ)

Event σ will lead us to a state whose activity is a′ = δact(a, σ) and the timer value

of σ will reset to its default value. The timer value of other events will be remaind

unchanged if they are defined at activity a′ and will reset to their default value if

they are not defined at a′.

δ(q, σ) = q′ ⇔ a′ = δact(a, σ) and for any τ ∈ Σact,

- if τ 6= σ , t′τ :=





tτ,0, if δact(a
′, τ) is not defined

tτ , if δact(a
′, τ)!

- if τ = σ , t′τ := uσ.

So the next state in the transition predicate for the prospective event σ will have
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the form:

next = (act′ = a′ )∧ (
∧

τ 6=σ,¬δact(a′,τ)!

(t′τ = tτ,0) )∧ (
∧

τ 6=σ, δact(a′,τ)!

(t′τ = tτ ) )∧ (t′σ = uσ)

The transition predicate of prospective event σ for the states of the TDES whose

activity is “a” will be current∧(event = tick)∧next. In order to find the transition

predicate for all the σ transitions of the TDES, we should find the disjunction of

the transition predicates of σ transitions for the states of the TDES with different

activities. According to these rules the transition predicate can be computed for σ:

Tσ =
∨

a∈A ∧δact(a,σ)!

{ {(act = a) ∧ (0 ≤ tσ ≤ uσ − lσ)}

∧ {(event = σ)}

∧ {(act′ = a′ ) ∧ (
∧

τ 6=σ,¬δact(a′,τ)!

(t′τ = tτ,0) )∧

(
∧

τ 6=σ, δact(a′,τ)!

(t′τ = tτ ) ) ∧ (t′σ = uσ) } }

• Remote events.

δ(q, σ)! ⇔ δact(a, σ)! ∧ tσ = 0

Thus the remote event σ will occur at state q if it is defined at activity “a” in Gact

and its delay has been passed. By occurring σ we will reach the state q′:

δ(q, σ) = q′ ⇔ a′ = δact(a, σ) and for any τ ∈ Σact,

- if τ 6= σ , t′τ :=





tτ,0, if δact(a
′, τ) is not defined

tτ , if δact(a
′, τ)!

- if τ = σ , t′τ := lσ.

The next state’s activity will be a′ = δact(a, σ) and the timer value of σ will reset

to its default value. The timer value of other events will be remaind unchanged if

they are defined at activity a′ and will reset to their default value if they are not

defined at a′. So the transition predicate for remote event σ will be constructed in
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the same way as what we did for prospective events :

Tσ =
∨

a∈A ∧δact(a,σ)!

{ {(act = a) ∧ (tσ = 0)}

∧ {(event = σ)}

∧ {(act′ = a′ ) ∧ (
∧

τ 6=σ,¬δact(a′,τ)!

(t′τ = tτ,0) )∧

(
∧

τ 6=σ, δact(a′,τ)!

(t′τ = tτ ) ) ∧ (t′σ = lσ) } }

After finding the transition predicate for each event, the transition predicate of the

TDES would be the disjunction of all of them.

T = Ttick ∨ (
∨

σ∈Σact

Tσ) (5.1)

But T is not what we want because it may contain transitions from states which are

not reachable from initial state. Now we have to find the reachable states from this

predicate by applying logical operations. Thus we have to define a function for finding

the destination states from a set of states and a set of events, i.e.

Ω(X, Γ) = {y ∈ Q|(∃x ∈ X)(∃γ ∈ Γ)δ(x, γ) = y} ⊆ Q

where X ⊆ Q and Γ ⊆ Σ.

Figure 5.3: Target states

The target states can be computed by conjunction and existential quantification (

called relational product in symbolic model checking).

∃(next)

[
(

∨
x∈X

(current = x) ∧
∨
γ∈Γ

(event = γ) ) ∧ T (current, event, next)

]
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In order to do these computations we employ binary decision diagrams (BDDs) as the

representation of predicates.

The algorithm for finding the reachable states is as follows:

ReachableStates := InitialState;

DO

{

tmp := ReachableStates;

new := NextStates(ReachableStates, T );

ReachableStates := ReachableStates ∨ new;

}

While tmp 6= ReachableStates;

Actually, we have started from the initial state and find all the states we can reach

from it.

As stated in Chapter 3, ordering of the variables in a BDD is one of the most im-

portant optimizations. The variables we have in finding the transition predicate are:

act, tσ1 , ..., tσn , act′, t′σ1
, ..., t′σn

. Since the number of elements in the domain of each vari-

able is greater than 2, each variable itself consists of a number of BDD variables. The

more closely coupled two variables are, the “closer” the two components should be placed

in the BDD. In our algorithm, the variables representing tσ and t′σ should be adjacent

because in most of the transitions tσ and t′σ differ only in one or zero unit of time. If we

use a different ordering of variables, the number of BDD nodes will be increased and

the algorithm may become much too slow.

One of the main problems in working with BDDs is the problem of “intermediate node

number explosion” [30][18], i.e. although the number of BDD nodes in the final result

may not be large, it could be tens of times larger during the synthesis process, or more

accurately, during the generation of reachable states. In order to reduce this problem in
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finding reachable states, instead of using one transition predicate for all the transitions

we can use one transition predicate for each event, i.e. the variable event will be removed

from transition predicate. We must also change the algorithm for finding the reachable

states.

ReachableStates := InitialState;

DO

{
tmp1 := ReachableStates;

for ∀σ ∈ Σ ∪ {tick}
{

DO

{
tmp2 := ReachableStates;

new := NextStates(ReachableStates, Tσ);

ReachableStates := ReachableStates ∨ new;

}
While tmp2 6= ReachableStates;

}
}
While tmp1 6= ReachableStates;

5.4 BDD based Computation of Supremal Control-

lable Sublanguage

The algorithm given in Theorem 4.1.1 can be implemented using binary decision dia-

grams. First of all, we should construct the transition predicate for the plant and the

specification, i.e. Tp,σ(vp, v
′
p), Ts,σ(vs, v

′
s), σ ∈ Σact ∪ {tick}.
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A set can also be represented by a predicate. For example the set A := {a, b, c} can be

represented by:

PA := (v = a) ∨ (v = b) ∨ (v = c)

where v is a BDD variable.

The state set Qp ×Qs can be described by the tuple (qp, qs) where qp ∈ Qp and qs ∈ Qs.

This set can be represented by the predicate S:

S(vp, vs) := (0 ≤ vp ≤ np − 1) ∧ (0 ≤ vs ≤ ns − 1)

where {0, ..., np − 1} are the states of Gp and {0, ..., ns − 1} are the states of Gs.

The set of states (qp, qs) where (qp, qs) ² F can be described by

SF(vp, vs) := S ∧ ¬(∃(vp, vs)(S ∧ Ts, f ))

where

Ts, f =
∨

σ∈Σfor

Ts, σ

and (∃(vp, vs))(S ∧ Ts, f )
1 will be the set of states (qp, qs) where ∃σ ∈ Σfor, δs(qs, σ)!.

Actually the existential quantifier quantifies out the variable v′s which is present in Ts, f

[9] [19]. Now we will present the realization of each step of algorithm in Theorem 4.1.1.

Step 1: Pgood1 := 1.

1This can be done using the Buddy package function bdd exist(Appendix A)
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Step 2: [Qp ×Qs]Pbad1
:= {(qp, qs) |

i. (qp, qs) 2 Pgood1

or

ii. (∃σ ∈ Σu)(δp(qp, σ)! ∧ ¬δs(qs, σ)!)

or

iii. (qp, qs) ² F ∧ δp(qp, tick)! ∧ ¬δs(qs, tick)!

or

iv. (∃σ ∈ Σu)((δp(qp, σ), δs(qs, σ)) 2 Pgood1)

or

v. (qp, qs) ² F ∧ (δp(qp, tick), δs(qs, tick)) 2 Pgood1}

In order to find the BDD realization of this predicate we have to define two functions

to replace the source state variables with the target state variables and vice versa. We

assume that F is the set of functions defined on source variables (i.e. vi) and F ′ is the

set of functions defined on target variables (i.e. v′i). Now we define two functions:

- RepSource : F ′ → F

RepSource(f(v′1, ..., v
′
n)) = f(v1, ..., vn)

- RepTarget : F → F ′

RepTarget(f(v1, ..., vn)) = f(v′1, ..., v
′
n)

We also define two transition predicates:

- Tu(vp, v
′
p, vs, v

′
s) :=

∨
σ∈Σu

(Tp,σ ∧ Ts,σ)

- Ttick(vp, v
′
p, vs, v

′
s) := Tp,tick ∧ Ts,tick

Now we will find the BDD realization for this step:
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i. Pbad1 := S ∧ ¬Pgood1

ii. For all σ ∈ Σu : Pbad1 := Pbad1 ∨ ((∃vp)Tp,σ(vp, v
′
p) ∧ (∃vs)¬Ts,σ(vs, v

′
s))

iii. Pbad1 := Pbad1 ∨ ((∃vp)Tp, tick(vp, v
′
p) ∧ (∃vs)¬Ts, tick(vs, v

′
s))

iv. X , (∃(v′p, v′s)S(vp, vs) ∧ Tu(vp, v
′
p, vs, v

′
s) ) is the set of states that are targeted

by an uncontrollable event. So

Pbad1 := Pbad1 ∨ {∃(vp, vs)( Tu ∧RepTarget(¬Pgood1 ∧RepSource(X)) )}

v. Y , (∃(v′p, v′s)SF(vp, vs)∧ Ttick(vp, v
′
p, vs, v

′
s) ) is the set of states that are targeted

by the tick event. So

Pbad1 := Pbad1 ∨ {∃(vp, vs)( Ttick ∧RepTarget(¬Pgood1 ∧RepSource(Y )) )}

Step 3: [Qp ×Qs]Pbad2
:= {(qp, qs) | (∃w ∈ Σ∗

u)( (δp(qp, w), δs(qs, w)) ² Pbad1 )

or

((qp, qs) ² F) ∧ (∃σ ∈ Σu ∪ {tick})((δp(qp, σ), δs(qs, σ)) ² Pbad1)}

This step needs more consideration. We define the operation R as follows. Let

P1 = R(P0, P, Σ) be the reachable predicate starting from P0, while enabling all σ ∈ Σ

and satisfying predicate P , i.e.

x ² P1 ⇔ (∃x′ ² P0 , s ∈ Σ∗)
(
(δ(x′, s) = x) ∧ (∀v ≤ s)(δ(x′, v) ² P )

)

Similarly, we define operation CR to produce the coreachable predicate. Let P2 =

CR(Pm, P, Σ) be the coreachable predicate starting from P , while enabling all σ ∈ Σ

and satisfying predicate P reaches the set of states satisfying Pm, i.e.

x ² P2 ⇔ (∃x′ ² Pm , s ∈ Σ∗)
(
(δ(x, s) = x′) ∧ (∀v ≤ s)(δ(x, v) ² P )

)
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For simplicity, the recent definitions use notations for simple predicates, i.e. predicates

defined on a simple set X. All the results can be easily generalized to our states of the

form (x, y) ∈ X × Y .

Now we should find the BDD realization of the reachable and coreachable predicates.

In these functions instead of using Σ we use :

TΣ :=
∨
σ∈Σ

(Tp,σ ∧ Ts,σ)

Thus the function R(P0, P, Σ) can be obtained by the following algorithm:

1. P1 := P0 ∧ P

2. Pi+1 := Pi ∨
(
P ∧RepSource(∃(v′p, v′s)(TΣ ∧ Pi) )

)

3. If Pi+1 ≡ Pi then R(P0, P, TΣ) := Pi. Otherwise go back to step 2.

The coreachable function CR(Pm, P, Σ) can also be computed similarly:

1. P1 := Pm ∧ P

2. Pi+1 := Pi ∨
(
P ∧ (∃(vp, vs)(TΣ ∧RepTarget(Pi) )

)

3. If Pi+1 ≡ Pi then CR(Pm, P, TΣ) := Pi. Otherwise go back to step 2.

After defining these functions step 3 can easily be described by two terms:

Pbad2 := CR(Pbad1, S, Σu) ∨CR(Pbad1, SF , Σu ∪ {tick})

Step 4: [Qp ×Qs]Pre
:= {(qp, qs) | (∃w ∈ Σ∗)(δp(qp,0, w) = qp, δs(qs,0, w) = qs)∧

(∀v ≤ w)(δp(qp,0, v), δs(qs,0, v)) 2 Pbad1 ∨ Pbad2}
This step could also be realized by BDDs using the above defined functions. First

we define the predicate P0 for presenting the initial state:

P0 ≡ (vp = qp,0) ∧ (vs = qs,0)
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Now Pre can be computed as follows:

Pre := R(P0,¬(Pbad1 ∨ Pbad2), Σact ∪ {tick})

Step 5: [Qp ×Qs]Pcr
:= {(qp, qs) | (∃w ∈ Σ∗)(δp(qp, w) ∈ Qp,m, δs(qs, w) ∈ Qs,m)∧

(∀v ≤ w)(δp(qp, v), δs(qs, v)) 2 Pbad1 ∨ Pbad2}

By defining the Pm for representing the marker states,

Pm ≡ (
∨

q∈Qp,m

(vp = q) ) ∧ (
∨

q∈Qs,m

(vs = q) )

Pcr will be realized using coreachable function

Pcr := CR(Pm,¬(Pbad1 ∨ Pbad2), Σact ∪ {tick})

Steps 6 and 7 can easily be implemented using logical and and comparison. So we

have done all the steps in finding the supremal controllable and nonblocking supervisor

by BDDs and operations on them.

5.4.1 Optimization in the algorithm

In the previous section, we could compute the supremal controllable sublanguage of a

TDES using BDDs. But the problem with this implementation is that there is no

structure in our BDDs. We have only four variables: two for the plant (current and next

state) and two for the specification (current and next state); and there is no coupling

between them. As mentioned in Section 5.3, the more closely coupled two variables are,

the “closer” the two components should be placed in the BDD. Each state of a TDES

consists of an activity and some timers, so we can employ this structure for our BDDs.

The order of variables would be the same as what we used in Section 5.3.

Using this method may give rise to the problem that we usually want to place some

time constraints on the system which we directly represent in the form of a TTG, so our

specification will not have timer information. It has been shown by Wong and Wonham
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in [28] that the BW framework is not closed under control. For example if we look at

the TTG in Figure 5.4, there does not exist an ATG such that the corresponding TTG

generates the TTG in Figure 5.4 because the time bound of the first α is (α, 0, 0) while

the time bound of the second α is (α, 0, 1).

Figure 5.4: BW framework is not closed

So in the cases where our specification is implemented by a TTG, we use the un-

structured variables for specification whereas the variables for the plant are structured

as before. In the next chapter we will see that using this structure will speed up our

algorithm.

5.4.2 Implementation of Controller by BDDs

The means of controlling the plant in TDES are disablement of controllable events and

forcing of forcible events ( in case of disablement of event tick ). As shown in section

4.2, the controller can be implemented using n + 1 predicates where n is the number of

events except tick. Therefore, by replacing those predicates by corresponding BDDs,

an implementation of the controller by BDDs can be easily obtained. A diagram of the

controlled system is shown in Figure 5.5. The enabled event set in the states where tick
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is disabled shows the forcing of events which are forcible.

Figure 5.5: A sketch of a system with BDD based controller

The size of an BDD-based controller is much smaller than an original control data

table generated by TTCT. A comparison between sizes is shown in Chapter 6.

5.5 Modular Supervision of TDES

Let

G = (Q, Σ, δ, q0, Qm), S = (X, Σ, ξ, x0, Xm)
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be TDES, with Σ = Σact ∪ {tick}. We assume that S can be used as a supervisor for G.

We write S ∧G for the conjunction of S and G:

Lm(G ∧ S) = Lm(G) ∩ Lm(S), L(G ∧ S) = L(G) ∩ L(S)

We say that S is a proper supervisor for G if

(i) S is trim (reachable and coreachable).

(ii) S is controllable with respect to G.

(iii) S ∧G is nonblocking.

Since by (iii), Lm(S ∧G) = L(S ∧G), (ii) means that

EligL(S∧G)(s) ⊇





EligG(s) ∩ (Σu ∪ {tick}), if EligL(S∧G)(s) ∩ Σfor = ∅
EligG(s) ∩ Σu, if EligL(S∧G)(s) ∩ Σfor 6= ∅.

The following definition extracts the feature of controllability that expresses the preemp-

tion of tick by a forcible event.

Definition 5.5.1 Coerciveness

Let K ⊆ L(G). We say that K is coercive with respect to G if

(∀s ∈ K) tick ∈ EligG(s)− EligK(s) ⇒ EligK(s) ∩ Σfor 6= ∅

i.e.

(∀s ∈ K) EligK(s) ∩ Σfor = ∅ & tick ∈ EligG(s) ⇒ tick ∈ EligK(s)

We say that languages K1, K2 ⊆ L(G) are jointly coercive with respect to G if K1 ∩K2

is coercive with respect to G. Now let S1,S2 be proper supervisors for G.

Theorem 5.5.1 [29] S1 ∧ S2 is a proper supervisor for G if



Chapter 5. BDD based implementation 51

(i) S1 ∧ S2 is trim.

(ii) Lm(S1 ∧G), Lm(S2 ∧G) are nonconflicting.

(iii) Lm(S1 ∧G), Lm(S2 ∧G) are jointly coercive with respect to G.

In order to extend our symbolic computations to modular supervision, we need to be

able to check the conditions of Theorem 5.5.1 symbolically.

First of all we should implement ∧ operator symbolically. (This function is called meet

in TTCT.) It is straightforward to express this function using the transition BDDs of

the two TDES. First we find the transition BDD of each TDES, i.e. TS1, TS2; then the

transition BDD of S1 ∧ S2 would be:

TS1∧S2 =
∨

σ∈ΣS1∩ΣS2

TS1, σ ∧ TS2, σ

To check the condition (i), we should check whether S1∧S2 is reachable and coreachable.

By definition of ∧, we know that S1∧S2 is reachable and we can check the coreachability

using the function CR defined in section 5.4.

Condition (ii) is equal to the nonblocking property of Lm(S1∧G)∩Lm(S2∧G) which can

be checked using the reachable (R) and coreachable (CR) functions defined in previous

section, because a DES is nonblocking if it is trim.

For condition (iii), we need to be able to check coerciveness. Let SF(vG, vK) be the

predicate representing the set of states of QG×QK at which no forcible event is defined in

qk ∈ QK where (qG, qK) ∈ QG×QK and TG,tick(vG, v′G), TK,tick(vK , v′K) are the transition

BDDs of G and K for event tick. Now we define two sets of states:

F1 = (∃(vG, vK) ) SF(vG, vK) ∧ TG,tick(vG, v′G)

i.e. the set of states in SF where tick is defined in G, and

F2 = (∃(vG, vK) ) SF(vG, vK) ∧ TK,tick(vK , v′K)
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i.e. the set of states in SF where tick is defined in K.

Because K ⊆ L(G), to check coerciveness it is enough to check whether F1 and F2 are

equal or not. If F1 and F2 are equal, then in all the states where no forcible event is

defined in K if tick is defined in G, it will be defined in K too.

So for condition (iii) we should check if Lm(S1∧G)∩Lm(S2∧G) is coercive with respect

to G.

Hence we can represent the modular supervision of TDES with predicates.
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Examples

In this chapter, we present some examples to compare our results with previous ones.

6.1 Tutorial Example

The following example shows the transition BDDs for all the events of a small TDES.

Let

Gact = (A, Σact, δact, a0, Am)

with

Σact = {α, β}, A = Am = {0}, a0 = 0

δact(0, α) = δact(0, β) = 0

and timed events (α, 1, 1), (β, 2, 3), both prospective. The ATG for Gact is simply:

53
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Thus α, β are always enabled. The state set for G is

Q = {0} × Tα × Tβ = {0} × [0, 1]× [0, 3]

and has size |Q| = 8. We take Qm = {(0, [1, 3])}. The TTG for G is easily constructed

based on the rules given in chapter 2 and is displayed in Figure 6.1; it has 11 transitions,

over the event set {α, β, tick}; the pairs [tα, tβ] corresponding to the states (0, {tα, tβ}) of

G are listed below. The event α is pending at states 0,2,5,7 and eligible at states 1,3,4,6,

while β is pending at 0,1,2,4 and eligible at 3,5,6,7. Notice that tick is preempted by α

or β if either of these events has deadline 0.

Figure 6.1: Timed Transition Graph

The states of G( nodes of TTG ) are as follows (act, {tα, tβ}):
0 : (0,{1, 3})
1 : (0,{0, 2})
2 : (0,{1, 2})
3 : (0,{0, 1})
4 : (0,{0, 3})
5 : (0,{1, 1})
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6 : (0,{0, 0})
7 : (0,{1, 0})
In the naive method the transitions of the system are stored in a table. Each transition

needs 3 cells of the table, 1 for the current state, 1 for the event and 1 for the next state.

Figure 6.2: Transition BDD for event tick

As mentioned in the previous chapter, for the transition BDD of TTG in this example

we have 6 main variables: a, a′, tα, t′α, tβ, t′β that a, a′ ∈ {0},tα, t′α ∈ {0, 1} and tβ, t′β ∈
{0, 1, 2, 3}. So with the exception of tβ, t′β that need 2 BDD variables, all the other

variables need 1 BDD variable, because tβ, t′β can have four different values which need

2 binary variables for representation. The less significant a bit is in a timer value, the

closer to the root it is in the BDD tree. The transition BDDs of each event of the TDES

are presented in Figures 6.2,6.3 and 6.4. The dotted lines in these figures represent the

value “0” for the variables and solid lines represent the value “1”. t
(0)
β , t

′(0)
β are the least

significant bits of tβ, t′β while t
(1)
β , t

′(1)
β are the most significant. Each route that leads us
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from root to terminal “1” is a representation of a transition in TDES.

For example in Figure 6.2 the route which is determined by grey nodes represents the

existence of an event tick between states 0 and 1 of the TTG in Figure 6.1 because in

this route we have: source state: (a = 0, tα = 1, tβ = (t
(1)
β t

(0)
β )2 = (11)2 = 3) and target

state: (a′ = 0, t′α = 0, t′β = (t
′(1)
β t

′(0)
β ) = (10)2 = 2).

Similarly, the transition 1
α−→ 2 can be traced on the BDD in Figure 6.3 by this route:

1 → (a = 0, tα = 0, tβ = (t
(1)
β t

(0)
β )2 = (10)2 = 2), 2 → (a′ = 0, t′α = 1, t′β = (t

′(1)
β t

′(0)
β ) =

(10)2 = 2).

Figure 6.3: Transition BDD for α

We can see that a reduction has been made in the transition BDD for β in Figure 6.4

as there is no node for variable 4 (t
(0)
β ) in this BDD. In this BDD, one route represents

two transitions in TTG graph. For example the route : (a = 0, a′ = 0, tα = 0, t′α =

0, t
(1)
β = 0, t

′(0)
β = 1, t

′(1)
β = 1) represents these two transitions : 3

β−→ 4, 6
β−→ 4 because
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t
(0)
β can have both values “0” and “1” .

Figure 6.4: Transition BDD for β
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6.2 Manufacturing Cell

The manufacturing cell of Figure 6.5 consists of machines Mach1,Mach2, with an input

conveyor Conv1 as an infinite source of workpieces and output conveyor Conv2 as an

infinite sink. Each machine may process two types of parts, P1 and P2; and for simplicity,

the transfer of parts between machines will be absorbed as a step in machine operation.

The machine ATGs ( identical up to event labelling ) are displayed in Figure 6.6. Here

αij is the event “ Machi starts work on a Pj part”, while βij is “Machi finishes working

on a Pj part”.

Σfor = {αij | i, j = 1, 2}, Σu = {βij | i, j = 1, 2}, Σhib = Σfor

Figure 6.5: The manufacturing cell

6.2.1 Converting ATG to TTG

The time bounds of events of the machines can vary according to the machine specifi-

cations. So they can be small or large. For small values of time bounds, there is no

problem using the previous methods but if the time bounds increase, we can not use
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Figure 6.6: The ATG of the machines

these methods. For example TTCT can only compute the timed graph for ATGs with

time bounds not greater than 1000. Here we present a comparison between our results

and the TTCT results. We specify the timing information for the machines as follows:

Mach1: (α11, L,∞), (β11, 3, U), (α12, L,∞), (β12, 2, U)

Mach2: (α21, L,∞), (β21, 1, U), (α22, L,∞), (β22, 4, U)

We define the cell’s open-loop behavior as the composition Mach of Mach1 and

Mach2:

Mach=comp(Mach1,Mach2)

Then we find the TTG of Mach using the TTCT procedure TimedGraph and our

BDD program. The comparison between the computation time and space can easily be

done by reference to Table 6.1.
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TTCT BDD Program
L |Q| |T |

t1 t2 t3 |nodes|
5 324 580 0 0 0 1460

50 23,409 53,095 9 0 1 10,006

100 91,809 211,195 258 0 4 19,081

150 205,209 474,295 1148 1 12 31,556

200 363,609 724,808 2516 1 22 37,010

250 567,009 1,131,008 6100 1 34 42,250

300 815,409 1,893,600 N/A 1 59 61,795

500 2,259,010 5,256,000 N/A 1 199 83,287

700 4,422,610 10,298,400 N/A 1 321 132,751

1000 9,018,010 21,012,000 N/A 1 726 165,148

1500 20,277,009 47,267,995 N/A 2 1837 274,609

2000 36,036,000 84,024,000 N/A 3 3458 328,657

3000 81,054,000 189,036,000 N/A 5 9387 547,414

Table 6.1: TTCT and BDD program results for manufacturing cell

In this table, for computation purposes we consider that L and U in the time bounds

of the events are the same and given by the first column of the table. |Q| is the number

of states of the TDES, |T | is the number of Transitions, t1 is the computation time of

TTCT in seconds , t2 is the time our program needs to compute the transition BDD

in seconds( T in Equation 5.1 ), t3 is the time for finding the reachable states in our

program in seconds, and |nodes| is the number of nodes of the transition BDD.

The space required for storing a TDES is proportional to the number of states and

transitions but the space our program needs is proportional to the number of BDD



Chapter 6. Examples 61

nodes. The space requirements of TTCT and the BDD program for this example are

compared in Figure 6.7. As mentioned before TTCT can not compute the TTG for the

time bounds greater than 250, so in Figure 6.7 the values of space for time bounds greater

than 250 represent the space required if it could compute the TTG (dotted line). It is

obvious that we have achieved significant savings in space. Moreover, TTCT can not

compute the timed graph for time bounds greater than or equal to 250 in this example.

0 500 1000 1500 2000 2500 3000

10
4

10
5

10
6

10
7

10
8

10
9

Time Bound

S
pa

ce
(b

yt
es

)

Previous Method   
BDD Method

Figure 6.7: Comparison between the space required in both methods.

As shown in Figure 6.8, we find a roughly linear relationship between |nodes| and the

time bound L. Also, in Figure 6.9, we can see that |nodes| increases much slower than

|Q| which satisfies |Q| ∝ Ln where n is the number of events.

The relationship between L and computing time is a bit more complex. For TTCT

the computing time is shown in Figure 6.10. In the BDD Program the important time

for us which will be used in the second part of the program for finding the controller

would be only t2, which does not vary too much for different values of L. As we can

see from Table 6.1, t2 ranges between 0-5 for L in 0...3000. So a big time saving of this

method would be in this part, i.e. converting ATG to TTG is much faster in comparison

to the previous method.
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Figure 6.8: Number of states of the TDES vs time bound.(Both axes are logarithmic)
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Figure 6.9: Number of the nodes of the transition BDD vs time bound.

6.2.2 Finding a Controller for Manufacturing Cell

We impose some Logic-based specifications on the manufacturing cell:

• A given part can be processed by just one machine at a time.

• A P1 part must be processed first by Mach1 and then by Mach2

• A P2 part must be processed first by Mach2 and then by Mach1

• One P1 part and one P2 part must be processed in each production cycle
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Figure 6.10: Computing time vs time bound for TTCT.

These specifications are formalized as TDES Spec1,Spec2 and Spec3 displayed in Fig-

ures 6.11,6.12 and 6.13.

The complete logic-based specification can be represented by the intersection of these

three TDES:

Spec = meet ( Spec1, Spec2, Spec3 )

Spec has 16 states and 72 transitions.

Figure 6.11: Spec1 TTG
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Figure 6.12: Spec2 TTG

Figure 6.13: Spec3 TTG

Here and below we write G3 = supcon (G1,G2) to denote the operation that

returns a TDES G3 whose marked behavior Lm(G3) is the supremal controllable sub-

language supC(Lm(G1), Lm(G2)), while its closed behavior L(G3) = L̄m(G3).

The maximally permissive proper supervisor for Mach that enforces Spec can now be

computed as:

Super = supcon( Mach,Spec )

Our new algorithm for finding supremal controllable sublanguage which was described

in the previous chapter, is compared with the previous method, used in TTCT . Table
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6.2 compares the efficiency and performance of the new method with the previous one.

As described in the previous section, for different values of time bounds the TDES will

have different number of states. So our open loop manufacturing cell will have a large

number of states for large values of the time bounds and the previous method can not

compute the controlled behavior of this large system. In this table, for computation

purposes we consider that L and U in the time bounds of the events are the same and

equal to the first column of the table. |Q|OpenLoop is the number of states of the open loop

cell, |Q|ClosedLoop is the number of states of the controlled system, t1 is the computation

time of TTCT in seconds , t2 is the time our program needs to compute the supremal

controllable sublanguage BDD in seconds, and |nodes| is the number of nodes of the

BDD containing the states of the controlled system.

TTCT BDD Program
L |Q|OpenLoop |Q|ClosedLoop

t1 t2 |nodes|
5 324 470 0 0 642

50 23,409 31,475 7 7 7775

100 91,809 122,925 92 37 17,225

200 363,609 485,825 1337 221 38,062

250 567,009 757,275 N/A 561 46,910

500 2,259,010 3,014,530 N/A 6684 103,396

750 5,076,009 6,771,780 N/A 42929 171,925

Table 6.2: TTCT and BDD program results for finding the controller for

manufacturing cell

A better comparison in time and space can be made using the Figures 6.14 and 6.15.

It is obvious that our new method saves both time and space in comparison to TTCT

although its saving in this part of the algorithm (SUPCON) is not as significant as the
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Figure 6.14: SUPCON computation time comparison between TTCT and BDD program

saving in the previous part of the algorithm ( ATG −→ TTG ). We should mention that

in our new algorithm we find the supremal controllable sublanguage directly from the

activity transition graph of the plant but TTCT computes it from the timed graph of

the plant. So for the total computation time of TTCT we should add the time it needs

to find the TTG from the ATG of the plant which was discussed in the previous section.
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Figure 6.15: SUPCON computation space comparison between TTCT and BDD program
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6.3 Two-Machine Workcell

Let us consider the workcell shown in Figure 6.16. Two machines M1 and M2 and

a buffer of size one constitute the cell. The machines are represented in the form of

activity transition diagrams in Figure 6.17. Furthermore, Σu = {β1, λ1, η1, β2, λ2, η2},
Σhib = Σfor = {α1, α2, µ1, µ2}. The following timing information applies:

M1 : (α1, L,∞), (β1, 1, U), (λ1, 0, U), (µ1, L,∞), (η1, L,∞)

M2 : (α2, L,∞), (β2, 1, U), (λ2, 0, U), (µ2, L,∞), (η2, L,∞)

A workpiece produced by M1 is placed in the buffer and is consequently available for

further work by M2. Both machines may either be idle, working or down. Once a work

cycle has begun, the machines either finish working or break down, in which case they

are repaired. The following production specifications are considered:

• the buffer must not overflow or underflow,

• if both machines are broken down, the repair of M2 must be initialized before the

repair of M1.

Figure 6.16: Two-machine workcell setup
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First, the cell open loop behavior M is obtained by composing M1 and M2. After

that we should find the timed transition graph of M. Similar to the previous example,

for different time bounds of events we will have a different number of states in the timed

graph of M. The previous method (TTCT) can not compute the TTG for time bound

values (L,U) of 300 or more. Our method can compute the TTG for values of time

bound much greater than that.

The above mentioned specifications are translated into the form of automata R1 and R2

which enforce the buffer and breakdown specifications respectively. R1 and R2 are shown

in Figure 6.18. Accordingly, the corresponding specification languages are provided by

E1 = Lm(R1) and E2 = Lm(R2) respectively.

Figure 6.17: The activity transition graph for Mi, i = 1, 1

R1 and R2 are combined together through the meet operation ∧, i.e. R = R1 ∧ R2.

Accordingly we have E = E1 ∩ E2 = Lm(R).

The cell closed loop behavior, which meets the specifications in the freest possible

way, is given by supC(E ∩ L(M))), i.e. the supremal controllable sublanguage of the

cell with respect to the combined specifications. The TDES whose marked behavior is

supC(E ∩ L(M))) is computed by SUPER = supcon (M,R) .
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Figure 6.18: R1 and R2

The results of our algorithm and TTCT are displayed in Table 6.3.

Open loop Closed loop BDD Program TTCT
L

|Q| |nodes| |Q| |T | |nodes| tTTG tsupc tTTG tsupc

20 7056 9541 6718 11781 3787 0 1 0 0

50 41,616 18,770 39,268 68,391 10,063 0 5 79 4

100 163,216 34,908 153,518 266,741 22,311 0 37 1014 40

200 646,416 66,626 607,018 1,053,441 49,410 1 176 16,429 362

250 1,008,016 75,867 946,268 1,641,791 61,111 1 272 38,827 2,116

300 1,449,616 110,435 1,360,520 2,360,141 83,132 2 500 N/A N/A

500 4,016,016 148,245 3,767,520 6,533,541 134,887 2 5,288 N/A N/A

750 9,024,016 244,874 8,463,770 14,675,291 224,838 2 35,388 N/A N/A

Table 6.3: TTCT and BDD program results for two-machine workcell

As mentioned in the previous example, the space required in the previous method is

proportional to number of states and transitions while in our method the space is only

dependent on the number of BDD nodes. The space requirements of the two methods

are compared in Figure 6.19.

The total time each program needs to compute the closed loop behavior from ATG

to TTG and then finding the supremal controllable sublanguage is shown in Figure 6.20
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Figure 6.19: The space requirement of each method
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Chapter 7

Conclusions and Future Research

This thesis presents a new synthesis algorithm for the Brandin-Wonham (BW) approach

to the control of Timed Discrete Event Systems (TDES). It is easily seen that for large

systems, this new method offer far better performance than the previous TTCT imple-

mentation.

This algorithm demonstrates the importance of structural information in a TDES system

in the form of event timers. We can see that the computation complexity in finding the

timed transition graph can be dramatically reduced. Our new algorithm also showed that

this structural information can lead us to find the controller for much bigger problems.

Also, it is shown that the BW framework, which is based on automata models, is able

to deal with practical problems, even if the system has a huge state space. Besides, it

is shown that parameters other than the size of the state space, can be used to evaluate

the complexity of the system. One of these parameters, which we used in this thesis, is

the number of nodes of the BDD representing the system’s state space. It is shown that

the number of BDD nodes, which practically decides the computational complexity of

synthesis, can be linear with respect to time bounds of the events in the system. The

ordering of variables can also change the number of BDD nodes as discussed in Section

5.3. This suggests that future research in this direction may be quite promising. Possible
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future research in this field can be:

- Finding a systematic way for choosing a better ordering of variables can reduce the size

of the BDDs and therefore the complexity of the problem.

- Using other symbolic tools like Integer Decision Diagrams (IDDs) [31],Bounded Model

Checking (BMC)[2] can be explored.

- Extending this method for Synchronous Product Timed Systems, Hierarchical Control

of Timed DES [28] and Supervisory Control of Timed-DES with partial observation [16]

- Finding an appropriate structure for the specification automata, in the case where we

do not have a timing structure for these automata, in order to convert them from a flat

model to a model with some structure. This is important because in a flat model we need

to encode the variable for representing the states with a large number of BDD variables.

- Combining our new method with other methods for finding reduced supervisors for

TDES [12][3].



Appendix A

BuDDy Package

BuDDy [17] is a Binary Decision Diagram package that provides all of the most used

functions for manipulating BDDs. The package also includes functions for integer arith-

metic such as addition and relational operators.

BuDDy started as a technology transfer project between the Technical University of

Denmark and Bann Visualstate. The BDD package presented here was made as part

of a Ph.D. project by Jrn Lind-Nielsen on model checking of finite state machines. The

package has evolved from a simple introduction to BDDs to a full blown BDD package

with all the standard BDD operations, reordering and a wealth of documentation.

First of all a program needs to initialize the BDD package. Getting the most out of any

BDD package is not always easy. It requires some knowledge about the optimal order of

the BDD variables. If we allocate as much memory as possible from the very beginning,

then BuDDy does not have to waste time trying to allocate more whenever it is needed.

Included in the BDD package is a set of functions for manipulating values of finite do-

mains, like for example finite state machines. These functions are used to allocate blocks

of BDD variables to represent integer values instead of only true and false. Those func-

tions which are called “fdd” are used in our BDD program. The functions which are

used in our program are listed below. More details about this package can be found in
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the package documentations, available at : http://www.itu.dk/research/buddy

- bdd-init

- bdd-autoreorder

- bdd-nodecount

- bdd-satcountset

- bdd-ithvar

- bdd-done

- bdd-exist

- bdd-relprod

- bdd-replace

- bdd-setpairs

- fdd-domain

- fdd-extdomain

- fdd-ithvar

- fdd-makeset

- fdd-equals
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