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Abstract
The aim of this thesis is to explore new ways to achieve complexity reduction in discrete

event systems (DES). We present three different ways of reducing complexity. First, we

present a symbolic supervisory control design method for composite systems such that the

complete state space never needs to be computed. Instead of a supervisor implemented

by a static lookup table, we provide a function that can be efficiently and dynamically

computed at each state to determine the control action. This symbolic function can be

suitably modified to ensure that the system under control is free of deadlocks. Secondly,

we present a heuristic algorithm to reduce the size of a (static) supervisor. Our symbolic

supervision scheme is not able to guarantee non-blocking behaviour in the system under

control. So to ensure non-blockingness it may be necessary to use a lookup table. Finding

the smallest lookup table for a given control task is an NP-hard problem. We propose

a greedy supervisor reduction algorithm based on the concept of control covers. This

algorithm seems to work quite well in a large number of cases. Finally, we present a

compact model of timed discrete event systems (TDES). We use local timers at each state

of the TDES to model the passage of time. This model is quite robust to changes in time

scale and is closed under control.
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1. Introduction

Yes, but are they practical?

This is a refrain that is heard a bit too often regarding the modelling and control of

discrete event systems. A discrete event system (DES) is a physical system that is discrete

(in time and space), asynchronous (event-driven rather than clock-driven), and in some

sense generative (or nondeterministic) [Won01]. Ramadge and Wonham have provided an

automaton based framework [RW82] (called RW) for the modelling and control of DES.

Over the past couple of decades a great deal of literature has been published in this area. It

has been shown that a DES can be controlled in a systematic and optimal manner [RW87a],

[RW87b], [RW89]; modular [WR88], [WW98] and hierarchical [Zho92], [ZW90], [WW96a],

[WW96b], [Pu00] decomposition schemes have been proposed; time has been incorporated

into RW [OW90], [Bra93], [BW94], [LW88], [O’Y91] to expand its modelling capabilities.

And yet the refrain is heard. The main reason for this is the state explosion problem. Most

complex systems are composed of several interacting components. The state space of such

a system is usually represented by the cross product of the state sets of the individual

components. As a result, the state space may grow exponentially with the number of

interacting components.

Modular and hierarchical decomposition schemes can often provide a stepwise approach

for handling complex systems. But we end up dealing with the entire state space at one

stage or the other. In the hierachical scenario, a control action computed at the high

1
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(abstract) level has to be implemented at the low (physical) level. This implementation

often requires complete knowledge of the low level state space. In the modular scenario,

the control tasks can be broken down but the state space of the physical system still needs

to be computed.

The situation is even worse if time is modelled explicitly. In addition to the complexity

due to the interaction of components, there is complexity due to the modelling of time.

Thus the state space of a timed system is usually much bigger than that of an untimed

system. The flexibility of incorporating temporal information usually exacts a big price in

terms of the complexity of the state space.

1.1. Goal and the Main Results

The main goal of this thesis is to make a contribution towards providing practical tools

and methods for the modelling and control of discrete event systems. We aim to tackle

the state explosion problem in discrete event systems. Towards that end, we first present

a supervisory control design method for composite systems such that the complete state

space never needs to be computed. The proposed method is symbolic in nature: a control

function is provided that can be efficiently evaluated to compute the control action at any

given state. This method is prone to blocking but can be augmented to provide deadlock

avoidance. Supervisor synthesis is an NP-hard problem [GW00] even when blocking is not

an issue. Under that backdrop, our proposed scheme provides an efficient synthesis tool

under reasonably mild restrictions.

Sometimes it may not be practical to use our symbolic scheme. Among other reasons,

this may happen either because the preconditions for symbolic supervision are violated

or because blocking is a concern. For such scenarios, we present a heuristic supervisor
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reduction algorithm. A supervisor reduction algorithm is meant to reduce the state size

of the automaton (or the entries in a lookup table) that is used for controlling a physical

system. It is always possible to find a minimal supervisor for a given job but the problem

is NP-hard [SW01]. Our algorithm does not attempt to find a minimal supervisor. In fact,

it does not even guarantee a reduced supervisor. However it seems to perform quite well

in practice.

Finally we present a compact model of timed discrete event systems (TDES). Rather

than using a special event to model the passage of time, we use timers instead. These

timers countdown with respect to a global clock. This allows us to compactly incorporate

temporal information. The model is also quite robust to changes in time scale. In other

words, the size of the model usually does not increase much if the frequency of the global

clock is increased. But the main advantage of the proposed model is that it is closed under

control. A TDES subject to supervisory control can be modelled as another TDES. This

is a very desirable property since it allows us to perform a series of control designs on a

TDES.

1.2. Related Work

In this section we outline some of the related work done by other researchers. We begin

with symbolic methods in discrete event systems. Most of it is quite different than our

approach but the basic idea is the same: avoid enumerating the state space. Then we move

on to supervisor reduction which has not been a very active area since the publication of

[VW86]. It is shown in [VW86] that finding a minimal supervisor is exponential in time and

that has perhaps retarded research in this area. The problem becomes a lot more tractable

if the aim is simply to find a reduced supervisor rather than a minimal supervisor. Finally
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we outline the related work in timed discrete event systems.

1.2.1. Symbolic Supervision

Symbolic methods have long been used for model checking and verification of properties

of discrete event systems [McM92], [BCM92], [CGP01]. These methods try to exploit

inherent regularities and symmetries in the system being verified and are often used for

the verification of large digital hardware systems. The system representation is based on

boolean decision diagrams (BDDs) [Ake78], [Bry86] which are used to represent binary

functions. A large class of boolean functions can be represented by function graphs whose

size is a polynomial function of the number of boolean variables. Thus BDDs can often

compactly represent systems that are rich in symmetry although the size of a BDD is

sensitive to the variable ordering [Bry86]. The inability of BDDs to represent general

functions prevented their direct application in the field of supervisory synthesis although

one such approach is presented in [HWT92b], [HWT92a].

Integer decision diagrams (IDDs) [Gun97] are an extension of BDDs that can be used

to represent general finite functions. IDDs utilize the structure of integers and arithmetic

operations and share a number of characteristics with BDDs. In particular, IDDs can

be used to provide a compact representation of discrete event systems. IDDs have been

successfully used in [Zha01] for the purpose of supervisor synthesis: a supervisor has been

synthesized for a system with state size of 1.96× 1015.

The common theme of all the aforementioned results is that they use some sort of a

decision diagram to construct the system model. The reduction in computational com-

plexity is a direct result of the properties of the decision diagram. Heuristics are used to

automatically get a good variable ordering; these heuristics are often quite good for loosely

coupled systems. All the computations are still carried out offline and herein lies the major
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weakness of these methods: the results need to be stored somewhere. As the state space

increases so does the complexity of computing the control action and the complexity of

storing it. The approach we take in this thesis is an online approach. We compute the con-

trol action whenever it is needed (upon entering a new state). The reduction in complexity

is not a result of a particular representation (BDD, IDD etc) but of a decomposition defined

on the system. This decomposition allows us to distribute the control task and employ a

look-ahead control. To the best of our knowledge, no one else has used a similar decom-

position. However a look-ahead policy has been implemented in [CLL92a], [CLL92b]. The

authors there employ a look-ahead window of fixed size (say N). The control action at the

current state is based on what can be foreseen in the next N steps. An assumption is made

regarding the system behaviour beyond those N steps. The assumption can be optimistic:

if nothing bad can be foreseen in N steps then it is assumed that nothing bad will happen

after that; the assumption can be conservative: if safety cannot be guaranteed based on

a look-ahead of N steps then it is assumed safety is in jeopardy after that. The authors

present a lower bound on N that guarantees that the control is optimal (i.e. the same as

in the case when all the information is available). However, in general, this bound cannot

be computed without constructing the entire state space. Thus the choice of N is arbitrary

and a designer must rely on intuition about the system behaviour.

A symbolic synthesis approach based on predicates is presented in [AMP95]. There the

authors have presented supervisory control setup in a game theoretic framework. The aim

is to find winning strategies without enumerating the entire state space. Similar work in a

control theoretic framework is presented in [Ma02]. While similar in spirit, their approach

is quite different than ours.
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1.2.2. Supervisor Reduction

Given a plant and a supervisor, the supervisor reduction problem is to find a supervisor

that has fewer states than the original supervisor but performs the same control task.

A reduced supervisor is typically found by inducing it from a suitable cover [VW86] of

the state set of the original supervisor. It is shown in [VW86] that it is always possible

to find a minimal supervisor (there may be more than one). It can be done by simply

enumerating all possible (and suitable) covers and picking a minimal one. However this

is very inefficient; in fact, finding a minimal supervisor is NP-hard [SW01]. A supervisor

reduction algorithm is presented in [SW00], [SW01]. This work recognizes the fact that is

perhaps futile to search for an efficient algorithm that produces a minimal supervisor. So

it focuses on finding just a reduced supervisor instead. A suitable congruence is defined on

the state set of the original supervisor. This congruence leads to a partition of the state

set and a supervisor is induced from that partition. A partition of a set can have no more

elements than the set so this always leads to a reduced supervisor. Our algorithm provides

no such guarantees as it induces the supervisor from a cover (which can have more elements

than the set of which it is a cover). However we use a greedy heuristic that is based on

similar heuristics used for finding an approximate set cover [Chv79], [Hoc82]. These set

cover heuristics provide good approximate solutions to the set cover problem. Since the

problem of finding a control cover is quite similar to finding a set cover, we expect our

algorithm to perform well in practice. In fact, the algorithm has been able to produce

reduced supervisors for a large variety of systems.
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1.2.3. Timed Discrete Event Systems

The RW framework proposed by Ramadge and Wonham in [RW82] does not model time

explicitly. It is possible to make statements like “The machine must be turned on before

a workpiece can be processed” but it is not possible to infer when the machine is turned

on. Thus we can only talk about the relative order of occurrences of various events. The

work presented in [Mol86] extends RW to include temporal information by assigning time

delays to events. The effect of time delays for supervisory control is explored in [LW88].

Brave and Heymann use a timer to model time in [BH88]. The timer is reset to zero

upon entering a state and starts counting up with respect to a global clock. Time intervals

are assigned for the possible occurrence of events and nondeterminism is resolved using

the current timer value. The composition of systems is problematic in this setup but our

proposed model is very close to this in spirit. We use timers as well but composition is well

defined in our framework.

A theory of timed automata unrelated to RW is given in [AD92]. State transition graphs

are annotated with timing information using real-valued clocks. The time of occurrence

of every event is associated with it to form timed words and the system is modelled using

a variant of Büchi automata. No apriori limit is placed on the temporal resolution but

an equivalence relation is defined to derive a finite state space. Supervisory control is not

explored but the theory is applied to the verification of real-time constraints. In a similar

vein, supervisory control is explored in [WTH91]. Timed traces are defined over a dense

domain and conditions are given for the existence of supervisors.

The use of temporal logics to specify and verify system properties is explored in [Pnu77],

[CE81], [EH86]. Temporal logics are used for model checking in [BCM92], [Hol97], [QS81].

The aim in model checking is to verify whether a finite-state model of a system satisfies
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a temporal logic specification. In a similar vein, temporal logic frameworks are used to

reason about the correctness of supervisors [AHK97], [EH91]. However, not much work has

been done in the area of supervisor synthesis.

Brandin [Bra93], [BW94] proposes an extension of RW (called BW) where the passage

of time is explicitly modelled by using a special event called tick. The tick event represents

the lapse of one time unit measured against a global clock. Time bounds are assigned to

events and represent the constraints on their occurrence relative to their time of enablement.

BW utilizes the timed features of timed transition models [OW90], [Ost90], [Ost89]. This

framework possesses good expressiveness properties but suffers from a couple of major

problems. First, the state size is very sensitive to the clock frequency: a tick event must

be associated with the passage of each unit of time. As the clock frequency increases, so

must the number of tick events. Secondly, BW is not closed under control: it may not be

feasible to put a system under control in a form that is amenable to further control design.

An attempt to rectify the first of these problems has been made in [Bra97], [Bra98]. No

special event is used to model the passage of time; timers are used instead. However, this

work is not quite correct as we show in Chapter 6. Despite incorrectness in the details, the

idea laid out in [Bra97], [Bra98] is a good one. We explore it in detail in this thesis and

it forms the basis of the new timed model presented in Chapter 7. The work in [Bra97],

[Bra98] does not address the second problem since the model presented there is not closed

under control either. Wong and Wonham have presented a framework for timed systems

in [WW96a], [WW96b] that is closed under control. However their model still uses a tick

event to model the passage of time. The model we propose in this thesis is also closed

under control although our approach is different than the one taken in [WW96b].
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1.3. A Roadmap for the Thesis

In Chapter 2 we present the general notation used in this thesis. Our symbolic supervision

scheme is automaton (rather than language) based so we adapt for this thesis a number

of linguistic definitions and results given in [Won01]. We also define a join operation for

automata that will be used to construct our symbolic supervision scheme given in Chapter

3. We consider systems that comprise components that do not share any events. Under this

assumption, we divide a given specification over the alphabets of the various components.

A distribution operation (a dual of the join operation) allows us to automatically divide

the specification. We give stepwise and modular operations on the components that help

in the computation of the global control action. We show that this computation can be

done in an efficient manner and provide an example to illustrate it. We then extend our

supervision scheme to provide deadlock avoidance. Finally we give a complexity analysis

of our symbolic scheme.

In Chapter 4 we present a heuristic algorithm for supervisor reduction. This is a greedy

algorithm that is based on the concept of control covers [VW86]. Given a plant and a

supervisor, our algorithm computes another supervisor that is equivalent in control action

to the original supervisor. The new supervisor is not guaranteed to be a reduced supervisor,

i.e. it may not have fewer states than the original supervisor. However, our algorithm seems

to perform quite well and gives reduced supervisors for a large number of examples we have

tried.

In Chapter 5 we give additional notation that is needed for timed systems. Some of

the concepts from Chapter 2 are redefined here (the new definitions pertain only to timed

systems). In Chapter 6 we pose and solve the problem of finding shortest and longest

paths in a timed discrete event system. The problem is posed in a dynamic programming
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framework so we know that a solution can always be found. However the typical dynamic

programming solution is recursive [Bel61], [Dre65]. We provide two greedy solutions and

show that only one of them is useful for the purpose of supervisory control. This solution

provides the motivation for a new model of timed systems given in Chapter 7. This model

is based on timers and is therefore quite compact. However, its biggest advantage is that

it is closed under control. It is also quite insensitive to changes in clock frequency.

Finally, we present our conclusions in Chapter 8. We also provide some suggestions for

future work. The various chapters may be read in sequence or selectively as shown below.
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2. Notation

2.1. An Overview

Here we present some notation and preliminary background material. Most of the material

presented here is taken from [Won01] with minor modifications. These modifications are

needed because some of the results presented in this thesis are automaton based and depend

critically on the state set of the automaton representing the specification. So, for instance,

we need to adapt for automata the RW notion of controllability of a language with respect

to another language. In other words, we define the notion of controllability of an automaton

with respect to another automaton. This sort of definition is already implicit in the work

of Rudie [Rud88] and the supcon procedure of the TCT[Won01] software. We show that

the notion of controllability of an automaton with respect to another is equivalent to the

notion of controllability of the languages generated by the respective automata. We also

define a join operation for two automata by taking the union of the underlying graphs. The

language generated by such a join of two automata is generally bigger than the union of

the languages generated by the individual automata. This property allows us to decompose

the problem of verifying controllability. The decomposed subproblems can be solved quite

efficiently. This allows us to present a modular framework for the synthesis of controllable

automata.

12
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2.2. Notation and Definitions

Definition 1 An alphabet Σ is a finite set of distinct symbols. Let Σ+ denote the set of

all finite symbol sequences, of the form σ1σ2 · · ·σk where k ≥ 1 is arbitrary and the σi ∈ Σ.

Let ε /∈ Σ be the empty sequence symbol and define Σ∗ = {ε} ∪ Σ+. An element of Σ∗ is a

string or word over the alphabet Σ; ε is the empty string.

Definition 2 An automaton G =
(
XG, ΣG, EG, xG

o , XG
m

)
is a 5-tuple where

XG is a (non-empty) state set,

ΣG is the alphabet over which G is defined,

EG = {(x, σ, y) |x, y ∈ X, σ ∈ Σ} ⊆ X × Σ×X is the set of edges or transitions of G,

xG
0 ∈ XG is the initial state, and

XG
m ⊆ XG is the set of marker states.

For convenience, we also define the empty automaton Φ = (∅, Σ, ∅, , ∅) .

Unless the 5-tuple representation of any automaton G is explicitly given, we will assume

it to be
(
XG, ΣG, EG, xG

0 , XG
m

)
. We will also assume that ΣG = ΣG

c ∪ ΣG
u is the disjoint

union of controllable and uncontrollable events. Accordingly, we will use EG
c and EG

u to

respectively denote the sets of controllable and uncontrollable transitions of G, where

EG
c :=

{
(x, σ, y) ∈ EG|σ ∈ ΣG

c

}
and

EG
u :=

{
(x, σ, y) ∈ EG|σ ∈ ΣG

u

}
.
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Henceforth in this chapter, we assume that G, G1 and G2 refer to the automata

(X, Σ, E, x0, Xm), (X1, Σ1, E1, x1
0, X

1
m) and (X2, Σ2, E2, x2

0, X
2
m) respectively.

Definition 3 Let ηG : X × Σ → X be a partial function. Then ηG is called the state

transition function for G if for all x1, x2 ∈ X and σ ∈ Σ

ηG(x1, σ) = x2 ⇐⇒ (x1, σ, x2) ∈ E.

The notation ηG(x, σ)! will mean that ηG(x, σ) is defined. We extend ηG to a partial function

ηG : X × Σ∗ → X by the rules

ηG (x, ε) = x

ηG (x, sσ) = ηG
(
ηG (x, s) , σ

)
provided ηG (x, s)! and ηG

(
ηG (x, s) , σ

)
!. Sometimes it is convenient to talk about the tran-

sition function for a set of states. Let ηG : 2X × Σ → 2X be the mapping such that

ηG (Y, σ) :=
{
x ∈ X : (∃y ∈ Y ) ηG (y, σ) = x

}
.

By an abuse of notation we will use ηG instead of ηG; the distinction should be clear from

the context.

Definition 4 The set of eligible events at any state x ∈ X is defined to be

Elig (G, x) :=
{
σ ∈ Σ|ηG (x, σ)!

}
.
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Definition 5 The closed behaviour of G is

L (G) :=
{
s ∈ Σ∗|ηG (x0, s)!

}
while

Lm (G) :=
{
s ∈ L (G) |ηG (x0, s) ∈ Xm

}
is the marked behaviour of G. The marked behaviour of G is also referred to as the

language generated by G.

Definition 6 Let s ∈ L (G) be any string belonging to the closed behaviour of G. Then the

state in G corresponding to s is ηG(x0, s). Let x ∈ X be any state belonging to G. Then

the set of strings in L (G) corresponding to x is

{
s ∈ L (G) |x = ηG (x0, s)

}
.

These definitions are similarly extended to Lm (G) .

Definition 7 The automaton G1 is a subautomaton of G2 (denoted G1 ≤ G2) if X1 ⊆

X2, Σ1 ⊆ Σ2, E1 ⊆ E2, X1
m ⊆ X2

m, and x1
0 = x2

0. We extend ≤ by declaring that Φ ≤ G

for any automaton G.

It follows that if G1 ≤ G2 then L (G1) ⊆ L (G2) and Lm (G1) ⊆ Lm (G2) .

Definition 8 Let H and K be subautomata of G. Then the join of H and K (denoted

H ∨K) is defined as

H ∨K =
(
XH ∪XK , ΣH ∪ ΣK , EH ∪ EK , x0, X

H
m ∪XK

m

)
.



2.2. NOTATION AND DEFINITIONS 16

Proposition 9 Let F, H, and K be subautomata of G such that H,K ≤ F. Then H ∨

K ≤ F.

Proof. Since H and K are subautomata of F it follows that XH ⊆ XF and XK ⊆ XF .

So XH ∪XK ⊆ XF . Similarly ΣH ∪ΣK ⊆ ΣF , EH ∪EK ⊆ EF , and XH
m ∪XK

m ⊆ XF
m which

gives the desired result.

Proposition 10 Let G be the set of all subautomata of G. Then < G,≤> is an upper

semilattice with ∨ as the join operation.

Proof. In order to show that < G,≤> is an upper semilattice, we need to show that it

is a poset in which join is always defined.

1. (Reflexive): Let H be any subautomaton of G. Then H ≤ H since XH ⊆ XH ,

ΣH ⊆ ΣH , EH ⊆ EH and XH
m ⊆ XH

m .

2. (Transitive): Let F, H, and K be subautomata of G such that F ≤ H and H ≤ K.

Then XF ⊆ XH and XH ⊆ XK which implies that XF ⊆ XK . Similarly, ΣF ⊆ ΣK ,

EF ⊆ EK and XF
m ⊆ XK

m . Thus F ≤ K.

3. (Antisymmetric): Let H and K be subautomata of G such that H ≤ K and

K ≤ H. This implies that XH = XK , ΣH = ΣK , EH = EK , and XH
m = XK

m which

means that H = K.

4. (Join Exists): Let H, K and F be subautomata of G. Additionally, assume that H,

K are subautomata of F. Then from Proposition 9 we can conclude that H∨K ≤ F.

Similarly, we can conclude that H ∨K ≤ G, i.e. H ∨K ∈ G.
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Definition 11 The automaton G1 is isomorphic to G2 (denoted G1 ≈ G2) if there exists

a bijection f : X1 → X2 such that f1 (X1
m) = X2

m, f (x1
0) = x2

0, and f2 (E1) = E2 where

f1

(
X1

m

)
=

{
f (x) |x ∈ X1

m

}
, and

f2

(
E1
)

=
{
(f (x1) , σ, f (x2)) | (x1, σ, x2) ∈ E1

}
.

If G1 ≈ G2 then L (G1) = L (G2) and Lm (G1) = Lm (G2) .

Thus an automaton is isomorphic to another if one can be converted into the other by

relabeling the states.

Definition 12 Let x1, x2 ∈ X and let e1, . . . , en ∈ E. Then the sequence e1 · · · en is called

a path in G (of length n) between x1 and x2 if e1 = (x1, σ1, y1) , ei = (yi−1, σi, yi) for

2 ≤ i ≤ n − 1, and en = (yn−1, σn, x2) for some y1, . . . , yn−1 ∈ X and σ1, . . . , σn ∈ Σ. The

empty sequence is called the empty path (of length zero).

Definition 13 Let x1, x2 ∈ X. Then x2 is said to be reachable from x1 if there exists a

path from x1 to x2. A state is said to be reachable if it is reachable from x0. A state is

declared to be reachable from itself via the empty path.

Definition 14 The automaton Grch = (Xrch, Σ, Erch, x0, Xm ∩Xrch) is the reachable sub-

automaton of G where

Xrch = {x ∈ X|x is reachable} , and

Erch = {(x1, σ, x2) ∈ E|x1, x2 ∈ Xrch} .

The reachable subautomaton Grch has the same closed and marked behaviours as G, i.e.

L (G) = L (Grch) and Lm (G) = Lm (Grch) . We say G is reachable if G = Grch.
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Definition 15 Let x ∈ X. Then x is said to be coreachable if there exists a path from x

to some state in Xm. We say G is coreachable if x is coreachable for all x ∈ X.

Definition 16 An automaton is trim if it is both reachable and coreachable.

Definition 17 The product automaton G1 ×G2 is defined as

G1 ×G2 =
(
X1 ×X2, Σ1 ∩ Σ2, P,

(
x1

0, x
2
0

)
, X1

m ×X2
m

)
where

P =
{
((x1, y1) , σ, (x2, y2)) | (x1, σ, x2) ∈ E1 and (y1, σ, y2) ∈ E2

}
.

The product automaton G1 ×G2 generates only those strings that can be generated by

both G1 and G2, i.e. L (G1 ×G2) = L (G1) ∩ L (G2) and Lm (G1 ×G2) = Lm (G1) ∩

Lm (G2) .

Definition 18 The meet of G1 and G2 (denoted G1 ∧ G2) is defined as the reachable

subautomaton of the product automaton, i.e.

G1 ∧G2 = (G1 ×G2)rch .

Clearly L (G1 ∧G2) = L (G1) ∩ L (G2) and Lm (G1 ∧G2) = Lm (G1) ∩ Lm (G2) .

Often the behaviour of a plant is modelled as the synchronous operation of various

subsystems. We now define such a synchronous behaviour of components in terms of the

meet operation. We also define the synchronous composition of languages and show that

language generated by the synchronous composition of two automata is the same as the

synchronous composition of their languages.
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Definition 19 The synchronous compositionof G1 and G2 (denoted G1‖G2) is defined as

G1‖G2 = G′
1 ∧G′

2 where

G′
1 =

(
X1, Σ1 ∪ Σ2, E ′, x1

0, X
1
m

)
,

E ′ = E1 ∪
{
(x, σ, x) |x ∈ X1 and σ ∈ Σ2 − Σ1

}
,

G′
2 =

(
X2, Σ1 ∪ Σ2, F ′, x2

0, X
2
m

)
,

F ′ = E2 ∪
{
(x, σ, x) |x ∈ X2 and σ ∈ Σ1 − Σ2

}
.

If Σ1 = Σ2 then G1‖G2 = G1 ∧G2.

Definition 20 Let L1 ⊆ Σ1∗, L2 ⊆ Σ2∗. The synchronous compositionof L1 and L2

(denoted L1‖L2) is defined as L1‖L2 = P−1
1 L1 ∩P−1

2 L2 where Pi : (Σ1 ∪ Σ2)
∗ → Σ∗

i are the

natural projection maps.

Proposition 21 The marked behaviour of the synchronous composition of G1 and G2 is

the same as the synchronous composition of the marked behaviours of G1 and G2, i.e.

Lm (G1‖G2) = Lm (G1) ‖Lm (G2) .

Proof. Let G′
1 and G′

2 be automata such that G1‖G2 = G′
1 ∧G′

2. For i ∈ {1, 2} let

Pi : (Σ1 ∪ Σ2)
∗ → Σ∗

i be the natural projection maps. From Definition 19 we can see that

Lm (G′
i) = P−1

i Lm (Gi) . Thus

Lm (G1‖G2) = Lm (G′
1 ∧G′

2)

= Lm (G′
1) ∩ Lm (G′

2)

= P−1
1 Lm (G1) ∩ P−1

2 Lm (G2)

= Lm (G1) ‖Lm (G2) .
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2.2.1. Distribute and Join

Let a system be modelled by G and assume that G1 is a subautomaton of G. Then G1 can

be thought of as a partial model of the system. Perhaps G contains far more information

than is needed for some specific purpose. In such a case a partial model might provide an

uncluttered picture of the system for that specific purpose.

Example 22 Let

G =


{idle, working} , {start, stop, run diagnostics} ,

{(idle, start, working) , (working, stop, idle) , (idle, run diagnostics, idle)} ,

idle, {idle}


represent a machine (shown in Figure 2.1) that is either in idle state or in working state.

G

idle

working

start stop

run_diag

G1

idle

working

start stop

G2

idle run_diag

Figure 2.1: Partial Models of a Machine

If it is idle then it can be made to run diagnostics on itself or can be made to start working.

Now suppose that we are not interested in running diagnostics on the machine. In such a
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case, a partial model of the machine that does not contain diagnostic details might be more

useful. Such a model may be represented as

G1 =


{idle, working} , {start, stop} ,

{(idle, start, working) , (working, stop, idle)} ,

idle, {idle} .


Similarly if we are only interested in the diagnostic operation then perhaps a partial model

containing just that information would be more useful. Such a model may be represented as

G2 = ({idle} , {run diagnostics} , {(idle, run diagnostics, idle)} , idle, {idle}) .

Both G1 and G2 are also shown in Figure 2.1. 2

In the above example, it is important to note that both G1 and G2 are models of the

same machine but represent different aspects of the machine. In other words, G1 and G2

represent different views of the same system. It seems reasonable to assume that if we are

given G and know the attributes of interest then we should be able to derive partial models

from G representing those attributes. Similarly if we are given a collection of partial models

of a system, it again seems reasonable that we should be able to somehow join these partial

models to compute an aggregate model of the system that contains all the information of

the individual partial models. We now show one way of doing this distribution and joining.

Definition 23 Let S = {Σi ⊆ Σ|1 ≤ i ≤ n} be a set of subalphabets of Σ. Let τ be an event

that does not belong to Σ. We now define

Distribute (G, S) =
{
Gi=

(
X, Σi

.
∪ {τ} , Ei, x0, Xm

)
|1 ≤ i ≤ n

}
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where

Ei = Ei
l

.
∪ Ei

f

Ei
l =

{
(xj, σ, xk) |σ ∈ Σi and (xj, σ, xk) ∈ E

}
Ei

f =
{
(xj, τ, xk) |

(
∃σ ∈ Σ− Σi

)
s.t. (xj, σ, xk) ∈ E and xj 6= xk

}
,

to be the distribution of G over S.

Here we are given a system model G and a set of alphabets Σi. For each of the given

alphabets, the aim is to produce a partial model of the system represented by G. For any

given alphabet, the corresponding partial model should ideally just contain information

about the events that belong to the alphabet (i.e. the local events). However, as we will

shortly show, this is not entirely feasible as some of the partial models may be rendered

ambiguous or even incorrect. So a special event τ is used to retain reachability information

that might have been lost otherwise. Since it models the effect of one or more events that

do not belong to the given alphabet, τ is called a foreign event. Thus the transition set Ei

is the disjoint union of transitions Ei
l and Ei

f due to the local events belonging to Σi and

the foreign event τ respectively.

It may turn out that the distributed models are non-deterministic. However this non-

determinism is restricted to the transitions caused by the foreign event τ. This is not a big

concern because in a distributed model we are mainly interested in the transitions caused

by the local events. The foreign event transitions merely provide additional information

(like reachability).
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Example 24 Let us reconsider the machine from Example 22. It is modelled as

G =


{idle, working} , {start, stop, run diagnostics} ,

{(idle, start, working) , (working, stop, idle) , (idle, run diagnostics, idle)} ,

idle, {idle} .


Let

S = {{start} , {stop} , {run diagnostics} , {start, stop}} .

Then

Distribution (G, S) = {G1,G2,G3,G4}

where

G1 =


{idle, working} , {start, τ} ,

{(idle, start, working) , (working, τ, idle)} ,

idle, {idle} ,



G2 =


{idle, working} , {stop, τ} ,

{(idle, τ, working) , (working, stop, idle)} ,

idle, {idle} ,



G3 =


{idle, working} , {run diagnostics, τ} ,

{(idle, τ, working) , (working, τ, idle) , (idle, run diagnostics, idle)} ,

idle, {idle} ,


and

G4 =


{idle, working} , {start, stop, τ} ,

{(idle, start, working) , (working, stop, idle)} ,

idle, {idle} ,
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Here we are given four alphabets so the distribution of G produces four partial models:

G1

idle

working

start τ

G2

idle

working

τ stop

G3

idle

working

τ τ

run_diag

G4

idle

working

start stop

Figure 2.2: Distribution of an Automaton

G1,G2,G3 and G4 shown in Figure 2.2. The partial model G1 may be interpreted as

follows: If the machine is in idle state then it may be started. If started, the machine

reaches the working state where it remains until some “foreign” event τ takes it to the idle

state again. If we had not included the τ event then the partial model G1 would have given

the erroneous impression that the machine can be started only once. Similarly, if we had

not included the τ event in the partial model G2 then it would have been unclear how the

machine reaches the working state from the initial idle state. The partial model G3 tells

us that the diagnostics may not be run while the machine is working. It does not give any

useful information about the other modes of operation of this machine. Finally, the partial

model G4 provides information about the start and stop operations of the machine. 2

The distribution operation takes an automaton model of a system and generates partial

system models. We now define the reverse operation that takes partial models of a system

and generates an aggregate system model. By an abuse of notation, we shall call this

operation a join operation as well.
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Definition 25 Let D =
{
Gi =

(
X, Σi

.
∪ {τ} , Ei

l

.
∪ Ei

f , x0, Xm

)
|1 ≤ i ≤ n

}
be a set of

automata models of some system. Then the join of D is defined as

Join (D) =
(
X,∪n

i=1Σ
i,∪n

i=1E
i
l , x0, Xm

)
.

We may also represent Join (D) as G1 ∨ · · · ∨Gn or simply as ∨D.

From the definitions of distribution and join it can be seen that Join(Distribution(G, S)) =

G whenever ∪S = Σ. The join operation of Definition 25 is based on the join operation of

Definition 8 but has been specialized to get rid of the τ event. The τ event is introduced

in a distribution only to retain some reachability information and is of no use once the

distribution has been put back together. The algebraic properties of the join operation of

Definition 25 are inherited by the join operation of Definition 8 and this proves useful in

various proofs.

Example 26 Let us continue with the machine of Example 24. There we computed the

partial models corresponding to four given alphabets. Now let us join those partial models.

Join ({G1,G2,G3,G4}) = G1 ∨G2 ∨G3 ∨G4

=


{idle, working} , {start, stop, run diagnostics} , (idle, start, working) , (working, stop, idle) ,

(idle, run diagnostics, idle)

 ,

idle, {idle} .


= G.

2
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We now show that product distributes over join.

Proposition 27 Let S1 =
(
Y, Σ1

.
∪ {τ} , A1

l ∪ A1
f , y0, Ym

)
, S2 =

(
Y, Σ2

.
∪ {τ} , A2

l ∪ A2
f , y0, Ym

)
and assume that Σ1 ∪ Σ2 = Σ. Then

G× (S1 ∨ S2) = (G× S1) ∨ (G× S2) .

Proof. Let S = S1 ∨ S2. Then

S =
(
Y, Σ1 ∪ Σ2, A1

l ∪ A2
l , y0, Ym

)
.

So

G× (S1 ∨ S2) = G× S

=
(
X × Y, Σ ∩

(
Σ1 ∪ Σ2

)
, E ′, (x0, y0) , Xm × Ym

)
= (X × Y, Σ, E ′, (x0, y0) , Xm × Ym)

where

E ′ =
{
((x1, y1) , σ, (x2, y2)) | (x1, σ, x2) ∈ E and (y1, σ, y2) ∈ A1

l ∪ A2
l

}
=

{
((x1, y1) , σ, (x2, y2)) | (x1, σ, x2) ∈ E and (y1, σ, y2) ∈ A1

l

}
∪
{
((x1, y1) , σ, (x2, y2)) | (x1, σ, x2) ∈ E and (y1, σ, y2) ∈ A2

l

}
Similarly

G× S1 =
(
X × Y, Σ1, A1, (x0, y0) , Xm × Ym

)
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where

A1 =
{
((x1, y1) , σ, (x2, y2)) | (x1, σ, x2) ∈ E and (y1, σ, y2) ∈ A1

l

}
,

and

G× S2 =
(
X × Y, Σ2, A2, (x0, y0) , Xm × Ym

)
where

A2 =
{
((x1, y1) , σ, (x2, y2)) | (x1, σ, x2) ∈ E and (y1, σ, y2) ∈ A2

l

}
.

Now

(G× S1) ∨ (G× S2) =
(
X × Y, Σ1 ∪ Σ2, A1 ∪ A2, (x0, y0) , Xm × Ym

)
= (X × Y, Σ, E ′, (x0, y0) , Xm × Ym)

= G× (S1 ∨ S2) .

2.2.2. Controllability of Automata

We now define the notion of controllability of an automaton with respect to another au-

tomaton. This is essentially the translation of the RW notion of controllability of a language

with respect to another language. We assume as usual that any given alphabet Σ = Σc

.
∪ Σu

where Σc and Σu represent the (mutually disjoint) sets of controllable and uncontrollable

events respectively.

Definition 28 Let G and S = (Y, Σ2, F, y0, Ym) be trim automata. We define S to be
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controllable with respect to G if

(∀ (x1, y1) ∈ G ‖ S) (∀σ ∈ Σu) (∀x2 ∈ X) [(x1, σ, x2) ∈ E ⇒ (∃y2 ∈ Y ) (y1, σ, y2) ∈ F ] .

The definition essentially says that S must allow an uncontrollable event whenever such

an event is eligible in G. We now show the equivalence of automaton controllability to

language controllability.

Proposition 29 Let G and S = (Y, Σ, F, y0, Ym) be trim automata. Then S is controllable

with respect to G if and only if Lm (S) is controllable with respect to Lm (G) .

Proof. We prove this by showing implication both ways.

(i) Let us assume that S is controllable with respect to G. We have to show that this

implies that Lm (S) is controllable with respect to Lm (G) . Let s ∈ Lm (G) ∩ Lm (S)

and let σ ∈ Σu be such that sσ ∈ Lm (G). In order to show that Lm (S) is controllable

with respect to G we have to show that sσ ∈ Lm (S). Let x1 ∈ X and y1 ∈ Y be

the states in G and S respectively corresponding to s. Since sσ ∈ Lm (G) it follows

that there exists x2 ∈ X such that (x1, σ, x2) ∈ E. Now the controllability of S with

respect to G implies that there exists a state y2 ∈ Y such that (y1, σ, y2) ∈ F which

implies that sσ ∈ Lm (S).

(ii) Let us assume that Lm (S) is controllable with respect to Lm (G) . We have to show

that this implies that S is controllable with respect to G. Let (x1, y1) ∈ G∧S and let

σ ∈ Σu and x2 ∈ X be such that (x1, σ, x2) ∈ E. In order to show that S is controllable

with respect to G we have to show that there exists y2 ∈ Y such that (y1, σ, y2) ∈ F.

Let s be any string in L (G ∧ S) corresponding to (x1, y1); then s ∈ Lm (G) ∩ Lm (S).
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Since (x1, σ, x2) ∈ E it follows that sσ ∈ Lm (G). Now the controllability of Lm (S)

with respect to Lm (G) implies that sσ ∈ Lm (S). Thus there must exist y2 ∈ Y such

that (y1, σ, y2) ∈ F.

Since isomorphic automata generate the same language we immediately get the next

result.

Corollary 30 Let G1 and G2 be isomorphic automata. Then an automaton S is control-

lable with respect to G1 if and only if it is controllable with respect to G2.

We now define controllability in the presence of foreign event transitions.

Definition 31 Let G and S =
(
Y, Σ

′ .
∪ {τ} , F, yo, Ym

)
be trim automata such that Σ

′ ⊆

Σ. We define S to be locally controllable with respect to G if

(∀ (x1, y1) ∈ G ‖ S)
(
∀σ ∈ Σ

′

u

)
[(x1, σ, x2) ∈ E ⇒ (∃y2 ∈ Y ) (y1, σ, y2) ∈ F ] .

As we shall shortly show, this notion of local controllability allows us to check the

controllability of a specification by looking at its distribution instead. The specification

automaton is distributed over a set of alphabets and the local controllability is checked

over the distributed automata. If all of the distributed automata are locally controllable

with respect to a plant then the specification automaton is controllable with respect to the

same plant. There is no real advantage in doing this but it provides a glimpse into the

symbolic supervision scheme introduced in Chapter 3. The symbolic supervision scheme

also utilizes a distribution of the specification automaton.

Proposition 32 Let S = (Y, Σ, A, y0, Ym) and let
{
Si =

(
Y, Σi ∪ {τ} , Ai

l ∪ Ai
f , y0, Ym

)
|i ∈ I

}
be a distribution of S over some set S = {Σi|i ∈ I} of alphabets where I is a finite index
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set. Assume that ∪S = Σ. If Si is locally controllable with respect to G for all i ∈ I then

S is also controllable with respect to G.

Proof. Let (x1, y1) ∈ G ∧ S, x2 ∈ X and σ ∈ Σu be such that (x1, σ, x2) ∈ E. In order

to show that S is controllable with respect to G we have to show that there exists a state

y2 ∈ Y such that (y1, σ, y2) ∈ A. Let σ ∈ Σi for some i ∈ I. Since Si is locally controllable

with respect to G, it follows that there must exist y2 ∈ Y such that (y1, σ, y2) ∈ Ai
l ⊆ A.

Given trim automata G and S, let C (G,S) be the set of all trim subautomata of G∧S

that are controllable with respect to G, i.e.

C (G,S) := {S′ ≤ G ∧ S|S′ is trim and controllable wrt G} .

Proposition 33 The set C (G,S) is nonempty and its join is controllable with respect to

G. In other words, ∨C (G,S) ∈ C (G,S).

Proof. Let Φ represent the empty automaton. Since ∅ = Lm (Φ) is controllable with

respect to Lm (G) it follows that Φ is controllable with respect to G. Since Φ ≤ G×S we

get Φ ∈C (G,S) which implies C (G,S) is nonempty. From Proposition 32 we can conclude

that ∨C (G,S) is controllable with respect to G.

We now show that the language generated by the supremal controllable subautomaton

is the same as the supremal controllable sublanguage.

Proposition 34 Let G and S be trim automata and let K = sup C (G,S) be the supremal

controllable subautomaton of G ∧ S with respect to G. Let C be the supremal controllable

sublanguage of Lm (G) ∩ Lm (S) with respect to Lm (G) . Then Lm (K) = C.

Proof. We prove this by showing language inclusion both ways.
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(i) We want to show that Lm (K) ⊆ C. Since K is controllable with respect to G it

follows from Proposition 29 that Lm (K) ⊆ Lm (G) ∩ Lm (S) is controllable with

respect to Lm (G) . This implies that Lm (K) ⊆ C since C is the supremal controllable

sublanguage of Lm (G) ∩ Lm (S) with respect to Lm (G) .

(ii) We want to show that Lm (K) ⊇ C. Let H ≤ G ∧ S be a trim automaton such

that Lm (H) = C. Such an automaton exists since C ⊆ Lm (G) ∩ Lm (S) . Since C is

controllable with respect to Lm (G) ∩ Lm (S) , it follows from Proposition 29 that H

is controllable with respect to G. This implies that H ≤ K since K is the supremal

controllable subautomaton of G ∧ S. Thus C = Lm (H) ⊆ Lm (K) .

Let us recap what we have done so far. We have defined the notion of controllability of

automata and shown it to be equivalent to the notion of controllability of languages. We

have also presented a sufficient condition for controllability: if the entire distribution of an

automaton is controllable then the automaton is also controllable.



3. Symbolic Supervision

3.1. An Overview

In this chapter we consider complex systems whose complexity is the result of the interac-

tions of a number of subsystems. For instance, assume that a specification S is given for

a plant G = G1‖ · · · ‖Gn comprising n subsystems. Further assume that both the plant

and the specification are defined over the same alphabet Σ. For such a system, we present

a modular approach to checking the controllability of the specification with respect to

the plant. The space complexity of checking the controllability of the specification with

respect to the plant can be reduced from O
(∣∣XGi

∣∣n ∣∣XS
∣∣) to O

(
n
∣∣XGi

∣∣ ∣∣XS
∣∣) . We also

present a modular approach to the synthesis of the supremal controllable subautomaton of

a specification automaton with respect to a plant automaton.

Our approach is automaton based and depends critically on the state set of the au-

tomaton representing the specification. We show that the controllability of a specification

with respect to a plant can be verified by checking the controllability of a suitable dis-

tribution of the specification with respect to the same plant. In other words, we present

a modular method to check the controllability of the specification with respect to the

plant. Then we build on this modular method to present the main result of this chap-

ter: modular synthesis of the supremal controllable subautomaton. We then show how

32
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to implement a supervisor that enforces the behaviour of this supremal controllable sub-

automaton on the plant. This implementation is intensional rather than extensional, i.e.,

the supervisor is not implemented using an explicit look-up table (see 4.2, page 80 for an

illustration of the look-up table implementation of a supervisor). Rather than enumer-

ating the entire state-space and specifying the control action at each state, we infer the

control action based on local information. In this sense, our approach is symbolic in na-

ture. The space required to store an explicit look-up table is O
(∣∣XGi

∣∣n ∣∣XS
∣∣+ ∣∣EGi

∣∣n ∣∣ES
∣∣)

[Rud88]. In contrast, the space required to implement the proposed symbolic supervisor

is O
(
n
∣∣XGi

∣∣ ∣∣XS
∣∣+ n

∣∣EGi
∣∣ ∣∣ES

∣∣) . The time complexity to compute the look-up table is

O
(∣∣XGi

∣∣n ∣∣XS
∣∣+ ∣∣EGi

u

∣∣n ∣∣ES
u

∣∣) while the time complexity to evaluate the symbolic super-

visor for any given input is O
(
n
∣∣EGi

u

∣∣ ∣∣ES
u

∣∣) . So the proposed symbolic supervisor affords

a substantial savings in space but requires a runtime computation. The time required for

the runtime computation is proportional to the number of uncontrollable events. This con-

firms the general intuition that a system with fewer uncontrollable events should be easier

to control than a system with more uncontrollable events.

The proposed approach does not guarantee nonblocking and this is its biggest drawback.

However we extend our proposed approach to solve a lesser problem: deadlock avoidance.

In general, even deadlock avoidance may be highly inefficient under the proposed scheme.

This is an inherent property of deadlock avoidance [Gol78],[ASK77] and has little to do

with the proposed approach. We offer a heuristic indicator (the number of controllable

transitions) that may be used to decide whether the proposed scheme should be used for

deadlock avoidance.

We present a number of examples that illustrate our approach.
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3.2. Modular Checking of Controllability

In this section we assume that a plant is composed of independent components, i.e. compo-

nents with no shared events. Under this assumption, we can check the controllability of a

specification automaton with respect to a plant automaton by checking the controllability

of a suitable distribution of the specification with respect to the component automata of

the plant.

Lemma 35 Let G1 = (X, Σ1, E, x0, Xm), G2 = (Y, Σ2, F, y0, Ym) , S = (Z, Σ1 ∪ Σ2, A, z0, Zm)

and assume that Σ1 ∩ Σ2 = ∅. Let
{
Si =

(
Z, Σi ∪ {τ} , Ai

l ∪ Ai
f , z0, Zm

)
|i ∈ {1, 2}

}
be the

distribution of S over {Σ1, Σ2} . If S1 is locally controllable with respect to G1 and S2 is

locally controllable with respect to G2 then S is controllable with respect to G1‖G2.

Proof. Let (x1, y1, z1) ∈ XG1‖G2‖S and assume that there exists σ ∈ Σu such that

((x1, y1) , σ, (x2, y2)) ∈ EG1‖G2 . In order to show that S is controllable with respect to

G1‖G2 we need to show that there exists z2 ∈ Z such that (z1, σ, z2) ∈ A. Without loss of

generality, let us assume that σ ∈ Σ1. Then (x1, σ, x2) ∈ E. Since S1 is controllable with

respect to G1 it follows that there must exist a state z2 ∈ Z such that (z1, σ, z2) ∈ A1
l ⊆ A.

Lemma 36 Let G1 = (X, Σ1, E, x0, Xm), G2 = (Y, Σ2, F, y0, Ym) , S = (Z, Σ1 ∪ Σ2, A, z0, Zm)

and assume that Σ1 ∩ Σ2 = ∅. Let
{
Si =

(
Z, Σi ∪ {τ} , Ai

l ∪ Ai
f , z0, Zm

)
|i ∈ {1, 2}

}
be the

distribution of S over {Σ1, Σ2} . If S is controllable with respect to G1‖G2 then S1 is locally

controllable with respect to G1 and S2 is locally controllable with respect to G2.

Proof. We just have to show that S1 is controllable with respect to G1 since the proof

can be repeated for S2 in an analogous manner. Let (x1, z1) ∈ XG1‖S1 and assume that there
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exists σ ∈ Σ1
u such that (x1, σ, x2) ∈ E. In order to show that S1 is controllable with respect

to G1 we need to show that there exists a state z2 ∈ Z such that (z1, σ, z2) ∈ A1
l . Since

(x1, z1) ∈ XG1‖S1 and Σ1 ∩ Σ2 = ∅, there must exist some y1 ∈ Y such that (x1, y1, z1) ∈

XG1‖G2‖S1 which implies that (x1, y1, z1) ∈ XG1‖G2‖S. Since S is controllable with respect

to G1‖G2, there must exist a state z2 ∈ Z such that (z1, σ, z2) ∈ A. Since A = A1
l ∪ A2

l ,

σ ∈ Σ1
u ⊆ Σ1 and Σ1 ∩ Σ2 = ∅, it cannot be the case that (z1, σ, z2) belongs to A2

l which

implies that (z1, σ, z2) ∈ A1
l .

We can now conclude the following result from Lemmas 35 and 36.

Theorem 37 Let G1 = (X, Σ1, E, x0, Xm), G2 = (Y, Σ2, F, y0, Ym) , S = (Z, Σ1 ∪ Σ2, A, z0, Zm)

and assume that Σ1 ∩ Σ2 = ∅. Let
{
Si =

(
Z, Σi ∪ {τ} , Ai

l ∪ Ai
f , z0, Zm

)
|i ∈ {1, 2}

}
be the

distribution of S over {Σ1, Σ2} . Then S is controllable with respect to G1‖G2 if and only

if S1 is locally controllable with respect to G1 and S2 is locally controllable with respect to

G2.

Corollary 38 Let Gi = (X i, Σi, Ei, xi
0, X

i
m) and S = (Z,∪i∈IΣ

i, A, z0, Zm) be trim au-

tomata for all i in some index set I. Assume that Σi ∩ Σj = ∅ for all i, j ∈ I when-

ever i 6= j. Let
{
Si =

(
Z, Σi ∪ {τ} , Ai

l ∪ Ai
f , z0, Zm

)
|i ∈ I

}
be the distribution of S over

{Σi|i ∈ I} .Then S is controllable with respect to ‖i∈IGi if and only if Si is locally control-

lable with respect to Gi for all i ∈ I.

So it can be seen from Corollary 38 that the task of checking controllability can be

greatly reduced by utilizing this modular scheme. If we assume that |X i| = m, |Z| = s,

and |I| = n then we can break down the task of checking controllability of a specification

(of size s) with respect to a plant (of size mn) into n subtasks of checking controllability of

specifications (of size s each) with respect to components of size m each. Thus the space

complexity can be reduced from O (mns) to O (mns) .
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Example 39 Let

G1 = ({x0, x1} , {α1, β1} , {(x0, α1, x1) , (x1, β1, x0)} , x0, {x0}) ,

G2 = ({y0, y1} , {α2, β2} , {(y0, α2, y1) , (y1, β2, y0)} , y0, {y0}) ,

G3 = ({z0, z1} , {α3, β3} , {(z0, α3, z1) , (z1, β3, z0)} , z0, {z0})

represent the three machines of a small factory [Won01] as shown in Figure 3.1. For

1 ≤ i ≤ 3, the event αi represents machine Gi starting its work and the event βi represents

Gi finishing its work. Assume that machines G1 and G2 take raw products from an infinite

source and process them. Upon finishing they deposit the partially finished product into a one

slot buffer. The machine G3 then takes this partially finished product and applies finishing

touches to it and deposits the final product into an infinite sink. It is desired that the buffer

should neither overflow nor underflow. An automaton S representing this specification is

shown in Figure 3.2. Distributing S over the alphabets of G1, G2 and G3 gives the local

specification automata S1, S2 and S3 shown in Figure 3.3. The local specifications S1 and S2

may be roughly interpreted as follows: if the buffer is full (the local specification is in state

w1) either due to a local or a foreign action, do not deposit anything in it until a foreign

event clears the buffer (and brings the local specification into state w0). Similarly the local

specification S3 may be roughly interpreted as follows: do not start operation until a foreign

event deposits a product into the buffer (and brings the local specification into state w1).

The synchronous products of G1, G2 and G3 with S1, S2 and S3 respectively are shown in

Figure 3.4. Let us assume α1, α2, α3 to be controllable and β1, β2, β3 to be uncontrollable.

Then the automaton S1 is not locally controllable with respect to G1 because β1 is eligible

to occur at state x1 in G1 but not eligible to occur at state (x1, w1) in G1‖S1. As can be

seen, (x1, w1) is unreachable in G1‖S1 via any sequence of the local events α1 and β1; it is
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reachable only upon the occurrence of a foreign event (which represents the occurrence of β2

in G2). Similarly, S2 is not locally controllable with respect to G2. So despite the fact that

S3 is locally controllable with respect to G3 it turns out that S is uncontrollable with respect

to G1‖G2‖G3. A physical explanation of this can perhaps be given in the following manner.

The behaviours of G1 and G2 can be “bumped away” from their desired behaviours (defined

by S1 and S2 respectively) due to the actions of other machines while G3 can maintain its

desired behaviour (defined by S3) despite the actions of other machines. Since G1 and G2

cannot maintain their desired behaviours it follows that G1‖G2‖G3 cannot maintain its

desired behaviour which is defined by S1 ∨ S2 ∨ S3. �

G3

z
0

z
1

α3

β3

1
slot

buffer

G1

x0 x1

α1

β1

G2

y
0

y
1

α2

β2

Figure 3.1: Small Factory

S

w0 w1

β1,β2

α3

α1,α2,β3 β3

Figure 3.2: Buffer under/overflow specification
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3.3. Synthesis of Supremal Controllable Subautomaton

In the previous section we showed how we can check controllability in a modular manner.

If the given specification turns out to be uncontrollable, we are interested in computing the

supremal controllable subautomaton of the given specification automaton. Assume that a

plant is represented as the synchronous composition of n automata of m states each and

assume that the specification automaton has s states. Then the space complexity of storing
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the resultant synchronous product automaton is O (mns + e) where e represents the number

of transitions in this automaton. Since the automaton is reachable it has at least as many

transitions as the number of states minus one although it will generally have a lot more.

The time complexity of computing its supremal controllable subautomaton with respect to

the plant is O (mns + σue) [Rud88] where σu is the number of uncontrollable events in the

alphabet. Since both these complexities grow exponentially with n (the number of plant

components), it is highly desirable to come up with a modular scheme for synthesizing the

supremal controllable subautomaton. In this section we show how that may be done.

Assume that G = (X, Σ, E, xo, Xm) is a plant automaton while S = (Y, Σ, F, y0, Ym) is

a specification automaton. In this section we only consider safety properties so we assume

that X = Xm and Y = Ym. We are interested in the case where the plant comprises n

components Gi = (X i, Σi, Ei, xi
0, X

i
m) , 1 ≤ i ≤ n, such that G = G1‖ · · · ‖Gn. We assume

that Σi ∩ Σj = ∅ whenever i 6= j. Let
{
Si =

(
Y, Σi ∪ {τ} , F i

l ∪ F i
f , y0, Ym

)
|1 ≤ i ≤ n

}
be

the distribution of S over {Σi|1 ≤ i ≤ n} .

Definition 40 A state (x, y) ∈ XG‖S is a primary bad state of G ‖ S if there exist σ ∈ Σu

and x1 ∈ X such that (x, σ, x1) ∈ E but there exists no y1 ∈ Y such that (y, σ, y1) ∈ F. Let

PBG‖S represent the set of all primary bad states of G ‖ S.

Definition 41 A state (x, y) ∈ XG‖S is a secondary bad state of G ‖ S if there exists a

primary bad state in G ‖ S that is reachable from (x, y) via an uncontrollable path (where

each transition is due to an uncontrollable event).

Definition 42 A state (x, y) ∈ XG‖S is a bad state of G ‖ S if it is either a primary bad

state or a secondary bad state. Let BG‖S represent the set of all bad states of G ‖ S.

A state in the synchronous product of a plant and a specification is a primary bad state



3.3. SYNTHESIS OF SUPREMAL CONTROLLABLE SUBAUTOMATON 40

if the specification prohibits the plant from performing an uncontrollable transition at that

state. By its very nature, an uncontrollable event cannot be prohibited from occurring so

it follows that its occurrence causes the plant to exhibit undesirable behaviour. In other

words, once a system reaches a primary bad state it may exhibit behaviour that violates

the given specification. A primary bad state is reachable from a secondary bad state via the

occurrence of a sequence of uncontrollable events. Therefore if the desired behaviour is to

be maintained, a supervisor should take control actions (i.e. disable appropriate events) so

that all the bad states are unreachable [Rud88]. It turns out that the supremal controllable

subautomaton of G ‖ S can be characterized completely in terms of the bad states of G ‖ S.

Lemma 43 Let C = (X × Y, Σ, H, (x0, y0) , Xm × Ym)rch be the subautomaton of G ‖ S

where

H = EG‖S −
{
(x, σ, xb) | (x, σ, xb) ∈ EG‖S ∧ xb∈BG‖S} .

Then C is the supremal controllable subautomaton of G ‖ S with respect to G.

Proof. We prove this in two parts: we first show that C is controllable with respect to

G and then show that if any automaton C′ ≤ G ‖ S is controllable with respect to G then

C′ ≤ C. This allows us to conclude the desired result since C is trim by construction.

Part 1: Let (x, x, y) ∈ XG‖C and let σ ∈ Σu be such that (x, σ, x1) ∈ E for some x1 ∈ X.

In order to show that C is controllable with respect to G, we need to show that there

exists y1 ∈ Y such that ((x, y) , σ, (x1, y1)) ∈ H. However by the definition of H, if

((x, y) , σ, (x1, y1)) does not belong to H then either it does not belong to EG‖S or

(x1, y1) is a bad state in G ‖ S.

Case 1: Let us consider the case where ((x, y) , σ, (x1, y1)) does not belong to EG‖S.

This would imply that (x, y) is a bad state of G ‖ S since an uncontrollable event,
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σ, is ineligible here. Thus it should be unreachable in C by the definition of H.

If (x, y) is unreachable in C then (x, x, y) /∈ XG‖C which is contradictory to our

assumption.

Case 2: Now let us consider the case where (x1, y1) is a bad state in G ‖ S. Then

from the definition of a bad state it would follow that (x, y) is a bad state of

G ‖ S. As in Case 1, that would imply that (x, y) is unreachable in C and

(x, x, y) /∈ XG‖C which is contradictory to our assumption.

Thus from the above two cases we can conclude that ((x, y) , σ, (x1, y1)) ∈ H which

implies that C is controllable with respect to G.

Part 2: Let C′ ≤ G ‖ S be controllable with respect to G. We need to show that C′ ≤ C.

Since C′ is controllable with respect to G it follows that it cannot have any bad states

of G ‖ S, i.e.

XC′ ∩BG‖S = ∅

which implies that

EC′ ∩
{
(x, σ, xb) | (x, σ, xb) ∈ EG‖S ∧ xb ∈ BG‖S} = ∅.

Since C contains all the reachable non-bad states of G ‖ S, it follows that XC′ ⊆ XC

and EC′ ⊆ EC . Since xC
0 = xC′

0 = xG
0 and ΣC = ΣC′

= Σ we can conclude that

C′ ≤ C.

This characterization of the supremal controllable subautomaton of G ‖ S in terms of

the bad states of G ‖ S allows us to define the control action needed to synthesize this

subautomaton.
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Definition 44 Let K be an automaton and let VH : XK → 2ΣK
be a partial map. Let an

automaton H be defined as follows:

H =
(
XK , ΣK , H, xK

0 , XK
m

)
rch

where

H = EK −
{
(x, σ, x1) | (x, σ, x1) ∈ EK ∧ σ ∈ VH (x)

}
.

Then H is called the subautomaton of K induced under the map VH . If VH maps XK into

2ΣK
c then it is called a disablement map.

A disablement map asks for the disablement of controllable events only and can therefore

be used to specify the control action needed to synthesize a controllable automaton.

Lemma 45 Let VC : XG‖S → 2Σc be a disablement map defined as follows:

(
∀x ∈ XG‖S) (∀σ ∈ Σc)


σ ∈ VC (x)

m(
∃xb ∈ XG‖S) ((x, σ, xb) ∈ EG‖S ∧ xb ∈ BG‖S)

 .

Let C be the subautomaton of G ‖ S induced under VC . If x
G‖S
0 is not a bad state then C

is the supremal controllable subautomaton of G ‖ S with respect to G.

Proof. The disablement map VC requires the disablement of a controllable transition if

and only if the transition leads to a bad state. The initial state is presumed to be not a

bad state. Thus the transition set of C includes all the transitions of G ‖ S except those

that lead to bad states. Now Lemma 43 gives the desired result.
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The control action needed to synthesize the supremal controllable subautomaton in-

volves disabling those transitions that lead to bad states. In other words, a transition

is disabled if it leads to a state from which a primary bad state may be reached via an

uncontrollable path.

Definition 46 Let K be an automaton and let x ∈ XK . Then

U (x) :=
{
x′ ∈ XK |

(
∃s ∈ ΣK∗

u

)
[η (x, s) = x′]

}
is defined to be the uncontrollable span of state x.

Now the above lemma may be restated as follows.

Lemma 47 Let VC : XG‖S → 2Σc be a disablement map defined as follows:

(
∀x ∈ XG‖S) (∀σ ∈ Σc)

[
σ ∈ VC (x) ⇔ (∃xb ∈ U (x))

(
xb ∈ PBG‖S)] .

Let C be the subautomaton of G ‖ S induced under VC . If x
G‖S
0 is not a bad state then C

is the supremal controllable subautomaton of G ‖ S with respect to G.

This lemma provides an inefficient but simple method for the computation of the dis-

ablement map that induces the supremal controllable subautomaton: At each state, simply

disable those events that lead to states whose uncontrollable span includes a primary bad

state. This method requires the complete knowledge of G ‖ S. Additionally, it requires

a search at each state to check whether any successor state contains a primary bad state

in its uncontrollable span. As mentioned earlier, we are interested in the scenario where

the plant is represented as the synchronous composition of n automata of m states each

and the specification automaton has s states. We would like to be able to compute the
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disablement map VC without having to perform the synchronous composition. This should

be possible if we are able to compute uncontrollable spans and identify primary bad states

without performing the synchronous composition. We now show how that may be done.

Definition 48 Let x = (x1, . . . , xn, s) ∈ XG‖S. Then the iterative uncontrollable span of

x is defined as follows:

IU(x) := {x}

for i := 1 to n

temp := IU (x)

IU (x) := temp ∪


(
x1

1, . . . , x
i−1
1 , xi

2, x
i+1
1 , . . . , xn

1 , s2

)
∈ XG‖S|

(∃ (x1
1, . . . , x

n
1 , s1) ∈ IU(x)) (∃w ∈ Σi∗

u )[
ηGi‖Si ((xi

1, s1) , w) = (xi
2, s2)

]


end for

The iterative uncontrollable span of a state in G‖S is computed using all the Gi‖Si.

The process begins by initializing the span with x and computing all the states that may

be reachable from x via uncontrollable events from Σ1. These states, along with x, form

a partial span. Now all those states are computed that may be reachable from any of the

states of this partial span via uncontrollable events from Σ2, and so on. After the nth

iteration we get the complete iterative uncontrollable span of x. We will shortly show that

the iterative uncontrollable span of a state is equal to its uncontrollable span. But first we

present a result that will be useful in the proof.

Lemma 49 Let J = J1‖J2 be a plant automaton and let K be a specification automaton.

Let (x1, y1, z1) , (x2, y2, z2) ∈ XJ1‖J2‖K and let s be an uncontrollable path from (x1, y1, z1)

to (x2, y2, z2) . Assume that ΣJ1
u ∩ ΣJ2

u = ∅. If (x1, y1, z1) is not a bad state in J1‖J2‖K
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then there exists an uncontrollable path s′ from (x1, y1, z1) to (x2, y2, z2) such that s′ = s1s2

where s1 ∈ ΣJ1∗
u and s2 ∈ ΣJ2∗

u .

Proof. Let s = σ1 · · ·σm. Let σ1 · · ·σi be the longest prefix of s belonging to ΣJ1∗
u . If there

does not exist a j̇ > i such that σj ∈ ΣJ1∗
u then the lemma is trivially true. So let us assume

that there does exist a j > i such that σj ∈ ΣJ1∗
u . Let (x3, y1, z3) and (x3, y4, z4) be the

states that are reached from (x1, y1, z1) via the strings σ1 · · ·σi and σ1 · · ·σj−1 respectively.

Since σj is eligible at (x3, y4, z4) it follows that it must also be eligible at (x3, y1, z3) because

if it were not then (x3, y1, z3) would be a bad state (which would imply that (x1, y1, z1) is

a bad state). A similar argument tells us that σ1 · · ·σiσjσi+1 · · ·σj−1σj+1 · · ·σm must be a

path from (x1, y1,z1) to (x2, y2, z2) . The whole process can now be repeated, if needed, to

get the desired result.

Corollary 50 Let (x1
1, . . . , x

n
1 , z1) , (x1

2, . . . , x
n
2 , z2) ∈ XG‖S and let s be an uncontrollable

path from (x1
1, . . . , x

n
1 , z1) to (x1

2, . . . , x
n
2 , z2) . Assume that ΣJ1

u ∩ΣJ2
u = ∅. If (x1

1, . . . , x
n
1 , z1)

is not a bad state in G‖S then there exists an uncontrollable path s′ = s1 · · · sn from

(x1
1, . . . , x

n
1 , z1) to (x1

2, . . . , x
n
2 , z2) such that si ∈ Σi∗

u for 1 ≤ i ≤ n.

This result tells us that if a state is reachable via a sequence of uncontrollable events

then that state is also reachable using a permutation of those events such that all the events

belonging to a subalphabet are clustered together. This result relies on the fact that the

subalphabets share no common events.

Lemma 51 Assume that x = (x1, . . . , xn, s) ∈ XG‖S is not a bad state in G‖S. Then

U (x) = IU (x) , i.e. the uncontrollable span of x is the same as its iterative uncontrollable

span.
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Proof. We prove this by set inclusion both ways.

Part 1: (IU (x)⊆ U (x)) : Let y ∈ IU (x) . Then from Definition 48 we can conclude

that there must exist a path s1 · · · sn ∈ Σ∗
u from x to y such that si ∈ Σi∗

u . Since

s1 · · · sn ∈ Σ∗
u, from Definition 46 it follows that y ∈ U (x) .

Part 2: (U (x) ⊆ IU (x)) : Let y ∈ U (x) . Then there must exist a path s ∈ Σ∗
u from x

to y. From Corollary 50 we can conclude that there must exist a path s1 · · · sn ∈ Σ∗
u

from x to y such that si ∈ Σi∗
u . Thus from Definition 48 it follows that y ∈ IU (x) .

Lemma 52 Let x = (x1, . . . , xn, z) ∈ XG‖S be a primary bad state in G‖S. Then (xi, z) ∈

XGi‖Si must be a primary bad state in Gi‖Si for some 1 ≤ i ≤ n.

Proof. Let σ ∈ Σu be such that ((x1, . . . , xn) , σ, (x1
1, . . . , x

n
1 )) ∈ EG for some (x1

1, . . . , x
n
1 ) ∈

XG but (z, σ, z1) /∈ ES for any z1 ∈ XS. Assume that σ ∈ Σi for some 1 ≤ i ≤ n. Since

(z, σ, z1) /∈ ES it follows that (z, σ, z1) /∈ ESi . But (xi, σ, xi
1) ∈ EGi which implies that

(xi, z) is a primary bad state in Gi‖Si.

Lemma 53 Let (xi, z) ∈ XGi‖Si be a primary bad state in Gi‖Si for some 1 ≤ i ≤ n. If

x ∈ XG‖S such that x = (. . . , xi, . . . , z) then x is a primary bad state in G‖S.

Proof. Let σ ∈ Σi
u be such that (xi, σ, xi

1) ∈ EGi for some xi
1 ∈ XGi but (z, σ, z1) /∈ ESi

for any z1 ∈ XSi . Then it must be the case that (z, σ, z1) /∈ ES for any z1 ∈ XS. Thus if

there exists a state x ∈ XG‖S such that x = (. . . , xi, . . . , z) then it must be a bad state in

G‖S.

Corollary 54 Any state x = (x1, . . . , xn, z) ∈ XG‖S is a primary bad state in G‖S if and

only if (xi, z) ∈ XGi‖Si is a primary bad state in Gi‖Si for some 1 ≤ i ≤ n.
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We have presented modular ways to identify the primary bad states of G‖S and compute

the uncontrollable span of any of its states. We now illustrate the concept with the help

of an example.

Example 55 Let us reconsider the setup of Example 39. It was shown there that the

buffer underflow/overflow specification is uncontrollable. The automaton G = G1‖G2‖G3

representing the concurrent operation of the three machines G1, G2 and G3 is shown in

Figure 3.5. The automaton G‖S is partly shown in Figure 3.6. Let C be the supremal

controllable subautomaton of G‖S with respect to G. Now (x1, y0, z0, w1) is a primary bad

state in G‖S because β1 is ineligible there while it is eligible at (x1, y0, z0) in G. Since it is

reachable from (x1, y1, z0, w0) via the uncontrollable event β2 it follows that (x1, y1, z0, w0)

is a secondary bad state in G‖S. Neither of these states can belong to C so it follows that

α1 ∈ VC ((x0, y1, z0, w0)) and α2 ∈ VC ((x1, y0, z0, w0)) . Intuitively this may be interpreted

as follows. Since the buffer has only one slot, G1 should not start if G2 has already started,

and vice-versa. Now let us see how these control actions may be derived in a modular

manner.

The only primary bad state of G1‖S1 is (x1, w1). This implies that all global states of the

form (x1, , , w1) are primary bad states. Similarly, the only primary bad state of G2‖S2 is

(y1, w1). Therefore all global states of the form ( , y1, , w1) are primary bad states. These

are the only primary bad states since G3‖S3 has no primary bad states.

The initial states of G1‖S1, G2‖S2, and G3‖S3 are (x0, w0) , (y0,w0) and (z0, w0) re-

spectively. This corresponds to the global state (x0, y0, z0, w0) . Since this is not a bad state,

we may implement our supervision scheme.

The transition ((x0, w0) , α1, (x1, w0)) may take place in G1‖S1 causing the global state

to change to (x1, y0, z0, w0) . The uncontrollable span of (x1, y0, z0, w0) may be computed as
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Figure 3.5: G1‖G2‖G3

follows:

Iteration 1: U ((x1, y0, z0, w0)) := {(x1, y0, z0, w0)} ∪ {(x0, y0, z0, w1)}

Iteration 2: U ((x1, y0, z0, w0)) := {(x1, y0, z0, w0) , (x0, y0, z0, w1)} ∪ ∅

Iteration 3: U ((x1, y0, z0, w0)) := {(x1, y0, z0, w0) , (x0, y0, z0, w1)} ∪ ∅
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Since U ((x1, y0, z0, w0)) = {(x1, y0, z0, w0) , (x0, y0, z0, w1)} does not contain any pri-

mary bad states, it follows that α1 does not need to be disabled. Now assume that α1

does indeed occur and the global state becomes (x1, y0, z0, w0) . There is no eligible con-

trollable event in G1‖S1 so no control needs to be computed here. However the tran-

sition ((y0, w0) , α2, (y1, w0)) may occur in G2‖S2 causing the global state to change to

(x1, y1, z0, w0) . The uncontrollable span of (x1, y1, z0, w0) may be computed as follows:

Iteration 1: U ((x1, y1, z0, w0)) := {(x1, y1, z0, w0)} ∪ {(x0, y1, z0, w1)}

Iteration 2: U ((x1, y1, z0, w0)) := {(x1, y1, z0, w0) , (x0, y1, z0, w1)} ∪ {(x1, y0, z0, w1)}

Iteration 3: U ((x1, y1, z0, w0)) := {(x1, y1, z0, w0) , (x0, y1, z0, w1) , (x1, y0, z0, w1)} ∪ ∅

We know that (x0, y1, z0, w1) and (x1, y0, z0, w1) are primary bad states. Since they are

both contained in U ((x1, y1, z0, w0)) it follows that α2 ∈ VC ((x1, y0, z0, w0)) . In fact we

could have drawn this conclusion after only the first iteration. �

The above example shows how we may compute VC without actually ever forming the

synchronous composition representation of G. Based on this approach, we have computed

the disablement maps for various configurations of the small factory setup of Example 39.

In each case, the aim was to prevent overflow and underflow. The physical setup of the

small factory is emulated by randomly generating a sequence of events. Each generated

event is fed to the program as its input. The program computes the current state and

produces a list of events that have to be disabled there. The program is written in C++;

Table 3.1 below shows the results when the program is run on a Linux workstation with a

1 GHz Athlon processor and 150 MB of free RAM.

The efficiency of this program might be further improved by using more efficient data

structures (heaps or trees rather than lists).
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Buffer # Machines # Machines Approximate Size Average Time to
Size Before Buffer After Buffer of State Space Compute Control
300 25 25 258 0.001 sec
300 50 50 2108 0.03 sec
300 100 100 2208 0.305 sec
300 150 250 2408 2.5 sec
300 200 200 2408 2.6 sec

Table 3.1: Computation Times for the Symbolic Supervision of Small Factory

3.4. Deadlock Avoidance

The problem of deadlock arises when two or more processes vie for the same resources. A

generally accepted abstract definition of deadlock [RF96],[Pet81] is that it is a situation in

which there exists a set of processes such that every process in the set is waiting for some-

thing that can only be done by some other process in the set. Thus no events are possible

in a system when it is deadlocked. In the same spirit, we give the following definition of

deadlock in a system under supervision. Again we assume that G = (X, Σ, E, xo, Xm) is a

plant automaton while S = (Y, Σ, F, y0, Ym) is a specification automaton.

Definition 56 Let VC be a disablement map for G ‖ S that induces an automaton C ≤

G ‖ S. A state (x, y) ∈ XC ⊆ XG‖S is defined to be a deadlock state if Elig (C, (x, y)) = ∅

while Elig (G, x) 6= ∅. The automaton C is said to be deadlock-free if it has no deadlock

states. If C is deadlock-free then we also say that VC is deadlock-free. We extend this

definition to the empty automaton Φ ≤ G ‖ S by declaring it to be deadlock-free.

Thus a state in a closed loop system is a deadlock state if the control action of the

supervisor prevents any event from occurring at that state. This necessarily means that no

uncontrollable event is eligible in the plant because a supervisory control action can never

prevent an uncontrollable event from occurring. According to this definition, a marked
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state can also be a deadlock state. However there may be scenarios where one does not

care if the system is stuck in a marked (and hence desired) state. In such a scenario, the

above definition can be suitably modified to exclude marked states.

The symbolic supervisor scheme described in the previous section handles safety prop-

erties only. It does not tackle any nonblocking or deadlock issues. It is very easy to

construct examples of deadlock-free systems that block. Nonetheless, experience suggests

that nonblocking can be ensured in a number of systems simply by making them deadlock

free. In this section we first discuss the intuitive reason why the detection of nonblocking

is difficult while deadlock detection is a lot easier. Then we extend our results to ensure

that the proposed supervisory scheme never causes deadlock in the controlled system.

In a nonblocking system every reachable state is coreachable, i.e. there exists a path

from any reachable state to some marked state. In order to verify that a given state is

coreachable we have to demonstrate the existence of a path to a marked state. Herein lies

the main difficulty in verifying nonblocking: demonstration of the existence of such a path

may require the knowledge of the entire state space in general. In contrast, the verification

of the controllable or the deadlock-free nature of a given state only requires the knowledge

of eligible events at that state itself. We now illustrate this distinction between deadlock

and nonblocking detection with the help of an example.

Example 57 Let G shown in Figure 3.7 represent a plant and assume that all the events

x0 x1 x2

α

β G

γ

Figure 3.7: Blocking versus Deadlock Detection

are controllable. Assume that a safety specification requires the disablement of γ. The
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resultant closed loop behaviour of G (shown in Figure 3.8 ) is blocking. In particular, x0

x0 x1

α

β

Figure 3.8: Blocking versus Deadlock Detection: Scenario 1

is a non-coreachable state. This is because the only marked state, x2, has been rendered

unreachable by the disablement of γ. However, it is not possible to infer this just by looking

at the eligible events at x0 - we have to ensure that there no paths from x0 to any marked

states. In this instance, the supervisory action does not cause deadlock as it possible for

an event to occur at both x0 and x1. Now assume that the safety specification additionally

requires the disablement of β as well. The resultant closed loop behaviour (shown in Figure

3.9 ) is blocking as well as deadlocking. Here x1 is a deadlock state because supervisory

x0 x1α

Figure 3.9: Blocking versus Deadlock Detection: Scenario 2

control has disabled both the events eligible there. This is readily identifiable at x1 itself.

Once again, the fact that x0 is a non-coreachable state cannot be verified using only the

information available at x0. �

The easy identification of deadlock states does not mean that deadlock avoidance is easy

to achieve: it has been shown to be NP -complete [Gol78],[ASK77]. We take advantage of

the local nature of deadlock detection and extend our symbolic supervision technique to

avoid deadlock. Let us first look at a couple of classical examples where deadlock occurs.
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Example 58 (Deadly Embrace) [Won01, page 108] Consider two users of two shared re-

sources. To carry out her task each user needs both resources simultaneously although

the resources may be acquired in either order. The users are modelled as User1 and

User2 as shown in Figure 3.10. The overall interactions of the two users are modelled

x0

x3

x1 x2

α1 β1

β1 α1

γ1

User1

y0

y3

y1 y2

α2 β2

β2 α2

γ2

User2

Figure 3.10: Two Users Competing for Resources

as User = User1 ‖ User2. One way to specify the usage of the resources is shown in

Figure 3.11. This specification, S, says that once a user has acquired a resource then the

z0

z3

z1 z2

α1,α2 β1,β2

β1,β2 α1,α2

γ1,γ2

S

Figure 3.11: Resource Sharing Specification for Users
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other user should not be allowed to acquire that resource until the first user has relinquished

it. Here αi represents Useri acquiring the first resource while βi represents Useri acquiring

the second resource; γi represents Useri relinquishing both the resources. We assume αi

and βi to be controllable and γi to be uncontrollable. Thus we have

ΣUser1 = {α1, β1, γ1} ,

ΣUser2 = {α2, β2, γ2}

and distributing S over
{
ΣUser1 , ΣUser2

}
we get S1 and S2 as shown in Figure 3.12. The

z0

z3

z1 z2

α1,τ β1,τ

β1,τ α1,τ

γ1,τ

S1

z0

z3

z1 z2

α2,τ β2,τ

β2,τ α2,τ

γ2,τ

S2

Figure 3.12: Distribution of Resource Sharing Specification

synchronous products User1‖S1 and User2‖S2 are shown in Figure 3.13. The primary bad

states are shown shaded. Since only controllable events are eligible at the initial states, it

follows that the global initial state (x0, y0, z0) is not a bad state and therefore we can use

our symbolic supervisor. The set of global primary bad states is

{(x3, , z1) , (x3, , z2) , ( , y3, z1) , ( , y3, z2)}
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where represents a “don’t care” component. So, for instance, (x3, y0, z1) would be a global

bad state because it matches (x3, , z1) . The table below shows the control action taken by

the supervisor as the system executes the string α1β2.

String Global State Events to Disable

ε (x0, y0, z0) ∅

α1 (x1, y0, z1) {α2}

β2 (x1, y2, z3) {α2, β1}
The system does not violate the specification when the first user acquires the first resource

while the second user acquires the second resource. However the system is now deadlocked

as no event is eligible to occur at either (x1, z3) in User1‖S1 or at (y2, z3) in User2‖S2.

This is a direct result of the way we have specified the sharing of the two resources: nothing

prevents the second user from acquiring the available resource after the first user has already

acquired the other resource. Once this happens, each user keeps waiting for the other user

to relinquish her resource and no action is possible. �

Example 59 (Material Feedback) [Won01, Page 115] Let us consider another seemingly

innocuous example where deadlock occurs: a Transfer Line. The setup is shown in Figure

3.14. It consists of two machines (M1 and M2), a test unit (TU), and two buffers (B1 and

M1 B1 M2 B2 TU

Figure 3.14: A Transfer Line

B2). Let the synchronous behaviour of the three machines be TL = M1‖M2‖TU. For this

example we assume that the capacities of the buffers are 1 each. Machine M1 takes a piece

from an inexhaustible source of raw material and processes it. Upon finishing, it deposits

the semi-finished product into the buffer B1. Machine M2 takes its input from buffer B1,
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applies finishing touches to it and deposits the final product into the buffer B2. Finally, the

test unit TU examines this finished product and either approves and deposits it into an

unfillable store or puts it back in the buffer B2 for reprocessing. The automata models of

M1, M2 and TU are shown in Figure 3.15. Here the starting and finishing of work by Mi

y
0

y1

α2 β2

M2

z
0

z1

α3 β3,γ3

TU

x
0

x1

α1 β1

M1

Figure 3.15: Transfer Line Components

is represented by the events αi and βi respectively. Similarly, the starting of the testing by

TU is represented by α3. The event γ3 represents the fact that the workpiece has passed the

inspection while the event β3 represents the redeposition of the workpiece in B1. We assume

αi to be controllable and all the other events to be uncontrollable. As usual, we require that

the buffers should neither underflow nor overflow. The under/overflow specification S is

shown in Figure 3.16. The various alphabets are

ΣM1 = {α1, β1}

ΣM2 = {α2, β2}

ΣTU = {α3, β3, γ3}

and the distribution of S over these alphabets is shown in Figure 3.17. The synchronous
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Figure 3.16: Transfer Line Under/Overflow Specification

compositions M1‖S1, M2‖S2 and TU‖S3 are shown in Figures 3.18, 3.19 and 3.20 re-

spectively. The primary bad states in each of these synchronous compositions are shown

shaded. The set of global primary bad states is

{(x1, , , w2) , (x1, , , w3) , ( , y1, , w1) , ( , y1, , w3) , ( , , z1, w2) , ( , , z1, w3)}

where represents a “don’t care” component. Again, all the events eligible at the initial

state are controllable so the initial state is not a bad state. Therefore we can apply our

symbolic supervision scheme. The table below shows the control action taken by the symbolic

supervisor as the transfer line executes the string α1β1α2β2α1β1.
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String Global State Events to Disable

ε (x0, y0, z0, w0) {α2, α3}

α1 (x1, y0, z0, w0) {α2, α3}

β1 (x0, y0, z0, w2) {α1, α3}

α2 (x0, y1, z0, w0) {α3}

β2 (x0, y0, z0, w1) {α2}

α1 (x1, y0, z0, w1) {α2, α3}

β1 (x0, y0, z0, w3) {α1, α2, α3}
After the occurrence of the string α1β1α2β2α1β1 the transfer line is in state (x0, y0, z0, w3) .

In this state, both the buffers are full and all the machines are disabled. This is because M1

and TU cannot begin operation while B1 is full and M2 cannot begin operation while B2

is full. Again our symbolic supervisor enforces the given specification but cannot prevent

deadlock. �

The state (x1, y2, z3) in Example 58 is a deadlock state. The two users reach this state

when the first user has acquired the first resource and the second user has acquired the

second resource. The only eligible event at (x1, z3) in User1‖S1 is the foreign event τ.

Similarly, τ is the only event eligible at (y2, z3) in User2‖S2. In Example 59, (x0, y0, z0, w3)

is the deadlock state. The corresponding states in M1‖S1, M2‖S2 and TU‖S3 are (x0, w3) ,

(y0, w3) and (z0, w3) respectively. The only events eligible at these states are τ and α1, τ

and α2, and τ and α3. No uncontrollable event is eligible at these deadlock states. In fact,

as mentioned earlier, this is a necessary condition for a deadlock state. Since we are dealing

with controllable automata, a control action taken by a supervisor can never disable an

uncontrollable event. So a state where an uncontrollable event is eligible can never be a

deadlock state. This observation narrows down the number of states that may potentially
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deadlock. We can evaluate our symbolic supervisor at these potentially deadlockable states

and identify the actual deadlock states. Finally, we can extend our symbolic supervisor

to ensure that these deadlock states are rendered unreachable. However we have to be a

bit careful because a control action that prevents a system from reaching a deadlock state

may convert a hitherto deadlock-free state into a deadlock state! We illustrate this scenario

with a simple example.

Example 60 Let G and S represent a plant and a specification respectively (Figure 3.21).

Assume α and β to be controllable. Then G‖S is controllable with respect to G; it is not

x0 x1 x2α β
G

y0 y1α
S

x0,y0 x1,y1α
G||S

Figure 3.21: Deadlock removing control action may cause deadlock

deadlock free as (x1, y1) is a deadlock state. In fact, it is the only deadlock state. We can

expand our control action to disable α at (x0, y0) and thus prevent the system from reaching

the deadlock state (x1, y1) . However, this control action turns (x0, y0) into a deadlock state.

It turns out that, according to Definition 56, there does not exist any nonempty controllable

subautomaton of G‖S that is also deadlock-free. �

We now show how we may extend our symbolic supervisor to be deadlock-free.

Definition 61 Let D (G,S) ⊆ C (G,S) be the set of all controllable subautomata of G‖S
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that are deadlock-free, i.e.

D (G,S) = {S′ ∈ C (G,S) |S′ is deadlock-free}

= {S′ ≤ G‖S|S′ is deadlock-free and controllable wrt G} .

Proposition 62 The set D (G,S) is nonempty and its join is controllable with respect to

G and is deadlock-free.

Proof. The empty automaton Φ is controllable with respect to G and is deadlock-

free according to Definition 56. Thus D (G,S) is nonempty and from Lemma 32 we can

conclude that ∨D (G,S) is controllable with respect to G. So we only need to show that

it is deadlock-free. Assume that C := ∨D (G,S) is not deadlock-free. Then there exists

some x ∈ XC ⊆ XG‖S that is a deadlock state. We now use the method of contradiction

to show that this cannot be the case. Let D be the set defined as follows:

D =
{
H ∈ D (G,S) |x ∈ XH

}
.

Then, by the definition of a join automaton, we must have

(∀H ∈ D) (Elig (C, x) ⊇ Elig (H, x)) .

Since x is a deadlock state in C it follows that Elig (C, x) = ∅. Thus from the above

equation we can conclude that Elig (H, x) = ∅ for all H ∈ D. But this would imply

that the elements of D ⊆ D (G,S) are not deadlock-free which is contradictory to our

assumption. This leaves us with the conclusion that D = ∅ which implies that x /∈ XC .

Thus there exists a supremal deadlock-free controllable subautomaton of G‖S.
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Definition 63 A state (x, y) ∈ XG‖S is a possible deadlock state if it is not a bad state

of G‖S and does not have any eligible uncontrollable events but some events are eligible at

x in G. Let

PDG‖S :=


(x, y) ∈ XG‖S|

(x, y) /∈ BG‖S ∧ Elig (G, x) 6= ∅∧

Elig (G‖S, (x, y)) ∩ Σu = ∅


be the set of all possible deadlock states.

Definition 64 Let A ⊇ PBG‖S be a subset of the states of G‖S that contains all its

primary bad states. Then we define V A
C : XG‖S → 2Σc to be a disablement map that

disables A where

(
∀x ∈ XG‖S) (∀σ ∈ Σc)

[
σ ∈ V A

C (x) ⇔ (∃xa ∈ U (x)) (xa ∈ A)
]
.

The disablement map V A
C induces a controllable subautomaton C of G‖S which does not

contain any states belonging to A. If A equals PBG‖S then C is the supremal controllable

subautomaton of G‖S. If A also includes all the deadlock states of G‖S then the induced

subautomaton will be controllable as well as deadlock-free.
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Definition 65 Let AG‖S ⊇ PBG‖S be a set defined iteratively as follows:

AG‖S := PBG‖S

do

temp :=


(x, y) ∈ PDG‖S − AG‖S|

V AG‖S

C ((x, y)) = Elig (G‖S, (x, y))∧

Elig (G, x) 6= ∅


AG‖S := AG‖S ∪ temp

while temp 6= ∅

Then AG‖S is called the set of Augmented Primary Bad Statesindexbad states!augmented

primary of G‖S.

The set AG‖S contains all the states of G‖S where controllability is violated and where

deadlock may result. The multiple passes of the do-while loop are necessary to ensure that

removal of a deadlock state does not give rise to other deadlock states (as in Example 60).

Before the first pass of the do-while loop, the set AG‖S contains the primary bad states of

G‖S. After the first pass, it additionally contains all the deadlock states that may arise

due to the control action that is needed to prevent access to the primary bad states. If any

such deadlock states are found then the set temp is nonempty. This causes the do-while

loop to be repeated. The next pass discovers any deadlock states that may have resulted

due to the modified control action; and so on. This process can only be repeated a finite

number of times since the set XG‖S is finite. The loop terminates when temp is empty; the

set AG‖S contains all the primary bad states and all the deadlock states that may arise due

to supervisory control action. In most systems, the removal of a deadlock state will not

give rise to any other deadlock states so only one or two passes through the do-while loop
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will be necessary. The complexity of computing AG‖S is directly proportional to the size

of the set of possible deadlock states PDG‖S. Thus the computation of AG‖S will be more

efficient for systems that have fewer controllable transitions: a more controllable system is

more prone to deadlock !

Lemma 66 Let V AG‖S

C : XG‖S → 2Σc be a disablement map that disables AG‖S. Let C be the

subautomaton of G‖S induced under V AG‖S

C . If U
(
x

G‖S
0

)
∩AG‖S = ∅ then C is the supremal

controllable deadlock-free subautomaton of G‖S with respect to G, i.e. C = ∨D (G,S) .

Proof. We prove this in two parts. First we show that C is controllable and deadlock-

free. Then we show that if there exists any deadlock-free C′ ≤ G‖S that is controllable

with respect to G then C′ ≤ C.

Part 1: Since AG‖S ⊇ PBG‖S it follows that C is controllable with respect to G if the

initial state is not a bad state. By the definition of V AG‖S

C , it does not contain any

deadlock states since XC∩AG‖S = ∅. Finally, since no deadlock state is uncontrollably

reachable from the initial state, it follows that it is controllable as well as deadlock-

free.

Part 2: Let C′ be any controllable and deadlock-free subautomaton of G‖S and let

x ∈ XC′
. Since C′ is controllable and deadlock-free, it follows that x ∈ XG‖S −AG‖S

and U (x) ∩ AG‖S = ∅. Then x ∈ XC by the definition of V AG‖S

C . Thus XC′ ⊆ XC . A

similar argument shows that EC′ ⊆ EC which proves the claim that C′ ≤ C.

We now show how we may use this modified supervisor to get deadlock-free behaviour

in the systems of Examples 58 and 59.
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Example 67 (Transfer Line revisited) In Example 59 we saw that a deadlock occurs when

both the buffers are full. We now use Lemma 66 to synthesize a deadlock-free behaviour of

the Transfer Line that implements the under/overflow specification. From Example 59 we

know that the set of primary bad states of the Transfer Line is

PBTL‖S = {(x1, , , w2) , (x1, , , w3) , ( , y1, , w1) , ( , y1, , w3) , ( , , z1, w2) , ( , , z1, w3)} .

The set of possible deadlock states of the Transfer Line can be computed as follows. From

Figure 3.18 we can see that the set of states of M1‖S1 where no uncontrollable event is

eligible is

{(x0, w0) , (x0, w1) , (x0, w2) , (x0, w3)} .

Similarly, from Figures 3.19 and 3.20, the sets of states of M2‖S2 and TU‖S3 where no

uncontrollable events are eligible are

{(y0, w0) , (y0, w1) , (y0, w2) , (y0, w3)}

and

{(z0, w0) , (z0, w1) , (z0, w2) , (z0, w3)}

respectively. Thus the set of all possible deadlock states of the Transfer Line is

PDTL‖S = {(x0, y0, z0, w0) , (x0, y0, z0,w1) , (x0, y0, z0, w2) , (x0, y0, z0,w3)} .

We now show the various steps involved in the computation of ATL‖S (the set of augmented

primary bad states).
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Initialization:

ATL‖S := PBTL‖S

= {(x1, , , w2) , (x1, , , w3) , ( , y1, , w1) , ( , y1, , w3) , ( , , z1, w2) , ( , , z1, w3)}

First Pass of Do-While:

temp := {(x0, y0, z0,w3)}

ATL‖S := ATL‖S ∪ temp

= PBTL‖S ∪ temp

= PBTL‖S ∪ {(x0, y0, z0,w3)}

Second Pass of Do-While:

temp := ∅

ATL‖S := ATL‖S ∪ temp

= PBTL‖S ∪ {(x0, y0, z0,w3)} ∪ ∅

= PBTL‖S ∪ {(x0, y0, z0,w3)}

We initialize ATL‖S to be the set of all primary bad states. In the first pass of the do-

while loop, we evaluate V ATL‖S

C (the disablement map that disables ATL‖S) at all the states

in PDTL‖S, i.e. at a total of four states. We discover one of these states, (x0, y0, z0,w3) ,

to be a deadlock state. This state corresponds to the scenario where both the buffers are

full. Then we update the set of augmented bad states, ATL‖S, by adding this deadlock state

to it. In the second pass of the do-while loop, we re-evaluate V ATL‖S

C at the remaining three

states of PDTL‖S. However this time we use the updated ATL‖S. No new deadlock states

are discovered and the do-while loop terminates. It can be easily checked that no state of
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ATL‖S is uncontrollably accessible from the initial state of TU‖S. Thus V ATL‖S

C induces a

supremal controllable and deadlock-free subautomaton of TU‖S. �

Example 68 (Deadly Embrace revisited) In Example 58 a scenario can arise where both

the users have acquired a resource apiece. However no more progress is possible since they

both need both the resources in order to continue. We now show how Lemma 66 can help

these two users avoid such a deadlock. From Example 58 we know that the set of primary

bad states is

PBUser‖S = {(x3, , z1) , (x3, , z2) , ( , y3, z1) , ( , y3, z2)} .

The set of possible deadlock states can be inferred from Figure 3.13 to be the entire non-

bad state space of User‖S except (x3, y3, z3). Thus the computation of AUser‖S requires the

evaluation of the disablement map over almost the entire state space! As mentioned earlier,

such a scenario arises when the controllable transitions far outnumber the uncontrollable

transitions. In Useri‖Si there are four controllable transitions and only one uncontrollable

transition. However if we proceed ahead nonetheless and compute AUser‖S then V
User‖S
C

ensures that once a user acquires a resource, the other user is prevented from acquiring any

resource until the first user has relinquished all her resources. �

3.4.1. Some Comments

In Example 68, the number of possible deadlock states is comparable to the size of the

global state space. In such a case, the identification of the deadlock states may be very

inefficient. In Example 67, the number of possible deadlock states comprises a much smaller

fraction of the global state space. However even a small fraction of a very large number may

be impractical to deal with. A designer’s intuition about the physical system can be very

useful in such cases. For instance, in a system such as a Transfer Line, it may be clear to a
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designer that a deadlock can only occur if the buffers are full. The designer can then use this

intuition to guide the construction of the set of augmented primary bad states. However,

in general, there may be systems for which this modular approach is just as inefficient as

a centralized design approach. This is to be expected given the NP -completeness of the

deadlock avoidance problem.

Sometimes it may be possible to infer the nonblocking nature of a supervisor based on

its deadlock-free nature. Let us consider the Transfer Line again and assume that the only

marked state is the initial state. This corresponds to the scenario where both the buffers

are empty. Nonblocking in this case corresponds to the guarantee that it is always possible

to empty the buffers. If it is known that the system is free of deadlocks then it is always

possible to empty the buffers. In this case deadlock-freeness implies nonblocking. However

this is not a systematic approach and the inability to handle nonblocking directly remains

the biggest drawback of the proposed scheme. Given the hard nature of nonblocking, it may

perhaps be useful to impose structural restrictions on the plant as well as the specification.

3.5. Complexity Analysis

In this section we analyse the computational complexity of implementing the proposed

schemes. We assume that the plant comprises n subsystems and is modelled as G =

G1‖ · · · ‖Gn. We also assume that S represents a specification for this plant. Let C be

the supremal controllable subautomaton of G‖S. From [Rud88] we know that the time

complexity of synthesizing C is O
(
|Σ|
∣∣XGi

∣∣n ∣∣XS
∣∣+ ∣∣EGi

u

∣∣n ∣∣ES
u

∣∣); the space needed to

store C is O
(∣∣XGi

∣∣n ∣∣XS
∣∣+ ∣∣EGi

∣∣n ∣∣ES
∣∣) . We now compute the computational complexity

of the proposed schemes.
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3.5.1. Complexity without Deadlock Avoidance

The time complexity involved in the evaluation of a disablement map can be broken down

into two halves: offline and online. The offline complexity results because we need to

identify the primary bad states. The online complexity results because we need to evaluate

the disablement map VC at each state. Using Corollary 54 we can estimate the time needed

for the identification of the primary bad states to be of the order of O
(
n |Σi|

∣∣XGi
∣∣ ∣∣XSi

∣∣) =

O
(
n |Σi|

∣∣XGi
∣∣ ∣∣XS

∣∣) . The online complexity is directly proportional to the complexity of

computing the iterative uncontrollable span IU(·). From Definition 48 we can estimate this

time to be of the order of O
(
n
∣∣EGi

u

∣∣ ∣∣ESi
u

∣∣) = O
(
n
∣∣EGi

u

∣∣ ∣∣ES
u

∣∣) .

The space complexity of the proposed scheme can be broken down into two halves: the

space needed for the storage of Gi‖Si and the space needed for the temporary storage of IU.

The space required to store Gi‖Si, 1 ≤ i ≤ n, is of the order of O
(
n
∣∣XGi

∣∣ ∣∣XSi
∣∣+ n

∣∣EGi
∣∣ ∣∣ES

∣∣) .

The temporary storage needed for IU can grow exponentially if it is stored in the same

form as it is given in Definition 48. However, as shown below, we can use a much more

efficient data structure for storing IU .

Definition 69 Let x = (x1, . . . , xn, s) ∈ XG‖S. For 1 ≤ i ≤ n, define the local iterative

uncontrollable spans of x as follows.

IU1 (x) :=
{(

x1, s
)}
∪

 (x1
1, s1) ∈ XG1‖S1| (∃w ∈ Σ1∗

u )[
ηG1‖S1 ((x1, s) , w) = (x1

1, s1)
]
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for i := 2 to n

IU i (x) := {(xi, s)} ∪


(xi

1, s1) ∈ XGi‖Si| (∃j < i)

(∃ (xj, s2) ∈ IU j (x)) (∃w ∈ Σi∗
u )[

ηGi‖Si ((xi, s2) , w) = (xi
1, s1)

]


end for

The various combinations of IU i can then be used to compute IU as shown below:

IU (x) =
{(

x1
1, . . . , x

n
1 , s
)
| (∀i ∈ {1, . . . , n})

[(
xi

1, s1

)
∈ IU i (x)

]}
.

However, due to Corollary 54, we never actually need to compute IU explicitly; the various

IU i are sufficient to compute VC . In the worst case, the space needed to store IU i, 1 ≤ i ≤ n,

is of the order of O
(
n
∣∣XGi

∣∣ ∣∣XSi
∣∣) . Thus the overall space complexity of the proposed

scheme is

O
(
n
∣∣XGi

∣∣ ∣∣XSi
∣∣+ n

∣∣EGi
∣∣ ∣∣ES

∣∣)+ O
(
n
∣∣XGi

∣∣ ∣∣XSi
∣∣)

= O
(
n
∣∣XGi

∣∣ ∣∣XSi
∣∣+ n

∣∣EGi
∣∣ ∣∣ES

∣∣) .

3.5.2. Complexity with Deadlock Avoidance

If we want the disablement map VC to be deadlock-free then we have the additional task

of identifying deadlock states. To do this, we need to evaluate VC at all the possible

deadlock states. We know that the time needed for the evaluation of VC at any given

state is O
(
n
∣∣EGi

u

∣∣ ∣∣ES
u

∣∣) . Therefore the time needed to identify the deadlock states is

O
(
n
∣∣EGi

u

∣∣ ∣∣ES
u

∣∣ ∣∣PDG‖S
∣∣) . As seen in Example 58, the magnitude of PDG‖S can be expo-

nential in n. This is inherent in the deadlock avoidance problem. Thus the offline time
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complexity increases to

O
(
n
∣∣EGi

u

∣∣ ∣∣ES
u

∣∣)+ O
(
n
∣∣EGi

u

∣∣ ∣∣ES
u

∣∣ ∣∣PDG‖S∣∣)
= O

(
n
∣∣EGi

u

∣∣ ∣∣ES
u

∣∣ ∣∣PDG‖S∣∣) .

The online time complexity and the space complexity remain unchanged.

3.6. Summary

In this chapter we focused our attention on plants that comprise n disjoint components.

For such systems, we presented a modular and efficient mechanism to verify controllability

of a given specification. We also proposed a symbolic scheme for the synthesis of supremal

controllable subautomata. This scheme is symbolic because it produces a disablement map

rather than a extensive look-up table. This disablement map is efficiently computable. The

proposed scheme has a drawback in that it only handles safety specifications and is prone

to blocking. Experience has shown that a number of blocking problems can be solved by

ensuring deadlock-freeness. Deadlock avoidance turns out to be an easier problem to solve

in our framework. So we extended our proposed scheme by making it deadlock-free.



4. Supervisor Reduction

4.1. An Overview

In the previous chapter we have presented a symbolic method for the design of a supervisor.

We have shown that the proposed design can provide great savings in the space and time

required to synthesize a supervisor. However the symbolic supervisor needs to be evaluated

in real-time and is prone to blocking. So there may be scenarios where it may make

more sense to work with a standard RW supervisor [RW82][Won01]. In such a case, the

supervisor is typically an automaton that generates a sublanguage of the plant and is

controllable with respect to it. The plant is synchronized with this automaton: an event is

enabled in the plant if and only if it is enabled in this automaton. It is never required to

disable an uncontrollable event because the automaton is controllable. This is analogous

to generating a lookup table that associates with each state of the closed loop system the

events that need to be disabled there. It is often the case that such a supervisor contains

a lot of redundant information that can be easily inferred from the structure of the plant.

Therefore it makes sense to ask whether a given supervisor is minimal (having the least

possible number of states). If not, then is it possible to construct a minimal supervisor.

These questions were first explored by Vaz and Wonham in [VW86]. They showed that

the construction of a minimal supervisor is time-exponential with respect to the size of

the state of the given supervisor. Su and Wonham have recently shown in [SW00] that in

77
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fact this problem is NP -hard. However Su and Wonham [SW00],[SW01] have presented a

heuristic polynomial-time algorithm that provides good reduction in a lot of cases. They

have also given a conservative lower bound for the number of states in a minimal supervisor.

The supervisor reduction problem seems to be indeed tractable for numerous systems even

though finding the minimal supervisor is NP -hard.

In this chapter we present another heuristic polynomial-time algorithm for supervisor

reduction. This algorithm provides reduction that is comparable to the reduction provided

by the algorithm proposed in [SW01]. We also present an estimate for the number of states

in a minimal supervisor. This estimate, used in conjunction with the one given in [SW01],

can be used to judge the effectiveness of a reduction algorithm.

The rest of this chapter is structured as follows. We first give a brief overview of

the implementation details of a supervisor. Then we briefly discuss the algorithms given

in [VW86] and [SW01]. Finally we present the algorithms for supervisor reduction and

estimation of the state size of a minimal supervisor.

4.2. Implementation of a Supervisor

In this chapter we assume that G = (X, Σ, E, x0, Xm) is a plant automaton, S = (Y, Σ, F, y0, Ym)

is a specification automaton. As in [Won01], we define

Γ =
{
γ ∈ 2Σ|γ ⊇ Σu

}
to be the set of all control patterns and define a supervisory control for G as follows.

Definition 70 A supervisory control for G is any map W : L (G) → Γ. The closed loop

system is written as W/G. The closed behaviour of W/G is defined to be the language
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L (W/G) ⊆ L (G) described as follows.

1. ε ∈ L (W/G)

2. If s ∈ L (W/G) , σ ∈ W (s) , and sσ ∈ L (G) then sσ ∈ L (W/G)

3. No other strings belong to L (W/G) .

The marked behaviour of L (W/G) is Lm (W/G) = L (W/G) ∩ Lm (G) . A supervisory

control W is said to be nonblocking for G if Lm (W/G) = L (W/G) .

A supervisory control for G may be implemented by synchronizing it with an automaton

(supervisor) that allows precisely those strings of G that satisfy the given specification.

If C ≤ G‖S is a (perhaps supremal) controllable subautomaton then the corresponding

supervisory control can be defined as

WC (s) = Elig (C, x) ∪ Σu

where x is the state in C corresponding to s. In other words, we can implement a supervisory

control for G that implements S by synchronizing it with C as shown in Figure 4.1. In such

G

C

Figure 4.1: Supervisory Control Setup

a case we say that C is a supervisor for G. If VC : XG‖S → 2Σc represents a disablement

map that induces C then we get the alternate setup shown in Figure 4.2. Due to the fact

that C is a subautomaton of G‖S we will have L (WC/G) = L (C) ⊆ L (G) as desired.
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G

G||SVC

Event
Occurrences

Events to
Disable

Supervisor

Figure 4.2: Supervisory Control Setup for the Proposed Scheme

The disablement map VC is usually implemented as a static look-up table - there is a row

in the look-up table corresponding to each state in G‖S.

Let C′ be another supervisor for G and let WC′ be the corresponding supervisory

control. If we have L (WC′/G) = L (C) = L (WC/G) then WC′ is equivalent to WC . In

such a case we shall say that C′ is control equivalent to C. If C is the supremal controllable

subautomaton of G‖S then any supervisor that is control equivalent to it is said to be

normal. In particular, the supremal controllable subautomaton of G‖S is normal. We may

sometimes write C/G rather than WC/G to represent the closed loop system. This will

emphasize that C is the automaton supervising G.

4.3. Control Covers and Supervisor Reduction

Given a supervisor C for G we want to compute a smaller control equivalent automaton

C′, i.e.

L (C′) ∩ L (G) = L (C) ∩ L (G) ,

Lm (C′) ∩ Lm (G) = Lm (C) ∩ Lm (G) , and∣∣∣XC′
∣∣∣ <

∣∣XC
∣∣ .
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Such an automaton C′ is called a reduced supervisor. In this section we present the generic

approach taken for supervisor reduction. The following definitions are taken from [VW86]

with minor modifications.

Definition 71 A cover of C is defined to be a family
{
Xi ⊆ XC : i ∈ I

}
of the subsets of

the state set of C with the following properties:

1. (∀i ∈ I) Xi 6= ∅

2. (∀i, j ∈ I) i 6= j ⇒ Xi * Xj

3. for a subset Im ⊆ I,

XC
m = ∪i∈ImXi,

XC −XC
m = ∪i∈I−ImXi.

Here I is some arbitrary index set.

The elements of a cover of C inherit the marking structure of C.

Definition 72 A cover of C is defined to be deterministic if

(∀i ∈ I) (∀σ ∈ Σ) (∃y ∈ Xi) ηC (y, σ)!

⇒
[
(∃j ∈ I) (∀x ∈ Xi) ηC (x, σ)! ⇒ ηC (x, σ) ∈ Xj

]
.

A cover is deterministic if no two states of any element of the cover make transitions to

different elements of the cover under the same event. In other words, if a transition occurs

at any state belonging to an element of the cover then we can uniquely identify the element

of the cover that contains the target state.
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Definition 73 Let x1 ∈ XC be any state of C. Let X ′ (x1) ⊆ X be a subset of the plant

states defined as follows:

X ′ (x1) =
{
x ∈ X : (x, x1) ∈ XG‖C} .

Then the set of disabled events at x1 is defined as

Disabled (x1) := {σ ∈ Σc : (∃x ∈ X ′ (x1)) [σ ∈ Elig (G, x)− Elig (C, x1)]} .

The set Disabled (x1) comprises the events that are disabled in the plant at a state

x ∈ X such that (x, x1) ∈ XG‖C .

Definition 74 Let x1, x2 ∈ XC be any two states of C. They are defined to be control

consistent if Disabled (x1) = Disabled (x2) . A cover of C is defined to be control consistent

if

(∀i ∈ I) (∀x1, x2 ∈ Xi) [x1 and x2 are control consistent] .

If a cover C of C is deterministic and control consistent then we will simply call it

a control cover. A control cover can be used to derive a new supervisor that is control

equivalent to C. If |C| = |I| <
∣∣XC

∣∣ then the new supervisor will be a reduced supervisor.

Definition 75 Assume that C =
{
Xi ⊆ XC : i ∈ I

}
is a control cover of C. Then

C′ := {I, Σ, E ′, i0, Im}

is an automaton induced by C where i0 ∈ I is such that xC
0 ∈ Xi0 and

E ′ :=
{
(i, σ, j) :

(
∃ (x, σ, y) ∈ EC

)
[x ∈ Xi ∧ y ∈ Xj]

}
.



4.4. AN ALGORITHM FOR FINDING A CONTROL COVER 83

Theorem 76 [VW86]Let C be a standard supervisor for G, let C be a control cover for

C, and let C′ be an automaton induced by C. Then

(i) L (C′/G) = L (C/G) , and

(ii) Lm (C′/G) = Lm (C/G) .

In general, to find a cover with the least number of elements we may have to compute

all possible control covers of C. This is the reason behind the NP -hardness of the problem.

However, it is possible to intuitively come up with a good enough control cover. Su and

Wonham [SW01] give a polynomial algorithm for finding one such control cover; in fact,

their cover is a partition. They define a control congruence on the state set of the given

supervisor. This allows them to derive a reduced supervisor in polynomial time even though

there is no guarantee that the reduced supervisor is minimal (or even close to it). In order

to gauge how far they are from a minimal supervisor, they propose an algorithm to find a

lower bound on the state set of a minimum supervisor. They find the biggest subset of the

states of C such that all the states in this set are mutually control inconsistent. No two

states in this subset can be in the same element of a control consistent cover. So it follows

that the number of states in a minimal supervisor can be no fewer than the size of this

subset. We will show later that this is very conservative and that it is possible to come up

with a better estimate.

4.4. An Algorithm for Finding a Control Cover

Given a supervisor C for a specification S on a plant G we want to find a supervisor

C′ that is control equivalent to C. For the time being we set aside the requirement that
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∣∣XC′∣∣ < ∣∣XC
∣∣ . This may be expressed linguistically as follows:

L (C′) ∩ L (G) = L (C) ∩ L (G) ,

Lm (C′) ∩ Lm (G) = Lm (C) ∩ Lm (G) .

Lemma 77 Let C′ be any automaton such that

L (C′) = L (C) ∪ L′ (4.1)

Lm (C′) = Lm (C) ∪ L′
m (4.2)

where L′ ⊆ Σ∗ − L (G) and L′
m ⊆ Σ∗ − Lm (G) . Then C′ is control equivalent to C.

Additionally, if C ≤ G‖S then 4.1 and 4.2 are necessary as well.

Proof. We have

L (C′) ∩ L (G) = (L (C) ∪ L′) ∩ L (G)

= (L (C) ∩ L (G)) ∪ (L′ ∩ L (G))

= (L (C) ∩ L (G)) ∪ ∅

= L (C) ∩ L (G)

since L′ ⊆ Σ∗ − L (G) . Similarly we get

Lm (C′) ∩ Lm (G) = (Lm (C) ∪ L′
m) ∩ Lm (G)

= (Lm (C) ∩ Lm (G)) ∪ (L′
m ∩ Lm (G))

= Lm (C) ∩ Lm (G) .
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If C ≤ G‖S then L (C) ⊆ L (G) so

L (C) = L (C) ∩ L (G)

= L (C′) ∩ L (G)

⊆ L (C′) .

Since L (C) ⊆ L (C′) we get

L (C′) ∩ L (G) =
[
L (C)

.
∪ (L (C′)− L (C))

]
∩ L (G)

= [L (C) ∩ L (G)]
.
∪ [(L (C′)− L (C)) ∩ L (G)]

which implies that

(L (C′)− L (C)) ∩ L (G) ⊆ L (C) ∩ L (G) .

But this is only possible if (L (C′)− L (C))∩L (G) = ∅. In other words, L (C′)−L (C) ⊆

Σ∗ − L (G) . A similar argument gives Lm (C′)− Lm (C) ⊆ Σ∗ − Lm (G).

This result can be used to formulate a greedy algorithm for the construction of a control

equivalent supervisor. This greedy algorithm can be informally described as follows. Let

C =
{
Xi ⊆ XC : i ∈ I

}
be a control cover. Then there must exist i0 ∈ I such that xC

0 ∈ Xi0 .

So we begin our process at the initial state and define Xi0 to be a maximal set containing

xC
0 such that all its elements are pairwise consistent from the point of view of supervision.

Additionally any states reachable from the states of Xi0 under the action of the same

event should also be consistent. Then for each event σ eligible at any state in Xi0 we

find the maximal set, say X1, containing ηC (Xi0 , σ) such that all its elements are pairwise

consistent. Again any states reachable from the states of X1 under the action of the same
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event should also be consistent. If X1 * Xi0 then we consider it to be an element of C. We

continue this process until we have found a cover. This cover will be a control cover because

it is deterministic and control consistent by design. It is a greedy algorithm because at each

step we try to find a maximal element of C that respects the transition structure of C and

is control consistent. We will later show that an automaton induced by C satisfies 4.1, 4.2

and is therefore an equivalent supervisor; however there is no guarantee that it is a reduced

supervisor. The intuitive reason for expecting a reduced supervisor lies in the fact that a

recognizer for a less specific language often has far fewer states than a recognizer for a more

specific language. By the specificity of a language we roughly mean the detail needed for

its description. For example, Σ∗ is a less specific language than H = {α∗β} because it can

be described by simply saying “anything over Σ.” On the other hand a description for H

would be something such as “any number of α’s followed by a β.” A recognizer for Σ∗ needs

just one state while a recognizer for H needs 2 states. Let us assume that Σ = {α, β} .

Then Σ∗ and H are shown in Figure 4.3. Now if we merge states x0 and x1 in the recognizer

α,β
Σ∗

x0 x1

α

β

H

x0 x1

α

β

Σ∗

Figure 4.3: Reduction in Specificity by Merging States

for H then we get an automaton that generates a superlanguage of H (in fact it generates

Σ∗) and has fewer states than the recognizer for H. In the proposed greedy algorithm we

judiciously merge as many states as possible while forming the elements of the cover. If C′
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is the induced automaton then L (C′) − L (C) ⊆ Σ∗ − L (G) so we merge as many states

as possible in the hope that L (C′)− L (C) will be approximately equal to Σ∗ − L (G) .

There is another reason for using the greedy heuristic. It has been shown in [Chv79],[Hoc82]

that a greedy heuristic offers very good approximations to the solution of the set covering

problem. We will say more about the set covering problem in the next section. Here we

just mention that in the numerous examples we have tried, the greedy heuristic seems to

work quite well. Before we present the algorithm we give some definitions in the same spirit

as [VW86].

Definition 78 Let x ∈ XC . Then the set of ineligible events at x is defined as

Ineligible (x) := Σc − (Elig (C, x) ∪Disabled (x)) .

The set Ineligible (x) comprises those events that are not physically possible at x. A dis-

tinction is thus made from those events that are disabled at x to impose some specification

on G.

Definition 79 Any two states x1, x2 ∈ XC are defined to be control compatible if

Disabled (x1) ⊆ Disabled (x2) ∪ Ineligible (x2) , and

Disabled (x2) ⊆ Disabled (x1) ∪ Ineligible (x1) .

Definition 80 Any two states x1, x2 ∈ XC are defined to be marking compatible if

(
∀x ∈ XG

m

) [(
(x, x1) , (x, x2) ∈ XG‖C)⇒ (

x1 ∈ XC
m ↔ x2 ∈ XC

m

)]
.

This requirement on marking is less restrictive than [VW86] where x1 and x2 are said



4.4. AN ALGORITHM FOR FINDING A CONTROL COVER 88

to be marking compatible only if x1 ∈ XC
m ↔ x2 ∈ XC

m. However any state (x, y) ∈ XG‖C

can be a marked state only if x ∈ XG
m so we are able to relax the marking requirement.

Definition 81 Any two states x1, x2 ∈ XC are defined to be compatible if they are control

and marking compatible. For any x ∈ XC the sets of compatible and incompatible states

are defined as

Compatible (x) :=
{
y ∈ XC : x and y are compatible

}
Incompatible (x) :=

{
y ∈ XC : x and y are not compatible

}
.

Definition 82 Any two states x1, x2 ∈ XC are defined to be mergeable if they are com-

patible and

(∀σ ∈ Σ)
[
ηC (x1, σ) and ηC (x2, σ) are compatible

]
.

For any x ∈ XC the set of its mergeable states is defined as

Mergeable (x) :=
{
y ∈ XC : x and y are mergeable

}
.

Thus two states are mergeable if they are compatible and their descendants under the

action of the same events are compatible. Any cover whose elements comprise mutually

mergeable states will be deterministic if the transition structure of the supervisor is re-

spected. To compute the mergeable sets, we have adapted the algorithm given in [HU79,

page 68] for the computation of a minimal state automaton. In [HU79] the algorithm

distinguishes between marked and unmarked states while our adaptation distinguishes be-

tween compatible and incompatible states. The adapted algorithm is used in the procedure

findMergeableStateSets.
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proc findMergeableStateSets

input: G,C

output: Mergeable(x) for each x ∈ XC

begin

for all x ∈ XC and each y ∈ Incompatible(x) do

cross (x, y);

endfor

for each pair of distinct states (x, y) in XC ×XC do

if for some α ∈ Σ, (ηC(x, α), ηC(y, α)) is crossed then

begin

cross (x, y);

recursively cross all uncrossed pairs on the list for (x, y) and on the list

of other pairs that are crossed at this step;

end

else /* no pair (ηC(x, α), ηC(y, α)) is crossed */

for all α ∈ Σ do

put (x, y) on the list for (ηC(x, α), ηC(y, α)) unless ηC(x, α) = ηC(y, α);

endfor

endif

endfor

for all x ∈ XC do

Mergeable(x) := {y ∈ XC : (x, y) is not crossed};

endfor

end
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From the analysis given in [HU79] we can infer the complexity of findMergeableStateSets

to be O
(
|Σ|
∣∣XC

∣∣2) . Now that we know the mergeable state sets, we can describe the

procedure for computing the elements of our desired control cover. As mentioned earlier,

we begin the process by computing an element Xi0 that contains the initial state of C. Let α

be an event that is eligible at any state belonging to Xi0 . Then to ensure that the resultant

cover is deterministic we have to ensure that ηC (Xi0 , α) is a subset of some element of the

cover. If ηC (Xi0 , α) is not a subset of an existing element then we need to compute an

element that contains it. So now we describe a procedure that does exactly that.

proc findMaximalMutuallyMergeableSet

input: S ⊆ XC - all its elements are pairwise mergeable

output: Xi ⊇ S - a maximal set containing S such that all its elements are

pairwise mergeable

begin

1. Xi := S;

2. tempMergeable := ∩x∈Xi
Mergeable(x);

3. while |tempMergeable| > |Xi| do

4. pick a y ∈ tempMergeable−Xi such that tempMergeable ∩Mergeable(y) is maximal,

i.e. (∀z ∈ tempMergeable−Xi)(|tempMergeable ∩Mergeable(y)|

> |tempMergeable ∩Mergeable(z)|);

5. Xi := Xi ∪ {y};

6. tempMergeable := tempMergeable ∩Mergeable(y);

7. endwhile

end

The procedure findMaximalMutuallyMergeableSet takes as input a set S whose elements
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are pairwise mergeable. It outputs a set Xi ⊇ S such that all its elements are pairwise

mergeable. Additionally Xi is maximal in the sense that if there is any other set Xj ⊇ S

all of whose elements are also pairwise mergeable then |Xj| ≤ |Xi| . This set Xi will form

an element of our desired cover if it is not a subset of any existing element. The procedure

makes a nondeterministic choice at line 4 when it picks a state that maximizes the size

of the temporary set tempMergeable. It is possible that more than one element satisfies

the criterion. The choice made at line 4 does not affect the correctness of the procedure;

however it may affect the size of the overall cover. This choice can be fine-tuned based on

heuristic arguments. For instance, we can pick an element that has not been picked in any

previous calls to findMaximalMutuallyMergeableSet.

The complexity of findMaximalMutuallyMergeableSet can be inferred as follows. The

while loop block of lines 3 through 7 is executed at most
∣∣XC

∣∣ times. Each time the while

loop executes, there are at most
∣∣XC

∣∣ comparisons done at line 4. So the overall complexity

of the procedure is O
(∣∣XC

∣∣2) .

The main procedure can now be described very easily.

proc findControlCover

input: G,C

output: C - a control cover for C

begin

1. findMergeableStates;

Xi0 := findMaximalMutuallyMergeableSet({xC
0 });

C := {Xi0};

unprocessed := {Xi0};

2. while unprocessed 6= ∅ do
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current := first element of unprocessed;

unprocessed := unprocessed− current;

3. for each α ∈ Σ s.t. α ∈ Elig(C, x) for some x ∈ current do

4. Xj := findMaximalMutuallyMergeableSet(ηC(current, α));

if Xj * Xi for any Xi ∈ C then

C := C ∪ {Xj};

unprocessed := unprocessed ∪ {Xj};

endif

5. endfor

6. endwhile

end

The complexity of findControlCover may be inferred as follows. We know that the

complexity of line 1 is O
(
|Σ|
∣∣XC

∣∣2) . The for loop block of lines 3 through 5 is executed

|Σ| times in the worst case. The complexity of line 4 is O
(∣∣XC

∣∣2) so the overall complexity

of the for loop block is O
(
|Σ|
∣∣XC

∣∣2) . Now let us consider the while loop block of lines 2

through 6. If findControlCover does not terminate before
∣∣XC

∣∣ iterations of the while loop

then the cover C will have more than
∣∣XC

∣∣ elements; the induced automaton will not be

a reduced supervisor. So we can force the algorithm to terminate after
∣∣XC

∣∣ passes of the

while loop. Thus the complexity of findControlCover is O
(
|Σ|
∣∣XC

∣∣3) . Whenever it termi-

nates normally we will be able to get a reduced supervisor. Before showing the correctness

of findControlCover, we illustrate its operation with the help of a simple example.

Example 83 Let us reconsider the Small Factory setup of Example 39. For simplicity,

let us assume that there is only one machine feeding the buffer and only one machine

emptying the buffer. The Smaller Factory setup is shown in Figure 4.4. As before, the
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Figure 4.4: A Smaller Factory

imposed specification is the prevention of over/underflow of the buffer (as shown in Figure

4.5). This specification can be imposed by the supervisor C shown in Figure 4.6. In fact,

S

w0 w1

β1

α2

α1,β2 β2

Figure 4.5: Buffer Under/Overflow Spec for the Smaller Factory

0 1 2 3 4 5α1 β1 α2 α1 β1

β2 β2

β2

C

Figure 4.6: A Supervisor for the Smaller Factory

C is the output of the CTCT design software [Won01]. We now desire to find a reduced

supervisor for the Smaller Factory that is control equivalent to C. The table below shows
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the disabled and the ineligible state sets for all the states of C.

State Disabled Events Ineligible Events

0 {α2} ∅

1 {α2} {α1}

2 {α1} ∅

3 ∅ {α2}

4 ∅ {α1, α2}

5 {α1} {α2}

From this we can compute the compatible state sets shown below.

State Compatible States

0 {0, 1, 3, 4, 5}

1 {0, 1, 3, 4, 5}

2 {2, 4, 5}

3 {0, 1, 3, 4}

4 {0, 1, 2, 3, 4, 5}

5 {1, 2, 4, 5}

With the compatible state sets in hand, we can execute findMergeableStateSets. The table

shows the intermediate output of findMergeableStateSets. A cross (×) in entry (i, j) of

the table signifies that the pair (i, j) is crossed.
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1

2 × ×

3 ×

4

5 × × ×
From this table we can compute the mergeable state sets shown below.

State Mergeable States

0 {0, 1, 3, 4}

1 {0, 1, 3, 4, 5}

2 {2, 4, 5}

3 {0, 1, 3, 4}

4 {0, 1, 2, 3, 4}

5 {1, 2, 5}

Now we compute Xi0 := findMaximalMutuallyMergeableSet({0}) . Since all elements of

Mergeable (0) are pairwise mergeable we get

Xi0 = Mergeable (0)

= {0, 1, 3, 4} .

The while-loop now begins with C = unprocessed = {{0, 1, 3, 4}}. In the first pass of the

while-loop, current is defined as Xi0 and unprocessed gets updated to the empty set. The

events eligible at Xi0 are α1, β1 and β2. The for-loop now begins.

First Iteration of for-loop: For α1 we have ηC (Xi0 , α1) = {1, 4} . The output of the
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procedure findMaximalMutuallyMergeableSet({1, 4}) is equal to Xi0 so nothing else

needs to be done.

Second Iteration of for-loop: For β1 we have ηC (Xi0 , β1) = {2, 5} . The output of

findMaximalMutuallyMergeableSet({2, 5}) is {2, 5} . Since there is currently no el-

ement of C that contains {2, 5} we add it to C and unprocessed. So at this stage

C = {{0, 1, 3, 4} , {2, 5}} while unprocessed = {{2, 5}} .

Third Iteration of for-loop: For β2 we have ηC (Xi0 , β2) = {0, 1} . The output of findMaximalMutuallyMergeableSet({0, 1})

is equal to Xi0 so nothing else needs to be done.

This finishes the first iteration of the while-loop. In the second pass of the while-loop we

process {2, 5} and discover that no new sets are generated. So the procedure findControl-

Cover terminates and returns C = {{0, 1, 3, 4} , {2, 5}} . The automaton induced from C is

shown in Figure 4.7. It has only 2 states compared to the 6 states in C. It turns out that

{0,1,3,4} {2,5}

β1

α2

α1,β2 β2

C'

Figure 4.7: A Reduced Supervisor for the Smaller Factory

for this example our algorithm produces a minimal supervisor.

This example also provides an idea of the intuition behind supervisor reduction. For

instance, α1 is eligible to occur at state 0 of C but ineligible to occur at state 1 of C.

However, from the point of view of implementing the over/underflow specification, both the

states provide equivalent control action because α1 cannot occur in the Small Factory while
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the supervisor C is in state 1. It is such knowledge of the dynamics of a plant that allows

us to merge the states of a given supervisor. 2

We have implemented this algorithm in the Java programming language. The program

has not failed to terminate normally (i.e. without reduction) for any of the numerous

examples we have tried. Table 4.1 shows reductions achieved by our program on a set of

examples taken from [SW00] and [SW01]. For comparison we have also included the output

of the algorithm proposed in [SW00] and [SW01]. The pair (n,m) means that the given

automaton has n states and m transitions. The data for the given plant and supervisor

automata is listed in the columns labelled Plant and Super respectively. The data related

to the output generated by our program is listed in the column labelled RSuper while the

data for the output generated by the algorithm of [SW00],[SW01] is given in the column

labelled SWSuper.

Plant Super RSuper SWSuper
(3,7) (3,6) (2,7) (3,6)
(44,87) (33,56) (7,19) (9,19)
(128,1288) (776,3826) (95,730) (186,1130)
(390,1089) (295,701) (5,85) (5,64)

Table 4.1: Typical Results of the Supervisor Reduction Algorithm

The plant and supervisor whose data are given in the first row of Table 4.1 are shown

in Figure 4.8. This example has been taken from [SW00]. All the events are assumed to

be controllable. The authors have shown in [SW00] that a reduced supervisor cannot be

achieved using a control partition. Our algorithm is able to find a reduced supervisor in this

case. In fact, the reduced supervisor is minimal and is shown in Figure 4.9. This example

(and the others listed in Table 4.1) indicate the usefulness of the proposed algorithm despite

the lack of a guarantee of reduction.
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Figure 4.8: Supervisor Cannot be Reduced by a Partition

{0,1} {0,2}

β,γ

α,β

α,δ γ

Reduced Supervisor

Figure 4.9: Supervisor Reducible using a Cover

Theorem 84 Let G and C be automata representing a plant and its supervisor. Assume

that C := findControlCover (G,C) and let C′ be the automaton induced by it. Then C′

is control equivalent to C, i.e.

L (G) ∩ L (C′) = L (G) ∩ L (C)

Lm (G) ∩ Lm (C′) = Lm (G) ∩ Lm (C) .

Proof. To prove this result it is sufficient to show that

L (C′) = L (C) ∪ L′
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Lm (C′) = Lm (C) ∪ L′
m

where L′ ⊆ Σ∗ − L (G) and L′
m ⊆ Σ∗ − Lm (G) . The desired result will then follow from

Lemma 77. Since C is trim, the set C returned by procedure findControlCover is at least

a cover for the states of C. This implies that L (C′) ⊇ L (C) and Lm (C′) ⊇ Lm (C) . Thus

in order to prove the result we just need to show that L (C′) − L (C) ⊆ Σ∗ − L (G) and

Lm (C′)− Lm (C) ⊆ Σ∗ − Lm (G) . We do this in two parts.

Part 1: Let s ∈ L (C′) ∩ L (C) and let σ ∈ Σ be such that sσ ∈ L (C′) but sσ /∈ L (C) .

We need to show that sσ /∈ L (G) . If s /∈ L (G) then sσ /∈ L (G) so let us assume

that s ∈ L (G) . Let x1 ∈ XC be the state in C corresponding to s. Since sσ /∈ L (C)

it follows that σ ∈ Elig (C, x) . Let i ∈ XC′
be the state in C′ corresponding to s

and let Xi ⊆ XC be the corresponding element of the cover C. Since σ ∈ Elig (C′, i)

there must exist some state x2 ∈ Xi ⊆ XC such that σ ∈ Elig (C, y) . Since x1 and

x2 belong to the same element Xi ∈ C, they must be mergeable. So, we must have

Disabled (x1) ⊆ Disabled (x2) ∪ Ineligible (x2) .

Now σ ∈ Elig (C, x2) so σ /∈ Disabled (x2) ∪ Ineligible (x2) which implies that σ /∈

Disabled (x1) . This means that there does not exist any state z ∈ XG such that

(z, x1) ∈ XG‖C and σ ∈ Elig (G, z) . In particular, σ ∈ Elig (G, zs) where zs is the

state in G corresponding to s. Thus sσ /∈ L (G) . This shows that (L (C′)− L (C))∩

L (G) = ∅ which implies that L (C′)− L (C) ⊆ Σ∗ − L (G) .

Part 2: Let s ∈ Lm (C′) − Lm (C) . We need to show that s /∈ Lm (G) . If s /∈ L (G)

then s /∈ Lm (G) so let us assume that s ∈ L (G) . Thus s ∈ L (C′) ∩ L (G) which

implies that s ∈ L (C) ∩ L (G) ⊆ L (C) (from Part 1). Let x1 ∈ XC be the state
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in C corresponding to s. Since s /∈ Lm (C) it follows that x1 /∈ XC
m. Let i ∈ XC′

be

the state in C′ corresponding to s and let Xi ⊆ XC be the corresponding element of

the cover C. Since s ∈ Lm (C′) it follows that there exists a state x2 ∈ Xi such that

x2 ∈ XC
m. Now x1 and x2 are mergeable so we must have

(
∀z ∈ XG

m

) [(
(z, x1) , (z, x2) ∈ XG‖C)⇒ (

x1 ∈ XC
m ↔ x2 ∈ XC

m

)]
which is equivalent to

[(
∃z ∈ XG

m

) (
(z, x1) , (z, x2) ∈ XG‖C)]⇒ (

x1 ∈ XC
m ↔ x2 ∈ XC

m

)
.

Since x1 /∈ XC
m and x2 ∈ XC

m it follows that the consequence in the above implication

is false. However the implication itself must be true since x1 and x2 are mergeable.

Thus the antecedent must be false, i.e.

¬
(
∃z ∈ XG

m

) (
(z, x1) , (z, x2) ∈ XG‖C)

m(
∀z ∈ XG

m

) (
(z, x1) /∈ XG‖C ∨ (z, x2) /∈ XG‖C) (4.3)

is a tautology. Let zs ∈ XG be the state in G corresponding to s. Since s ∈

L (C) ∩ L (G) = L (C′) ∩ L (G) it follows that (zs, x1) , (zs, x2) ∈ XG‖C . Now we

can conclude from (4.3) that zs /∈ XG
m which implies that s /∈ Lm (G) . This shows

that (Lm (C′)− Lm (C)) ∩ Lm (G) = ∅ which implies that Lm (C′) − Lm (C) ⊆

Σ∗ − Lm (G) .
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4.5. Estimation of the Size of a Minimal Supervisor

In this section we present an estimate of the size of a minimal supervisor. In general it may

be very hard to find a minimal supervisor but an almost minimal supervisor may be quite

acceptable. Thus an estimate can be very useful in evaluating the output of a supervisor

reduction algorithm. In [SW01] the authors have presented such an estimate. Their idea is

to find a maximal set of states of the given supervisor such that all these states are pairwise

unmergeable. Any control equivalent supervisor must have at least as many states as the

size of this unmergeable set. This is a reasonable estimate; however it can be conservative

as the following example demonstrates.

Example 85 Let G and C represent a plant and its supervisor as shown in Figure 4.10.

It is assumed that all the events are controllable. The table below shows the mergeable sets

0
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γ,δ

δ,σ

σ,α α,β

β,γ

Figure 4.10: Conservative Lower Bound Estimation
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for all the states.

State Mergeable States

0 {0, 1, 4}

1 {0, 1, 2}

2 {1, 2, 3}

3 {2, 3, 4}

4 {0, 3, 4}

A state is mergeable with only those states that are adjacent to it; it is unmergeable with

the two states that are not adjacent to it (but which are adjacent to each other). There

are 5 maximal sets such that all the elements are pairwise unmergeable: {0, 2} , {0, 3} ,

{1, 3} , {1, 4} , and {2, 4} . So, according to [SW01], a lower bound on the number of states

of a minimal supervisor is 2. A minimal supervisor is shown in Figure 4.11 and has

{0,1}

{2,3} {4,0}

β

δ

σ,α

α

γ
C'

Figure 4.11: A Minimal Supervisor whose Estimate is Conservative

3 states. The reason for the conservative estimate of [SW01] is as follows. Consider a

maximal unmergeable set such as {0, 2} . It comprises only those states that are all pairwise

unmergeable. There may exist states that are mergeable with some of the states of a maximal

unmergeable set but it still may not be possible to merge them. For instance, states 1 and 3

are mergeable with 2. However we cannot merge all these three states because states 1 and
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3 are unmergeable. In this example, it is not possible to form a control cover such that any

element has more than 2 states. 2

The system in the above example exhibits a characteristic that can be used to derive

a better estimate. Before explaining how that may be done, we need to give a bit of

background regarding two classical NP -hard problems involving set covers [Joh74][GJ79].

Definition 86 Let F := {S1, S2, . . . , Sp} be a finite family of finite sets. The first set

covering problem (denoted SC1) is to find a subcover F′ ⊆ F, i.e. a subset such that

⋃
S∈F′

S =
⋃
S∈F

S.

In addition, if F′′ ⊆ F is any other subcover then

|F′| ≤ |F′′| .

In other words, given a cover F, the first set covering problem is to find a minimal cardinality

subcover F′.

Definition 87 Let F := {S1, S2, . . . , Sp} be a finite family of finite sets. The second set

covering problem (denoted SC2) is to find a subcover F′ ⊆ F, i.e. a subset such that

⋃
S∈F′

S =
⋃
S∈F

S.

In addition, if F′′ ⊆ F is any other subcover then

∑
S∈F′

|S| ≤
∑
S∈F′′

|S| .
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In other words, given a cover F, the second set covering problem is to a subcover F′ with

the least overlap.

There exist good approximate solutions for SC1 [Chv79],[Hoc82] and SC2 [Joh74]. We

present below a greedy approximation algorithm [Chv79] for SC1.

proc findApproximateSolutionSC1

input: F := {S1, S2, . . . , Sp} — a finite family of finite sets

output: F′
1 ⊆ F s.t.

⋃
S∈F′1

S =
⋃

S∈F S

begin

Ti := Si for all 1 ≤ i ≤ p;

F′
1 := ∅;

while Ti 6= ∅ for all 1 ≤ i ≤ p do

find 1 ≤ j ≤ p such that |Tj| is maximal;

F′
1 := F′

1 ∪ {Sj};

Ti := Ti − Tj for all 1 ≤ i ≤ p;

endwhile

end

Theorem 88 [Chv79]Let F := {S1, . . . , Sp} be a finite family of finite sets and let F′
1 :=

findApproximateSolutionSC1 (F). If F∗
1 is the optimal solution to SC1 for F then

|F′
1| ≤

d∑
i=1

1

i
|F∗

1|

where d := max {|S1| , . . . , |Sp|} .

Let F∗
2 be an optimal solution for SC2. It has been shown in [Joh74] that, in general,

F∗
2 may be very far from any optimal solution for SC1. However it is also shown in [Joh74]
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that if |Si| = |Sj| for all 1 ≤ i, j,≤ p then F∗
2 is also an optimal solution for SC1. Now let

us assume that

F :=
{
Xi ⊆ XC : (∀x, y ∈ Xi) x ∈ Mergeable (y)

}
is cover of XC such that all its elements comprise mutually mergeable states. Let F∗ ⊆ F

be a subcover of XC that induces a minimal supervisor which is control equivalent to C.

Let F∗
1 ⊆ F be a subcover of XC such that it is an optimal solution for SC1. Since all the

states in any element of F∗
1 are pairwise mergeable, it satisfies one of the main conditions

for control equivalence. However the automaton induced by F∗
1 may be nondeterministic

so, in general, we will have |F∗| ≤ |F∗
1| . Nonetheless |F∗

1| is usually sufficiently close to |F∗| .

Since |F′
1| is an estimate for |F∗

1| we may use it as an estimate for |F∗| . If it turns out that

F′
1 is a partition then clearly it is an optimal solution for SC2. Additionally if the Si are

all equal in size then we may conclude that F′
1 is also an optimal solution for SC1 [Joh74].

In such a case |F′
1| will be a very good estimate for |F∗| (the size of a minimal supervisor).

In fact this is what happens in Example 85. For the system in that example we have

F = {{0, 1} , {0, 4} , {1, 2} , {2, 3} , {3, 4}}

and

F′
1 = findApproximateSolutionForSC1 (F)

= {{0, 1} , {2, 3} , {0, 4}} .

Since all the elements of F are of the same size it follows that |F′
1| = 3 is a very good

estimate for the size of a minimal supervisor.
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Remark 1 We do not to need to know F completely in advance; we can use the procedure

findMaximalMutuallyMergeable to compute the various elements of F as the algorithm

progresses.

4.6. Summary

In this chapter we presented a heuristic algorithm for finding a reduced supervisor. Given

a supervisor C for a plant G this algorithm produces a supervisor C′ that is control

equivalent to C. While there is no guarantee that
∣∣XC′∣∣ <

∣∣XC
∣∣, the algorithm seems to

perform quite well in practice. The proposed heuristic is greedy in nature and its complexity

is O
(
|Σ|
∣∣XC

∣∣3) . We also presented an estimate for the size of a minimal supervisor. The

estimation algorithm is based on an existing approximation for the set-covering problem

[Chv79].

Su and Wonham [SW01],[SW00] have also presented algorithms for supervisor reduction

and minimal supervisor size estimation. The algorithms presented in this chapter can be

used in conjunction with their algorithms to achieve better results. Finding a minimal

supervisor is NP -hard and an approximation algorithm that works well for one system

may not work well for another. So a designer should try all the available algorithms and

pick the one that works for the particular system at hand.



5. More Notation

5.1. An Overview

The rest of the thesis deals with timed discrete event systems (TDES). So in this chapter

we introduce some additional notation related to timed discrete event systems. A TDES

differs from an untimed DES in that there is an explicit notion of time. In an untimed

DES it only makes sense to talk about the order in which various events occur. So it

may be reasonable to say about a machine that it needs to be calibrated before it can be

put to work but it is not possible to specify the exact time at which the calibration takes

place. Similarly we cannot specify how long the calibration takes. Events in a DES are

supposed to take place instantaneously and nondeterministically. For some systems it may

be advantageous or even necessary to introduce time explicitly. It would then be possible

to specify when an event takes place. There are various ways to model timed discrete

event systems. In this thesis we use and extend the framework proposed by Brandin and

Wonham [Bra93],[BW94]. Their framework is an extension of the RW framework and we

will refer to it as the BW framework. In BW the essential idea is the modelling of the

passage of a unit of time by a special event called a tick. The tick event models the passage

of time according to a global clock. This explicit notion of time allows the introduction of

activities. An activity is a state of a system that requires a time duration. For example,

the time taken by a machine to process a workpiece is the duration of its working activity.

107
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A system may be modelled by a graph of its activities called an Activity Transition Graph.

This graph does not model time explicitly using the tick event; it simply associates time

bounds with various events. However it can be converted into a graph called a Timed

Transition Graph which models time explicitly using the tick event. The existing tools of

the RW framework can be applied to a timed transition graph with minor modifications.

5.2. Notation for Timed Discrete Event Systems

A lot of the notation and definitions presented here are taken from [Bra93],[BW94],[Won01]

with minor modifications; please refer to them for more details. If Σ represents an alphabet

of events then, as before, let Σ+ represent the language consisting of all possible strings

of finite (non-zero) length. Let ε /∈ Σ be the empty string; let Σ∗ := Σ+ ∪ {ε} be the

language comprising all possible strings of finite (possibly zero) length. Let t represent a

tick of a global clock and let Σt := Σ∪ {t}. For each σ ∈ Σ, let lσ ∈ N and uσ ∈ N∪ {∞}

represent the lower and upper time bounds of σ. The lower bound lσ represents the number

of ticks that must elapse once σ is enabled before it is eligible to occur; the upper bound

uσ represents the maximum number of ticks that may elapse before σ is forced to occur. If

uσ = ∞ then σ is never forced to occur.

Definition 89 An automaton GA represents an Activity Transition Graph (ATG) of a

system if

GA =
(
XGA , ΣGA , EGA , xGA

0 , XGA
m

)
where the set of states XGA represents a finite set of activities and each event σ ∈ ΣGA

has a lower bound lσ ∈ N and an upper bound uσ ∈ N∪ {∞} . We will often use the triple

(σ, lσ, uσ) to represent the time bounds associated with σ. If uσ 6= ∞ then the event σ is
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said to be prospective; if uσ = ∞ then σ is said to be remote. Let

ΣGA
spe : =

{
σ ∈ ΣGA : σ is prospective

}
ΣGA

rem : =
{
σ ∈ ΣGA : σ is remote

}
represent the sets of prospective and remote events. Let [j, k] represent the set of integers

from j to k and define

T ′
σ =

 [0, uσ] if σ ∈ ΣGA
spe

[0, lσ] if σ ∈ ΣGA
rem

to be the timer interval of σ. Let

t0σ =

 uσ if σ ∈ ΣGA
spe

lσ if σ ∈ ΣGA
rem

represent the default timer value of σ.

If lσ = 0 and uσ = ∞ for all events σ ∈ ΣGA then an ATG is the same as the standard

untimed automaton model of the RW framework.

Example 90 Let us consider the simple machine shown in Figure 5.1. An ATG of this

idle

working

start stop
(start,0,∞)
(stop,2,3)

Figure 5.1: ATG of a Simple Machine
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machine is{idle, working} , {start, stop} ,

 (idle, start, working) ,

(working, stop, idle)

 , idle, {idle}

 .

The time bounds are (start, 0,∞) and (stop, 2, 3) . This may be interpreted as follows. The

machine can be started as soon it is idle but does not need to started at all. When the

machine is working, it cannot finish its operation before 2 ticks but must finish before the

4th tick (the upper bound requires that no more than 3 ticks take place). Here the timer

intervals are

T ′
start = [0, 0] = {0}

T ′
stop = [0, 3] = {0, 1, 2, 3} .

2

Definition 91 Let s ∈ L ⊆ Σ∗ be a string belonging to a language L. A string w ∈ Σ∗ is

a prefix of s in L (denoted w ≤ s) if there exists a string v ∈ Σ∗ such that wv = s. Let

Pre (L, s) := {w ∈ Σ∗ : w ≤ s}

be the set of all prefixes of s in L and let

Pre (L) := {Pre (L, s) : s ∈ L}

be the set of all prefixes of L. We will often use L to denote Pre (L) . If L is obvious from

the context then we may use Pre (s) to denote Pre (L, s) .
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Definition 92 Let s ∈ L ⊆ Σ∗ be a string belonging to a language L. A string w ∈ L is a

postfix of s in L (denoted w ≥ s) if s is prefix of w in L, i.e. if there exists a string v ∈ Σ∗

such that sv = w. Let

Pos (L, s) :=
{
w ∈ L : w ≥ s

}
be the set of all postfixes of s in L and let

Pos (L) := {Pos (L, s) : s ∈ L}

be the set of all postfixes of L. If L is obvious from the context then we may use Pos (s) to

denote Pos (L, s) .

Definition 93 Given an ATG GA for a system, the corresponding Timed Transition

Graph (TTG) is defined to be an automaton

GT =
(
XGT , ΣGT , EGT , xGT

0 , XGT
m

)
where

XGT = XGA ×
∏{

T ′
σ : σ ∈ ΣGA

}
ΣGT = ΣGA

.
∪ {t}

xGT
0 =

(
xGA

0 ,
{
t0σ : σ ∈ ΣGA

})
XGT

m ⊆ XGA
m ×

∏{
T ′

σ : σ ∈ ΣGA
}

and the transition set EGT is defined as follows. Let x1 =
(
a1,
{
t1σ : σ ∈ ΣGA

})
and x2 =(

a2,
{
t2σ : σ ∈ ΣGA

})
belong to XGT . Then (x1, α, x2) ∈ EGT if and only if
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1. α = t and
(
∀σ ∈ ΣGA

spe

)
t1σ > 0, or

2. α ∈ ΣGA
spe , ηGA (a1, α)!, and 0 ≤ t1α ≤ uα − lα, or

3. α ∈ ΣGA
rem, ηGA (a1, α)!, and t1α = 0.

If any of the above three conditions is satisfied then x2 is given as follows.

1. If α = t then a2 = a1. Additionally, if σ is prospective then

t2σ =

 uσ if ¬ηGA (a1, σ)!

t2σ − 1 if ηGA (a1, σ)!
;

otherwise if σ is remote then

t2σ =


lσ if ¬ηGA (a1, σ)!

t2σ − 1 if ηGA (a1, σ)! and t2σ > 0

0 if ηGA (a1, σ)! and t2σ = 0

.

2. If α ∈ ΣGA then a2 = ηGA (a1, α) . If σ 6= α and σ is prospective then

t2σ =

 uσ if ¬ηGA (a2, σ)!

t2σ if ηGA (a2, σ)!
;

if σ = α and σ is prospective then

t2σ = uσ;
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if σ 6= α and σ is remote then

t2σ =

 lσ if ¬ηGA (a2, σ)!

t2σ if ηGA (a2, σ)!
;

if σ = α and σ is remote then

t2σ = lσ.

The above equations define the derivation of an explicit timed automaton (TTG) from

an implicit timed automaton (ATG). Condition 1 says that if a tick has just occurred then

appropriately decrement the timer values of all the other enabled events. Condition 2 says

that if a non-tick event has just occurred then reset its timers to their default values but

leave unchanged the timers of other enabled events. We illustrate the conversion procedure

with the help of an example.

Example 94 Let us reconsider the simple machine of Example 90. The TTG for this

machine is shown in Figure 5.2. At the idle state in the ATG, the only eligible event is

start with time bounds (0,∞). Thus any number of tick events can occur (i.e. any amount

of time can lapse) before, if at all, start occurs at the initial state in the TTG. Once start

occurs, the stop event becomes enabled. The lower time bound of stop is 2 so two ticks

must occur before stop becomes eligible to occur. The upper time bound of stop is 3 so

no more than three ticks can occur before stop is forced to occur. This can be seen from

Figure 5.2: no tick is possible at the state (working, 0, 0). In such a scenario, we say that

the event stop is imminent. The selfloop of the tick event at state (idle, 0, 3) indicates that

the start event is never imminent. 2

Definition 95 Let GA be an ATG and let GT be the corresponding TTG. Let x =
(
a,
{
tσ : σ ∈ ΣGA

})
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idle,0,3

working,0,3

working,0,2

working,0,1

working,0,0

start

t

t

t

stop

stop

t

Figure 5.2: Timed Transition Graph of a Simple Machine

be a state in GT . Then an event σ ∈ ΣGA is enabled at x if there exists a1 ∈ XGA such

that (a, σ, a1) ∈ EGA . In other words, an event is enabled at a state in the TTG if the same

event is eligible at the corresponding state in the ATG. Let

Enab (GT , x) :=
{
σ ∈ ΣGA : σ is enabled at x

}
be the set of all enabled events at x. Sometimes it will be convenient to talk about the events

enabled at a string. Let s ∈ L (GT ) and let y be the corresponding state in GT . Then

Enab (L (GT ) , s) := Enab (GT , y) .
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Definition 96 Let GT be the corresponding TTG and let s ∈ L (GT ) . Then an event

σ ∈ ΣGT is eligible at s if sσ ∈ L (GT ) . Let

Elig (L (GT ) , s) :=
{
σ ∈ ΣGT : sσ ∈ L (GT )

}
be the set of all eligible events at s. Let x ∈ XGT be the state corresponding to s in GT .

Then clearly Elig (GT , x) = Elig (L (GT ) , s) .

To simplify the already cumbersome notation, we adopt the following convention from

now on. We assume that we are talking about a system whose ATG is represented by A

and the corresponding TTG is represented by G. We use Σ to represent ΣA and use Σt to

represent ΣG = ΣA
.
∪ {t} . We denote L (G) by L, Lm (G) by Lm, L (A) by A and Lm (A)

by Am. Let Pt : Σ∗
t → {t}∗ represent the standard projection operator that erases all the

occurrences of non-tick events:

Pt(ε) = ε

Pt (σ) =

 t if σ = t

ε otherwise
for all σ ∈ Σt

Pt(sσ) = Pt(s)Pt(σ) for all s ∈ Σ∗
t , σ ∈ Σt,

and let Qt : Σ∗
t → Σ∗ represent the standard projection operator that erases all the occur-

rences of ticks :

Qt(ε) = ε

Qt (σ) =

 σ if σ 6= t

ε otherwise
for all σ ∈ Σt

Qt(sσ) = Qt(s)Qt(σ) for all s ∈ Σ∗
t , σ ∈ Σt.
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For any fixed n ∈ N, let α1, . . . , αn ∈ Σ represent some events (with the possibility that

αi = αj for i 6= j) such that w = α1α2 · · ·αn is a string in A. Define

Sw := {s ∈ Σ∗
t Σ ∩ L | Qt(s) = w}

to be the set of all strings in L that do not terminate with a tick and are equivalent under

tick-projection. We shall often refer to the elements of Sα1···αn as paths from α1 to αn.

Assume Σ = {σ1, . . . , σm} for some m ∈ N+ and let s ∈ L.

Definition 97 Define

Ts :=

 t1 t2 · · · tm

t1 t2 · · · tm


to be the timer matrix corresponding to s, i.e. Ts displays the state of each timer (for each

event label in the alphabet Σ) at that node in the TTG of L which corresponds to the string

s. Define

T := {Ts | s ∈ L}

to be the set of all possible timer matrices.

Example 98 Consider the ATG shown in Figure 5.3 and assume that the following triples

represent the time bounds associated with the events: (α, 1, 2) , (β, 2, 4) and (γ, 3, 4) .The

corresponding TTG is shown in Figure 5.4. For w = αβγ, we have

Sw =

 tαtβt2γ, tαtβt3γ, tαt2βtγ, tαt2βt2γ, tαt3βγ, tαt3βtγ,

t2αβt3γ, t2αβt4γ, t2αtβt2γ, t2αtβt3γ, t2αt2βtγ, t2αt2βt2γ

 .
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αβ

β

γ

γ

Figure 5.3: Activity Transition Graph of G

For s = tα, we have

Ts =

 2 3 4

1 1 3

 ,

while for s = tαtβ, we have

Ts =

 2 4 3

1 2 2

 .

In these timer matrices, the columns represent the upper and lower timer values associated

with α, β, and γ respectively. 2

In Chapter 7 we will present a compact model of TDES that is based on the idea of

shortest and longest time paths in a TTG. We will pose and solve the shortest and longest
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5.2. NOTATION FOR TIMED DISCRETE EVENT SYSTEMS 119

path problems in a dynamic programming framework. In order to formally define the

shortest and longest path problems we need the following notation.

For 1 ≤ j ≤ k ≤ n, let Mk[i1, . . . , ij−1] ⊆ L be defined as

Mk [i1, . . . , ij−1] :=
{
tijαj · · · tikαk | ti1α1 · · · tij−1αj−1t

ijαj · · · tikαk ∈ L
}

where

Mk[] :=
{
ti1α1 · · · tikαk ∈ L

}
denotes the set for j = 1. Similarly, for 1 ≤ j ≤ k ≤ n, let M ′

j[ik+1, . . . , in] ⊆ L be defined

as

M ′
j [ik+1, . . . , in] :=

 tijαj · · · tikαk | (∃ti1α1 · · · tij−1αj−1 ∈ L)

ti1α1 · · · tij−1αj−1t
ijαj · · · tikαkt

ik+1αk+1 · · · tinαn ∈ L


where

M ′
j[] :=

 tijαj · · · tinαn | (∃ti1α1 · · · tij−1αj−1 ∈ L)

ti1α1 · · · tij−1αj−1t
ijαj · · · tinαn ∈ L


denotes the set for k = n.

Example 99 Again consider a plant G whose ATG is given in Figure 5.3; the TTG of G

is as shown in Figure 5.4. Assume that we are interested in the string w = αβγ in Lact .

Then

M1[] =
{
tα, t2α

}
,

M2[] =
{
tαtβ, tαt2β, tαt3β, t2αβ, t2αtβ, t2αt2β

}
,

M2[0] = ∅,
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M2[1] =
{
tβ, t2β, t3β

}
,

M2[2] =
{
β, tβ, t2β

}
,

M3[] = Sw,

M3[0] = M3[0, 1] = M3[0, 2] = M3[0, 3] = ∅,

M3[1] =
{
tβt2γ, tβt3γ, t2βtγ, t2βt2γ, t3βγ, t3βtγ

}
,

M3[2] =
{
βt3γ, βt4γ, tβt2γ, tβt3γ, t2βtγ, t2βt2γ

}
,

M3[1, 1] =
{
t2γ, t3γ

}
,

M3[1, 2] =
{
tγ, t2γ

}
,

M3[1, 3] = {γ, tγ} ,

M3[2, 0] =
{
t3γ, t4γ

}
,

M3[2, 1] =
{
t2γ, t3γ

}
,

M3[2, 2] =
{
tγ, t2γ

}
;

and

M ′
3[] =

{
γ, tγ, t2γ, t3γ, t4γ

}
,

M ′
2[] =

{
tβt2γ, tβt3γ, t2βtγ, t2βt2γ, t3βγ, t3βtγ, βt3γ, βt4γ

}
,

M ′
2[0] =

{
t3β
}

,

M ′
2[1] =

{
t2β, t3β

}
,

M ′
2[2] =

{
tβ, t2β

}
,

M ′
2[3] = {β, tβ} ,

M ′
2[4] = {β} ,

M ′
1[] = Sw,
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M ′
1[0] =

{
tαt3β

}
,

M ′
1[1] =

{
tαt2β, tαt3β, t2αt2β

}
,

M ′
1[2] =

{
tαtβ, tαt2β, t2αtβ, t2αt2β

}
,

M ′
1[3] =

{
tαtβ, t2αβ, t2αtβ

}
,

M ′
1[4] =

{
t2αβ

}
,

M ′
1[0, 0] = M ′

1[1, 0] = M ′
1[2, 0] = ∅,

M ′
1[3, 0] = M ′

1[3, 1] = {tα} ,

M ′
1[0, 1] = M ′

1[1, 1] = ∅,

M ′
1[2, 1] =

{
tα, t2α

}
,

M ′
1[0, 2] = ∅,

M ′
1[1, 2] = M ′

1[2, 2] =
{
tα, t2α

}
,

M ′
1[3, 2] = ∅,

M ′
1[0, 3] =

{
t2α
}

,

M ′
1[1, 3] =

{
tα, t2α

}
,

M ′
1[0, 4] =

{
t2α
}

.

2

Define #t : Σ∗
t → N such that #t(s) = |Pt(s)| , for all s ∈ Σ∗

t , where |·| represents the

length of a string. Clearly, for any string (or path) s = tijαj · · · tikαk we have #t (s) =∑k
m=j im; we shall refer to #t(s) as the length of s. Let −̇ denote asymmetric subtraction,



5.2. NOTATION FOR TIMED DISCRETE EVENT SYSTEMS 122

i.e. for any x, y ∈ N∪{∞}

x
.
− y =

 x− y if x > y

0 otherwise.

Here we follow the convention that a
.
− ∞ = 0 and ∞

.
− b = ∞ for any a ∈ N∪{∞} ,

b ∈ N.

For 1 ≤ j ≤ k ≤ n, we define

fk (i1, . . . , ij−1) = min
s∈Mk[i1,...,ij−1]

#t(s)

and

f ′
j (ik+1, . . . , in) = min

s∈M ′
j [ik+1,...,in]

#t(s).

For convenience of representation, we will use

fk(ε) = min
s∈Mk[]

#t (s)

to denote the case where j = 1 and use

f ′
j(ε) = min

s∈M ′
j []

#t (s)

to denote the case where k = n. Similarly we define

gk (i1, . . . , ij−1) = max
s∈Mk[i1,...,ij−1]

#t(s),

g′
j (ij+1, . . . , in) = max

s∈M ′
j [ik+1,...,in]

#t(s)
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and use

gk(ε) = max
s∈Mk[]

#t (s) ,

g′
j(ε) = max

s∈M ′
j []

#t (s)

to denote the cases where j = 1 and k = n respectively. In the above, we follow the

convention that if Mk [i1, . . . , ij−1] = ∅ then fk (i1, . . . , ij−1) := ∞ and gk (i1, . . . , ij−1) :=

−∞. Similarly if M ′
j [ik+1, . . . , in] = ∅ then f ′

j (ik+1, . . . , in) := ∞ and g′
j (ik+1, . . . , in) :=

−∞.

Definition 100 The problem of finding the length of a shortest path of the form ti1α1 · · · tinαn

in L is the problem of evaluating fn(ε) or f ′
1(ε). Similarly, the problem of finding the length

of a longest path of the form ti1α1 · · · tinαn in L is the problem of evaluating gn(ε) or g′
1(ε).

Informally the shortest and longest path problems may be explained as follows. Assume

that α1 · · ·αn is a string in A. Then the shortest path problem involves finding a string s

in L that corresponds to α1 · · ·αn, i.e. Qt (s) = α1 · · ·αn. Additionally, s has the fewest

number of ticks possible, i.e. if s1 is another string in L such that Qt (s1) = α1 · · ·αn then

#t (s) ≤ #t (s1) . The longest path problem is analogous. The aim of doing all this is to

extract critical time information from an ATG. This time information can then be used to

form a model of the system that is often much more compact than a TTG.
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For ease of notation, we define

i∗1 = f1(ε), j∗n = f ′
n(ε),

i∗2 = f2(i
∗
1), j∗n−1 = f ′

n−1 (j∗n) ,

i∗3 = f3(i
∗
1, i

∗
2), j∗n−2 = f ′

n−2

(
j∗n−1, j

∗
n

)
,

...
...

i∗n = fn(i∗1, . . . , i
∗
n−1), j∗1 = f ′

1 (j∗2 , . . . , j
∗
n) ,

i′2 = f2(i1), j′n−1 = f ′
n−1 (jn) ,

i′3 = f3(i1, i
′
2), j′n−2 = f ′

n−2

(
j′n−1, jn

)
,

...
...

i′n = fn(i1, i
′
2, . . . , i

′
n−1), j′1 = f ′

1

(
j′2, . . . , j

′
n−1, jn

)
,

and

I∗
1 = g1(ε), J∗

n = g′
n(ε),

I∗
2 = g2(I

∗
i ), J∗

n−1 = g′
n−1 (J∗

n) ,

I∗
3 = g3(I

∗
1 , I

∗
2 ), J∗

n−2 = g′
n−2

(
J∗

n−1, J
∗
n

)
,

...
...

I∗
n = gn(I∗

1 , . . . , I
∗
n−1), J∗

1 = g′
1 (J∗

2 , . . . , J∗
n) .



6. Shortest and Longest Paths in a TTG

6.1. An Overview

The BW framework extends RW by explicitly introducing the notion of time. The time

is measured with respect to a global clock; the passage of a unit of time is modelled by a

special event called tick. Time bounds are associated with events and a timed transition

graph is used to model timed discrete event systems. The introduction of time provides a

greater flexibility in the modelling and supervision of many systems. However, this comes at

a price: greater complexity. A timed model of a system is usually much bigger in size than

the corresponding untimed model. Let us assume that A represents an ATG of a system

and G represents the corresponding TTG. If we are not interested in the timed behaviour

of the system then the ATG can serve as an untimed model: we simply ignore the time

bounds associated with the various events. Then
∣∣XG

∣∣ can be as big as
∣∣XA

∣∣ ·∏σ∈ΣA t0σ

where t0σ is the default timer value of any event σ ∈ ΣA. If we assume that
∣∣ΣA

∣∣ = m and

t0σ = u for all σ ∈ ΣA then
∣∣XG

∣∣ can be bigger than
∣∣XA

∣∣ by a factor of um. Clearly the size

increases quite rapidly as m (the number of events) increases. The size also increases quite

rapidly as u increases for a fixed m: a TTG does not scale well. In other words, a timed

transition graph becomes unwieldy and impractical as the default timer values increase.

The main reason for this additional complexity is the modelling of time using ticks. In a

TTG there are a number of states that are target states for no events other than the tick

125
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event. The number of such states increases as the default timer values increase.

It is possible to extract the time information from a TTG without using the tick event.

The essential idea is the following. Suppose w = σ1 · · ·σn is a string generated by an ATG

and Sw is the set of corresponding time strings in the associated TTG. Then Sw may be

described by explicitly listing all its elements. This is essentially what a TTG does; it

describes all the timed strings corresponding to a string in the ATG. However it may also

be possible to give an alternative description of Sw. For instance, we may be able to find

minimal and maximal elements of Sw such that they define an envelope for the elements

of Sw. If this is possible then the description of Sw may be greatly simplified. Brandin

[Bra97],[Bra98] makes such an attempt although his approach is quite different.

In this chapter we systematically propose the problem of finding minimal and max-

imal elements of Sw. This is done by casting it in a dynamic programming framework

[Bel61],[Dre65]. We show that multiple solutions may exist and provide two greedy solu-

tions. These greedy solutions are much simpler than the standard recursive solutions to

dynamic programming problems. We go on to show that only one of the two solutions is

suitable for the purposes of supervisory control. We also provide a counterexample to show

why Brandin’s solution [Bra97],[Bra98] is unsuitable for supervisory control.

We will assume that A represents an ATG model of the system of interest and that G

represents the corresponding TTG. We additionally denote L (A) by A and L (G) by L.

6.2. Shortest Paths

From the Principle of Optimality [Bel61],[Dre65] we know that the past decisions should

have no effect on an optimal decision. Thus the minimization problem may be represented
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[Bel61],[Dre65] recursively as

fn(ε) = min
{i1|ti1α1∈M1[]}

(i1 + fn (i1)) (6.1)

and

f ′
1(ε) = min

{jn|tjnαn∈M ′
n[]}

(jn + f ′
1 (jn)) . (6.2)

To compute fn(ε), we have to recursively find the optimal paths in the sets of legal postfixes

of the substrings of a given string; to compute f ′
1(ε), we have to recursively find the optimal

paths in the sets of legal prefixes of the substrings of a given string. We illustrate these

ideas with the help of concrete examples.

Example 101 Consider the TTG shown in figure 5.4 and assume that we are interested

in finding the length of a shortest path of the form tiαtjβtkγ, where i, j, k ∈ N. Recurrence

relation (6.1) states that this problem can be solved by

1. finding the lengths of the shortest paths in the sets of postfixes of tα and t2α (let these

lengths be denoted by x and y respectively), and then

2. choosing the minimum of 1 + x and 2 + y.

In the above, we also have the additional requirement that the postfixes be of the form

tjβtkγ since we are interested in the strings of the form tiαtjβtkγ. Now in order to compute

x and y, we have to repeat this whole process again. So x can be computed by

1. finding the length of the shortest paths in the sets of postfixes of tαtβ, tαt2β, and

tαt3β (let these lengths be denoted by x1, x2, and x3 respectively), and then

2. choosing the minimum of 1 + x1, 2 + x2, and 3 + x3.
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However, we have now reached the end of the recursion for x. So x1, x2, and x3 can be

computed directly from the TTG as 2, 1, and 1 respectively. Therefore,

x = min(1 + x1, 2 + x2, 3 + x3)

= min(1 + 2, 2 + 1, 3 + 1)

= 3.

Similarly, we have

y = min(0 + 3, 1 + 2, 2 + 1)

= 3.

Thus the overall shortest path of the form tiαtjβtkγ has length min(1 + 3, 2 + 3) = 4 ticks.

The string corresponding to this solution is tαtβt2γ. As we shall see in the next example,

this string is not unique, i.e. there may be more than one shortest (or longest) string. 2

Example 102 Again consider the TTG shown in figure 5.4 and assume that we are in-

terested in finding the length of a shortest path of the form tiαtjβtkγ, where i, j, k ∈ N.

Recurrence relation (6.2) states that this problem can be solved by

1. finding the lengths of the shortest paths over s1, s2, s3 and s4 such that s1γ, s2tγ, s3t
2γ, s4t

4γ ∈

L and s1, s2, s3, s4 are of the form tiαtjβ (let these lengths be denoted by w, x, y, and

z respectively), and then

2. choosing the minimum of 0 + w, 1 + x, 2 + y, and 3 + z.

In order to compute w, x, y, and z, we have to recurse through the whole process again.

For instance, x can be computed by
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1. finding the lengths of the shortest paths over s5 and s6 such that s5t
2βtγ, s6t

3βtγ ∈ L

and s5, s6 are of the form tiα (let these lengths be denoted by x1 and x2 respectively),

and then

2. choosing the minimum of 2 + x1 and 3 + x2.

At this point we come to the end of the recursion for the computation of x. We can

directly compute

x1 = min(1, 2)

= 1,

x2 = 1

to get

x = min(2 + 1, 3 + 1)

= 3.

Similarly, we can compute

w = min(1 + 3)

= 4,

y = min(1 + 1, 2 + 1, 2 + 2)

= 2,

z = min(1 + 1)

= 2.
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So the overall shortest path of the form tiαtjβtkγ is of length min(0+4, 1+3, 2+2, 3+2) = 4

ticks. The strings corresponding to this solution are tαtβt2γ, tαt2βtγ, and tαt3βγ. 2

As can be seen from the above examples, the solution to finding the length of a shortest

path is highly recursive; the complexity of such a solution is proportional to n2 [Dre65].

We now show that in a TTG, the recurrence relations (6.1) and (6.2) can also be solved in

a stepwise and non-recursive manner. The complexity of our solutions is proportional to

n.

6.2.1. Postfix Solution to the Shortest Path Problem

We show that it is possible to find the value of fn(ε) by simply finding the path which has

shortest paths between successive events, i.e.

fn(ε) = i∗1 + i∗2 + · · ·+ i∗n

=
n∑

k=1

i∗k.

In other words, the problem of finding the shortest overall path can be broken down into n

intermediate problems of finding the shortest path to the next event in the legal postfixes

of a string. So we begin by finding the shortest path to α1 i.e. we first evaluate i∗1; then

from there we find the shortest path to α2, i.e. we use the value of i∗1 to evaluate i∗2; and

so on until αn is reached i.e. until we can evaluate i∗n. The solution to these intermediate

problems can be computed using the lower time bounds associated with each event.
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Lemma 103 For any 2 ≤ k ≤ n,

fk (i1, . . . , ik−1) =



lαk
if (α1 · · ·αk−2αk /∈ A)

∨ (αk = αk−1)

lαk
−̇ik−1 if

 (α1 · · ·αk−3αk /∈ A)

∨ (αk = αk−2)


∧ (α1 · · ·αk−2αk ∈ Lact)

...

lαk
−̇
∑k−1

j=1 ij if (αk ∈ Lact) ∧ (α1αk ∈ A)

∧ . . . ∧ (α1 · · ·αk−2αk ∈ A) ,

(6.3)

and

f1(ε) = lα1 . (6.4)

In the above equation, the various conditional clauses correspond to all the different

possible enablement instants of αk. For example, if (α1 · · ·αk−2αk /∈ A)∨ (αk = αk−1) then

αk was either last enabled after the occurrence of αk−1 or the labels αk−1 and αk both refer

to the same event. Similarly, if (α1 · · ·αk−3αk /∈ A) ∨ (αk = αk−2) then either αk was last

enabled after the occurrence of αk−2 or the labels αk−2 and αk both refer to the same event.

Theorem 104 The shortest path problem

fn(ε) = min
{i1|ti1α1∈M1[]}

(i1 + fn (i1)) (6.5)

can also be solved by computing
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n∑
k=1

i∗k. (6.6)

Proof. See Appendix A (page 212).

6.2.2. Prefix Solution to the Shortest Path Problem

Here we present a dual approach to the solution of the shortest path problem. In computing

fn(ε), we begin at the initial state of G and successively find the shortest path to the next

event in the set of legal postfixes of the path already traversed. To compute f ′
1(ε) we first

find the shortest path between αn−1 and αn in G, i.e. we find the shortest string in M ′
n[].

We then successively find the shortest path to the preceding event in the set of its legal

prefixes. So in a sense, to compute fn(ε) we find the shortest path between successive

events as we move forward in G while to compute f ′
1(ε) we find the shortest path between

successive events as we move backwards in G. Therefore, the problem of finding the shortest

overall path can be broken down into n intermediate problems of finding the shortest path

to the previous event in the legal prefixes of a string. We begin by finding the shortest

path between αn−1 and αn i.e. we first evaluate j∗n; then we find the shortest path from

αn−2 to that point, i.e. we use the value of j∗n to evaluate j∗n−1; and so on until ε is reached

i.e. until we can evaluate j∗1 .

Theorem 105 The shortest path problem

f ′
1(ε) = min

{jn|tjnαn∈M ′
n[]}

(jn + f ′
1 (jn)) (6.7)
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can also be solved by computing
n∑

k=1

j∗k . (6.8)

Proof. See Appendix A (page 216).

6.3. Longest Paths

Before attempting to find the maximal possible number of ticks in a path (in L) of the form

ti1α1 · · · tinαn, we need to redefine the upper time limits associated with each event. The

reason for this is illustrated with the following example. Let n = 2, i.e. consider α1α2 ∈ A.

Assume Enab (A, α1) = {α2, σ} where uσ < uα2 . Then if α2 is to occur at all after α1 then

it must do so before uσ ticks otherwise it will be preempted by σ which is forced to occur

before uσ ticks. We now generalize this reasoning.

Lemma 106 For α1 · · ·αn ∈ Lact, the effective upper bounds for αk, 2 ≤ k ≤ n, are

u′
αk

= min {uσ − tσ | σ ∈ Enab (A, α1 · · ·αk−1)}

and

u′
α1

= min {uσ | σ ∈ Enab (A, ε)} ,

where σ has been enabled for tσ ticks.

We can assume that u′
αk

, 1 ≤ k ≤ n, are finite because otherwise the longest time-path

problem has a trivial solution: gn(ε) = ∞. Then the rest follows along the lines of the

previous section.
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6.3.1. Postfix Solution to the Longest Path Problem

Lemma 107 For any 2 ≤ k ≤ n,

gk (i1, . . . , ik−1) =



u′
αk

if (α1 · · ·αk−2αk /∈ A)

∨ (αk = αk−1)

u′
αk
−̇ik−1 if

 (α1 · · ·αk−3αk /∈ A)

∨ (αk = αk−2)


∧ (α1 · · ·αk−2αk ∈ A)

...

u′
αk
−̇
∑k−1

j=1 ij if (αk ∈ A) ∧ (α1αk ∈ A)

∧ . . . ∧ (α1 · · ·αk−2αk ∈ A) ,

(6.9)

and

g1(ε) = u′
α1

. (6.10)

Theorem 108 The longest path problem

gn(ε) = max
s∈Mk[i1,...,ij−1]

(i1 + gn (i1)) (6.11)

can also be solved by computing

n∑
k=1

I∗
k . (6.12)

Proof. The proof follows exactly along the lines of the proof for Theorem 104.
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6.3.2. Prefix Solution to the Longest Path Problem

Theorem 109 The longest path problem

g′
1(ε) = max

{jn|tjnαn∈M ′
n[]}

(jn + g′
1 (jn)) (6.13)

can also be solved by computing

n∑
k=1

J∗
k . (6.14)

Proof. The proof follows exactly along the lines of the proof for Theorem 105.

Example 110 Let us again consider the timed transition graph shown in Figure 5.4. Then,

using Example 99, we can easily compute

i∗1 = f1(ε)

= min
s∈M1[]

#t (s)

= 1,

I∗
1 = g1(ε)

= max
s∈M1[]

#t (s)

= 2,

i∗2 = f2(i
∗
1)

= f2(1)

= min
s∈M2[1]

#t(s)

= 1,
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I∗
2 = g2(I

∗
1 )

= g2(2)

= max
s∈M2[2]

#t (s)

= 2,

i∗3 = f3(i
∗
1, i

∗
2)

= f2(1, 1)

= min
s∈M3[1,1]

#t(s)

= 2,

I∗
3 = g3(I

∗
1 , I

∗
2 )

= g3(2, 2)

= max
s∈M3[2,2]

#t (s)

= 2.

Similarly, we can compute

j∗3 = f ′
3(ε)

= min
s∈M ′

3[]
#t (s)

= 0,

J∗
3 = g′

3(ε),

= max
s∈M ′

3[]
#t (s)

= 4,

j∗2 = f ′
2(j

∗
3)

= f ′
2(0)
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= min
s∈M ′

2[0]
#t (s)

= 3,

J∗
2 = g′

2(J
∗
3 )

= g′
2(4)

= max
s∈M ′

2[4]
#t (s)

= 0,

j∗1 = f ′
1(j

∗
2 , j

∗
3)

= f ′
2(3, 0)

= min
s∈M ′

1[3,0]
#t (s)

= 1,

J∗
1 = g′

1(J
∗
2 , J∗

3 )

= g′
1(0, 4)

= max
s∈M ′

1[0,4]
#t (s)

= 2.

Thus, the shortest path over Sw has

min
s∈Sw

#t(s) = i∗1 + i∗2 + i∗3

= 1 + 1 + 2

= j∗3 + j∗2 + j∗1

= 0 + 3 + 1

= 4
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ticks. Similarly, the longest path over Sw has

max
s∈Sw

#t(s) = I∗
1 + I∗

2 + I∗
3

= 2 + 2 + 2

= J∗
3 + J∗

2 + J∗
1

= 4 + 0 + 2

= 6

ticks. So tαtβt2γ and tαt3βγ are two shortest paths over Sw while t2αt2βt2γ and t2αβt4γ

are two longest paths over Sw. 2

6.4. Ordering of Strings and Timer Matrices

In this section we define two linear orders on strings and a partial order on timer matrices.

This will assist us in the comparison of the prefix and the postfix solutions to the shortest

and longest path problems. Let w = σ1σ2 · · ·σn ∈ Qt(L) and recall that

Sw := {s ∈ Σ∗
t Σact ∩ L | Qt(s) = w} .

Thus Sw is the set of all strings in L of the form ti1σ1 · · · tinσn such that the image of these

strings under the natural projection Qt (which erases all occurrences of the tick event) is

equal to w. For convenience we define

Sw := {s ∈ Σ∗
t Σact | Qt(s) = w}



6.4. ORDERING OF STRINGS AND TIMER MATRICES 139

Assume Σ = {σ1, . . . , σm} and recall that Ts is defined to be the timer matrix corresponding

to the string s ∈ L. Define

Tw := {Ts | s ∈ Sw}

to be the set of timer matrices corresponding to the various strings in Sw.

Firstly, we define two linear orders among the member strings of Sw. These induce

linear orders on Sw since Sw ⊆ Sw. Let s1
min and s1

max be the shortest and longest strings in

Sw according to Theorems 104 and 108; let s2
min and s2

max be the shortest and longest strings

in Sw according to Theorems 105 and 109. (Here it may be possible that smax corresponds

to an infinite time path.) Then s1
min, s1

max and s2
min, s2

max will be the same as the shortest

and longest strings in Sw according to these two linear orders respectively.

Then we define a partial order among the timer matrices in Tw and show that the

top and bottom elements exist in Tw. In fact, these are the same as the timer matrices

corresponding to s2
min and s2

max.

6.4.1. A Postfix Total Order on Strings

Let s1
min = ti

∗
1σ1 · · · ti

∗
nσn and s1

max = tI
∗
1 σ1 · · · tI

∗
nσn be the shortest and longest time paths

as computed using Theorems 104,108. We now show that it is possible to define a total

order on strings of the form ti1σ1 · · · tinσn according to which s1
min and s1

max are the extremal

strings.

Proposition 111 Let s1 = ti1σ1 · · · tinσn and s2 = tj1σ1 · · · tjnσn be strings in Sw and

define s1 ≤1 s2iff

[i1 < j1] ∨ [(i1 = j1) ∧ (i2 < j2)] ∨ · · · ∨ [(i1 = j1) ∧ · · · ∧ (in−1 = jn−1) ∧ (in ≤ jn)] .
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Then ≤1 defines a total order on Sw.

Proof. In order to show that ≤1 defines a total order on Sw, we have to prove that ≤1 is

reflexive, antisymmetric, transitive and that for all s1, s2 ∈ Sw either s1 ≤1 s2 or s1 ≤1 s2.

Reflexive: We need to show that for all s ∈ Sw, we must have s ≤1 s. Let s = ti1σ1 · · · tinσn.

Then s ≤1 s because

(i1 = i1) ∧ · · · ∧ (in−1 = in−1) ∧ (in ≤ in) .

Antisymmetric: We need to show that for all s1, s2 ∈ Sw,

(s1 ≤1 s2) ∧ (s2 ≤1 s1) ⇒ s1 = s2.

Let s1 = ti1σ1 · · · tinσn and s2 = tj1σ1 · · · tjnσn. Since s1 ≤1 s2 we must have

[i1 < j1] ∨ [(i1 = j1) ∧ (i2 < j2)] ∨ · · · ∨ [(i1 = j1) ∧ · · · ∧ (in−1 = jn−1) ∧ (in ≤ jn)] .

(6.15)

Similarly, since s2 ≤1 s1, we must have

[j1 < i1] ∨ [(j1 = i1) ∧ (j2 < i2)] ∨ · · · ∨ [(j1 = i1) ∧ · · · ∧ (jn−1 = in−1) ∧ (jn ≤ in)] .

(6.16)

From (6.15) and (6.16) we can conclude that

[(i1 = j1) ∧ · · · ∧ (in−1 = jn−1) ∧ (in ≤ jn)]
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and

[(j1 = i1) ∧ · · · ∧ (jn−1 = in−1) ∧ (jn ≤ in)]

which implies that

[(i1 = j1) ∧ · · · ∧ (in−1 = jn−1) ∧ (in = jn)] .

Transitive: We need to show that for all s1, s2, s3 ∈ Sw,

(s1 ≤1 s2) ∧ (s2 ≤1 s3) ⇒ s1 ≤1 s3.

Let s1 = ti1σ1 · · · tinσn, s2 = tj1σ1 · · · tjnσn and s3 = tk1σ1 · · · tknσn. Since s1 ≤1 s2 we

must have

[i1 < j1] ∨ [(i1 = j1) ∧ (i2 < j2)] ∨ · · · ∨ [(i1 = j1) ∧ · · · ∧ (in−1 = jn−1) ∧ (in ≤ jn)] .

(6.17)

Similarly, since s2 ≤1 s3, we must have

[j1 < k1]∨ [(j1 = k1) ∧ (j2 < k2)]∨ · · · ∨ [(j1 = k1) ∧ · · · ∧ (jn−1 = kn−1) ∧ (jn ≤ kn)] .

(6.18)

Since < and = are transitive relations on N, we can conclude from (6.17) and (6.18)

that

[i1 < k1] ∨ [(i1 = k1) ∧ (i2 < k2)] ∨ · · · ∨ [(i1 = k1) ∧ · · · ∧ (in−1 = kn−1) ∧ (in ≤ kn)]

which implies that s1 ≤1 s3.
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Linear: Finally, we need to show that for all s1, s2 ∈ Sw, either s1 ≤1 s2 or s2 ≤1 s1.

But this immediately follows from the fact that for any i, j ∈ N we must have

(i < j) ∨ (i = j) ∨ (i > j).

6.4.2. A Prefix Total Order on Strings

Let s2
min = tj

∗
1 σ1 · · · tj

∗
nσn and s2

max = tJ
∗
1 σ1 · · · tJ

∗
nσn be the shortest and longest time paths

as computed using Theorems 105 and 109. We now show that it is possible to define a

total order on strings of the form ti1σ1 · · · tinσn according to which s2
min and s2

max are the

extremal strings.

Proposition 112 Let s1 = ti1σ1 · · · tinσn and s2 = tj1σ1 · · · tjnσn be strings in Sw and

define s1 ≤2 s2 iff

[in < jn] ∨ [(in = jn) ∧ (in−1 < jn−1)] ∨ · · · ∨ [(in = jn) ∧ · · · ∧ (i2 = j2) ∧ (i1 ≤ j1)] .

Then ≤2 defines a total order on Sw.

Proof. In order to show that ≤2 defines a total order on Sw, we have to prove that ≤2 is

reflexive, antisymmetric, transitive and that for all s1, s2 ∈ Sw either s1 ≤2 s2 or s1 ≤2 s2.

This can be done exactly along the lines of the proof of Propostion 111.

6.4.3. A Partial Order on Timer Matrices

Proposition 113 Let

Ts1 =

 x1 · · · xm

x1 · · · xm
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and

Ts2 =

 X1 · · · Xm

X1 · · · Xm


belong to Tw. Define Ts1 ≤ Ts2 if

(
X i ≤ xi

)
∧ (X i ≤ xi)

for all 1 ≤ i ≤ m. Then ≤ defines a partial order on Tw with Tsmin
and Tsmax as the bottom

and top elements respectively, where smin and smax are the shortest and longest strings

according to the prefix order on Sw.

Proof. For ≤ to be a partial order on Tw, it must be reflexive, transitive and antisym-

metric.

Reflexive: Let s ∈ L and

Ts =

 x1 · · · xm

x1 · · · xm

 .

Then we must have Ts ≤ Ts since (xi ≤ xi) ∧ (xi ≤ xi) for all 1 ≤ i ≤ m.

Transitive: Let Ts1 , Ts2 , Ts3 ∈ Tw such that (Ts1 ≤ Ts2) ∧ (Ts2 ≤ Ts3) . We need to show

that Ts1 ≤ Ts3 , i.e. (zi ≤ xi) ∧ (zi ≤ xi) for all 1 ≤ i ≤ m, where

Ts1 =

 x1 · · · xm

x1 · · · xm

 ,

Ts2 =

 y1 · · · ym

y
1
· · · y

m

 , and
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Ts3 =

 z1 · · · zm

z1 · · · zm

 .

Since (yi ≤ xi)∧
(
y

i
≤ xi

)
∧(zi ≤ yi)∧

(
zi ≤ y

i

)
, the transitivity of natural numbers

implies that (zi ≤ xi) ∧ (zi ≤ xi) for all 1 ≤ i ≤ m.

Antisymmetric: Let Ts1 , Ts2 ∈ Tw such that (Ts1 ≤ Ts2)∧ (Ts2 ≤ Ts1) . We need to show

that Ts1 = Ts3 , i.e. (xi = yi) ∧
(
xi = y

i

)
for all 1 ≤ i ≤ m, where

Ts1 =

 x1 · · · xm

x1 · · · xm

 , and

Ts2 =

 y1 · · · ym

y
1
· · · y

m

 .

Again, the desired result follows from the antisymmetry of natural numbers.

Now we need to show that Tsmin
and Tsmax are the bottom and top elements of Tw.

Assume smin = tj
∗
1 α1 · · · tj

∗
nαn and let s = tj1α1 · · · tjnαn be an arbitrary element of L.

Further assume that

Tsmin
=

 xσ1 · · · xσm

xσ1
· · · xσm

 , and

Ts =

 yσ1
· · · yσm

y
σ1

· · · y
σm

 .

Let uσi
and lσi

be the upper and lower time bounds of an activity σi. If σi = αn or

α1 · · ·αn−1σi /∈ Lact then we must have xσi
= yσi

= uσi
and xσi

= y
σi

= lσi
. Otherwise, we
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must have

xσi
= uσi

−
n∑

v=k

j∗v ,

xσi
= lσi

.
−

n∑
v=k

j∗v ,

yσi
= uσi

−
n∑

v=k

jv, and

y
σi

= lσi

.
−

n∑
v=k

jv,

where σi was last enabled after the occurrence of αk−1, for some 1 ≤ k ≤ n. Here we assume

that α0 corresponds to the empty string. From Theorem 105 we know that
∑n

v=k j∗v ≤∑n
v=k jv for all 1 ≤ k ≤ n. Therefore, it follows that

(
yσi

≤ xσi

)
∧
(
y

σi
≤ xσi

)
for all

1 ≤ i ≤ m, which implies that Tsmin
≤ Ts. Since s is arbitrary, Tsmin

must be the bottom

element. A similar argument shows that Ts ≤ Tsmax which implies that Tsmax must be the

top element.

Meet and Join

Definition 114 Let

Ts1 =

 x1 · · · xm

x1 · · · xm

 ,

Ts2 =

 y1 · · · ym

y
1
· · · y

m

 ,
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and let

Tmeet =

 z1 · · · zm

z1 · · · zm

 , (6.19)

Tjoin =

 Z1 · · · Zm

Z1 · · · Zm


be the meet and join respectively. Then

zk = max (xk, yk) ,

zk = max
(
xk, yk

)
,

Z1 = min (xk, yk) ,

Z1 = min
(
xk, yk

)
.

for 1 ≤ k ≤ m.

Since (xk, xk) and
(
yk, yk

)
both represent the upper and lower timer values of the same

event, it follows that either  zk

zk

 =

 xk

xk


or  zk

zk

 =

 yk

y
k

 .

Let us represent the meet and join by ∧ and ∨ respectively. Clearly, if Ts1 ≤ Ts2 then

Ts1 ∧ Ts2 = Ts1 and Ts1 ∨ Ts2 = Ts2 . We now show that meet (and join) of two elements in

Tw always exists in Tw.
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Proposition 115 Let T1, T2 ∈ Tw; then the meet and join of T1 and T2 exist in Tw.

Proof. Let s1 = ti1α1 · · · tinαn and s2 = tj1α1 · · · tjnαn be two strings in Sw such that T1

and T2 are the corresponding timer matrices. Let Tmeet be defined as in (6.19). If Tmeet ∈ Tw

then there must exist at least one string in Sw such that Tmeet is the corresponding timer

matrix. We now define such a string and show that Tmeet is the corresponding timer matrix.

Let

s = tk1α1 · · · tknαn

be such that

kn = min (in, jn)

kn + kn−1 = min (in + in−1, jn + jn−1)

...

kn + · · ·+ k1 = min (in + · · ·+ i1, jn + · · ·+ j1) .

Thus, given s1 and s2, we can compute s by successive subtraction. For example, kn−1 =

min (in + in−1, jn + jn−1) − kn and so on. By definition s ∈ Sw so all we need to do now

is show that Tmeet corresponds to s. Let T be the timer matrix corresponding to s and let

σ ∈ Σ be an event that was last enabled after the occurrence of αl for some 1 ≤ l ≤ n.

Then σ has been enabled for kl+1 + · · ·+ kn ticks. However,

kl+1 + · · ·+ kn = min (il+1 + · · ·+ in, jl+1 + · · ·+ jn) .
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Without loss of generality, let us assume that

kl+1 + · · ·+ kn = il+1 + · · ·+ in.

Then the timer values of σ in T are the same as the timer values of σ in T1. However, by

the definition of Tmeet, the timer of values of σ in Tmeet are the same as in T1. Since σ is

arbitrary, it follows that T = Tmeet which implies that the meet of T1 and T2 exists in Tw.

Similar arguments also hold for the join of T1 and T2.

6.5. Prefix versus Postfix Solution

In this section we compare the prefix and postfix solutions to the shortest and longest path

problems. We will show that, given a TTG, the postfix solution is somewhat easier to

compute than a prefix solution. However the prefix solution is more useful for supervisory

control.

6.5.1. Ease of Computation

Let w = σ1σ2 · · ·σn ∈ Qt(L) and let s1
min, s1

max and s2
min, s2

max be the shortest and longest

strings in Sw according to the postfix and prefix order respectively. Now suppose that we

are interested in finding shortest and longest paths in Sv where v = wσn+1. It would be

nice if our knowledge about a shortest (longest) path in Sw could guide our search for a

shortest (longest) path in Sv. Let us first consider the postfix solution. Clearly the starting

point for a postfix solution in Sv is the same as the starting point for a postfix solution in

Sw. This means that the shortest string in Sv according to the postfix order will be of the

form s1
mint

i∗n+1σn+1 where i∗n+1 is the least number of ticks that must elapse before σn+1 can
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occur after smin. Similarly, the longest string in Sv according to the postfix order will be of

the form s1
maxt

I∗n+1σn+1 where I∗
n+1 is the maximum number of ticks that may elapse before

σn+1 is forced to occur after smax. This is a very desirable feature as it allows the postfix

solution over n events to be easily extended over n + 1 events.

The scenario is quite different for prefix solutions. The starting point for a prefix

solution in Sv is different than the starting point for a prefix solution in Sw. For instance, if

we want to find the shortest string in Sw according to the prefix order then we begin with

all the strings of the form ti1σ1 · · · tin−1σn−1t
j∗nσn where j∗n is the minimum number of ticks

that may elapse between any occurrence of σn−1 and σn. Then we work backwards until

we have found the shortest string s2
min = tj

∗
1 σ1 · · · tj

∗
nσn. Here j∗k is the minimum number of

ticks that may elapse between any occurrence of σk−1 and σk. Now if we want to find the

shortest string in Sv then we need to start with strings of the form ti1σ1 · · · tinσnt
j∗n+1σn+1

where j∗n+1 is the minimum number of ticks that may elapse between any occurrence of σn

and σn+1. Then we need to work backwards until we find the shortest string (say smin). The

knowledge of s2
min does not guide the process of finding smin as it does in the case of postfix

solutions. In other words, a prefix solution over Sw does not extend into a prefix solution

over Sv. Thus, in a sense, postfix solutions are easier to compute than prefix solutions.

This is quite unfortunate because, as we will show later, prefix solutions are preferable to

postfix solutions for the purpose of supervisory control.

6.5.2. Usefulness for Supervisory Control

Let w = σ1σ2 · · ·σn ∈ Qt(L). Let us assume that a string of the form ti1σ1 · · · tinσn has

occurred in G and we do not know the values of ik for 1 ≤ k ≤ n. Such a scenario can

arise if we are not keeping track of the total number of tick occurrences. The following two

questions are now important from the point of view of supervisory control.
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Q1. What is the earliest possible time at which an event σi can occur?

Q2. What is the latest possible time at which an event σi can occur?

We now show that the prefix solution is useful in answering these questions. Let smin

and smax be the shortest and longest strings in Sw according to the prefix order. Let

Tsmin
=

 x1 · · · xm

x1 · · · xm


and

Tsmax =

 X1 · · · Xm

X1 · · · Xm



be the corresponding timer matrices. Then

 xi

xi

 and

 X i

X i

 represent the status of

the timer values of the event σi after the occurrence of smin and smax respectively. From

Proposition 113 we know that Tsmin
and Tsmax are the bottom and top elements of Tw. Thus

the event σi can occur no earlier than X i ticks and no later than xi ticks. So if we know

the timer values corresponding to smin and smax then we can exercise supervisory control

without knowing the total number of tick occurrences. In a sense, after the occurrence of

any string s such that Qt (s) = w, we can consider

 xi

X i

 to be the status of the timer

associated with σi. Clearly any conclusions drawn from the timer matrices corresponding

to the postfix solution have to be weaker and may lead to more conservative supervision.

Thus the prefix solution is more desirable from the point of view of supervisory control. In

the next chapter we present a model of timed discrete event systems that is based on the

prefix solution.
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6.6. A Counter-example

Let w = σ1σ2 · · ·σn ∈ Qt(L) and let s ∈ L be such that Qt (s) = w. Let σ ∈ Σ be an

event that is enabled at s. As mentioned earlier, two important questions that need to be

answered for effective supervisory control are: how soon can σ occur? and how long before

σ is forced to occur? Brandin tries to answer these questions in [Bra97],[Bra98]. Here we

present a counter-example to show that his solution can be incorrect.

Consider the ATG given in Figure 6.1 below and assume that the following triples define

α,β,γ

Figure 6.1: Counter-example: ATG

the timer values for the various events: (α, 2, 7) , (β, 1, 5) , and (γ, 5, 6) . The corresponding

TTG has 336 states and 838 transitions. A part of this TTG is shown in Figure 6.2.

Assume that some string s (such that Qt (s) = βαγ) has occurred in the TTG. We are

interested in finding how soon can α, β or γ occur now. Similarly, we are also interested in

finding how long before α, β or γ is forced to occur. From 6.2 we may easily compute the

prefix shortest path to be t5βαγ. Similarly the prefix longest path is tβtαt4γ. These paths

are shown using dashed arrows in 6.2. The timer matrices corresponding to these paths are

 7 5 6

2 1 5
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Figure 6.2: Counter-example: Partial TTG
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and  3 0 6

0 0 5


where the first column corresponds to α, the second column to β, and the third column to

γ. From these timer matrices we can conclude that the effective timers after the occurrence

of s are  7 5 6

0 0 5

 .

In other words, α may occur right away but may take as long as 7 ticks. Similarly, β may

occur right away but may take as long as 5 ticks.

We now use the algorithm proposed in [Bra97],[Bra98] to do the same. For the sake of

fidelity, we use the notation used in [Bra97],[Bra98]. We will translate the result back into

our notation for the purpose of comparision.

Brandin’s Method: Let f0,f1, f2, and f3 represent the states corresponding to the strings

ε, β, βα, and βαγ respectively. The initial timed activity is

f0 = (a0, {(2, 2, 7, 7) , (1, 1, 5, 5) , (5, 5, 6, 6)})

and initially

t = min {7, 5, 6}

= 5

t = min {7, 5, 6}

= 5.
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Then the timers of α at f1 are given by

(
min

(
2

.
− 5, 2

.
− 5
)

, max
(
2

.
− 1, 2

.
− 1
)

, min
(
7

.
− 5, 7

.
− 5
)

, max
(
7

.
− 2, 7

.
− 2
))

= (0, 1, 2, 5) ;

the timers of γ at f1 are given by

(
min

(
5

.
− 5, 5

.
− 5
)

, max
(
5

.
− 1, 5

.
− 1
)

, min
(
6

.
− 5, 6

.
− 5
)

, max
(
6

.
− 1, 6

.
− 1
))

= (0, 4, 1, 5) ;

the timers of β are reset to their default values, i.e.

(1, 1, 5, 5) .

So we have

f1 = (a1, {(0, 1, 2, 5) , (1, 1, 5, 5) , (0, 4, 1, 5)})

which implies that now

t = min {2, 5, 1}

= 1

t = min {5, 5, 5}

= 5.



6.6. A COUNTER-EXAMPLE 155

The timers of β at f2 are given by

(
min

(
1

.
− 1, 1

.
− 5
)

, max
(
1

.
− 0, 1

.
− 1
)

, min
(
5

.
− 1, 5

.
− 5
)

, max
(
5

.
− 0, 5

.
− 1
))

= (0, 1, 0, 5) ;

the timers of γ at f2 are given by

(
min

(
0

.
− 1, 4

.
− 5
)

, max
(
0

.
− 0, 4

.
− 1
)

, min
(
1

.
− 1, 5

.
− 5
)

, max
(
1

.
− 0, 5

.
− 1
))

= (0, 3, 0, 4) ;

the timers of α are reset to their default values, i.e.

(2, 2, 7, 7) .

This gives

f2 = (a2, {(2, 2, 7, 7) , (0, 1, 0, 5) , (0, 3, 0, 4)})

which now implies

t = min {7, 0, 0}

= 0

t = min {7, 5, 4}

= 4.
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The timers of α at f3 are given by

(
min

(
2

.
− 0, 2

.
− 4
)

, max
(
2

.
− 0, 2

.
− 3
)

, min
(
7

.
− 0, 7

.
− 4
)

, max
(
7

.
− 0, 7

.
− 3
))

= (0, 2, 3, 7) ;

the timers of β at f3 are given by

(
min

(
0

.
− 0, 1

.
− 4
)

, max
(
0

.
− 0, 1

.
− 3
)

, min
(
0

.
− 0, 5

.
− 4
)

, max
(
0

.
− 0, 5

.
− 3
))

= (0, 0, 0, 2) ;

the timers of γ are reset to their default values, i.e.

(5, 5, 6, 6) .

Thus

f3 = (a3, {(0, 2, 3, 7) , (0, 0, 0, 2) , (5, 5, 6, 6)}) .

This may be interpreted as follows. According to [Bra97],[Bra98] the effective timers

after the occurrence of s are  7 2 6

0 0 5

 .

This would mean that β is forced to occur after 2 ticks ! This is clearly incorrect as can be

verified from Figure 6.2. There may be a gap of as many as 5 ticks before β is forced to

occur (which is the conclusion we arrive at using the prefix solution).
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6.7. Summary

In this chapter we posed the problem of finding shortest and longest paths in a timed

transition graph. The motivation for solving this problem is the hope that a model of

TDES based on shortest and longest paths may be more compact than the corresponding

timed transition graph. The problem is posed in a dynamic programming framework which

guarantees that we can find a solution. However dynamic programming solutions are

recursive in nature and therefore not suitable for our purpose. We proposed two greedy

solutions to the problem and showed that the solution is not unique. We further showed

that only one of the solutions is suitable for developing a model of timed discrete event

systems.



7. A Model of Timed Discrete Event

Systems

7.1. Motivation

In this chapter we present a new model of timed discrete event systems. This immediately

raises the question: Why is a new model needed? So before going any further we would like

to explain some of the reasons that make it necessary. The BW model of TDES presented

by Brandin and Wonham [Bra93],[BW94] explicitly models the passage of time using a

special event called tick. The BW model extends the untimed RW model and augments

the class of controllable systems. However it suffers from a couple of major drawbacks.

Too Big in Size: It can be much bigger in size compared to the corresponding untimed

model. We present a very simple example to illustrate this. Assume that a public

parking spot is modelled as shown in Figure 7.1. It may be interpreted as follows. If

the parking spot is idle then a car may be parked in it. If the parking spot is occupied

then the car may be unparked. However if the car remains parked for longer than a

certain duration of time then a traffic cop may give it a ticket for traffic violation.

Of course, the car may be unparked even after receiving a ticket (we assume that

the cars do not get towed). A desirable specification from the point of view of a car

driver is also shown in Figure 7.1. It simply says “Avoid getting a ticket.” Parking

158
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idle

occupied

parkunpark

Parking Spec

idle

occupiedlate

parkunpark

ticket

unpark

Parking Spot

Figure 7.1: A Car Parking Setup and Specification

and unparking a car are events that can be controlled by a driver; however, getting

a ticket is uncontrollable. This represents a scenario where a timed model is quite

essential because the parking specification is uncontrollable if we use an untimed

model. This is understandable because the parking setup inherently involves a notion

of time: a parking ticket is issued only if the car has been parked for longer than a

permissible duration. So let the following triples represent the time bounds associated

with various events: (park, 30,∞) , (unpark, 7,∞) , (ticket, 950, 999) . This may be

interpreted as follows. It takes at least 30 seconds to park a car; it takes at least

7 seconds to unpark; it is safe to park for 950 seconds but it is possible to not get

ticketed for a further 49 seconds because the traffic cop may get delayed. We may

use a timed transition graph to model the parking setup. We assume that unpark is a

forcible event. The parking specification is now controllable; the resultant supervisor

simply forces the car owner to unpark the car before 950 seconds. However the timed

transition graph has 1052 states and 2115 transitions!! Clearly this is much more

complicated than it needs to be. We will show later how the proposed model handles

scenarios such as this one.
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Not Closed Under Control: It is shown by Wong and Wonham in [WW96b] that the

BW framework [BW94] is not closed under control. We borrow the counterexamples

given in [WW96b] to illustrate this point.

Example 116 Consider a language L whose ATG and TTG are given in Figure 7.2.

Here α is a forcible event and has time bounds (α, 0, 1). Let H be the sublanguage

α

α

α

α
α

α

t

t

t

t

t

t

t

H

TTG of L

x0 x2x1α α

ATG of L

Figure 7.2: BW Not Closed Under Control: Scenario 1

of L represented by the subgraph in the dashed rectangle in Figure 7.2. Then H

is controllable with respect to L since α can be forced to occur before the first tick.
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However, there cannot exist an ATG such that the corresponding TTG generates H

because the time bounds of the first α in H are (α, 0, 0) while the time bounds of the

second α in H are (α, 0, 1) . �

Example 117 Consider a language L whose ATG and TTG are given in Figure

7.3. Here α is prohibitible and has time bounds (α, 0,∞) . Let H be the sublanguage

of L generated by the subgraph inside the dashed polygon in Figure 7.3. Then H is

controllable with respect to L since if α does not occur before the first tick then it

can be disabled. Again, there can exist no ATG such that the corresponding TTG

generates H because here α is an event that may occur before the first tick but never

after that. �

Both the above examples show that the BW framework is not closed under control

because there may exist no ATG such that the corresponding TTG generates the

controlled behavior. It is shown by Wong and Wonham in [WW96b] that even if an

ATG does exist such that the corresponding TTG generates the controlled behavior,

there may be other problems as the following examples show.

Example 118 Consider a language L whose ATG and TTG are given in Figure

7.4. Here, α is both prohibitible and forcible while the time bounds are (α, 0,∞) and

(β, 0,∞) . Let H be the sublanguage of L generated by the subgraph inside the dashed

rectangle in Figure 7.4. Then H is controllable with respect to L since α can be forced

to occur before the first tick. Let K be the sublanguage of H and L as shown in

Figure 7.4. Clearly, K is controllable with respect to H since α can be prohibited

from occurring. However K is uncontrollable with respect to L since β cannot be

guaranteed to occur before the first tick. This contradictory behavior results because
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TTG of L
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x0 x1α

ATG of L

Figure 7.3: BW Not Closed Under Control: Scenario 2

we are trying to prohibit and force α simultaneously. �

In Examples 116 and 117, the problem arises because the basic building blocks in
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Figure 7.4: BW Not Closed Under Control: Scenario 3
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BW are activity transition graphs while the control design is carried out on the

corresponding timed transition graphs. Two timed transition graphs cannot be syn-

chronized because that would require synchronizing the tick event (which can lead

to a scenario where time stops [Won01, page 288]). So the corresponding activity

transition graphs are composed and the resultant is converted to a timed transition

graph. However, not all subautomata of a timed transition graph have correspond-

ing activity transition graphs so there is no obvious way to compose a TTG under

supervision, with another system. We will show that this problem does not arise in

the proposed model because the control design is carried out on the building blocks

directly.

The problem exposed by the Example 118 is a bit more subtle. In the standard

RW framework, an event is either controllable or uncontrollable. However the notion

of forcing arises naturally when dealing with timed systems. It may be possible to

force an event to occur before a certain point in time. So now an event may be

controllable as well as forcible. This is what causes the problem. In Example 118,

the control design is carried out in two stages. The event α is forced to occur in the

first stage; it is prohibited to occur in the second stage. So, in a sense, the memory of

the control action taken in the first stage is lost during the second stage. Wong and

Wonham [WW96b] get around this problem by postulating that an event cannot be

both prohibitible and forcible. In the proposed model, we get around this problem

by remembering the control actions from one stage to the next.
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7.2. An Overview

The proposed model is inspired by the prefix solution to the shortest and longest path

problem that was presented in Chapter 6. The main idea is to assign windows of opportu-

nity for the various events at each state. In that respect, it is similar in spirit to the model

presented in [Bra97],[Bra98]. However, as shown in Section 6.6, the analysis presented in

[Bra97],[Bra98] is incorrect. The proposed model rectifies that mistake. Additionally, it

improves upon it (as well as upon BW) in another important respect: it is closed under

control.

We give the formal definition of the proposed model (which we call a Timed Gener-

ator) and define the notion of controllability. This notion of controllability is simply an

extension of the RW notion of controllability. Whether or not a language is controllable

depends on the controllability attributes of the events. However, in a timed generator, the

controllability attribute of an event need not always be constant. The same event may

be controllable at one state and uncontrollable at another. This allows a timed generator

to remember control actions. We show that timed generators are closed under control: a

timed generator subject to supervisory control action is still a timed generator.

7.3. Timed Generators

Before giving a formal definition of a timed generator we give its informal description here.

A timed generator is a model of a timed discrete event system. As in the standard RW

framework, events are thought of as instantaneous and occurring at quasi-random moments

of real-time R+ = {t : 0 ≤ t < ∞} . However, time is measured using a digital clock with
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output timercount : R+ ×R+ → N where

timercount (t0, t) := n for n ≤ t− t0 < n + 1.

Here t0 ≤ t represents an initial time with respect to which the output of the digital

clock is specified. This is akin to turning on a stopwatch at time t0; the output of the

stopwatch reflects the passage of integral units of time since t0. Temporal conditions in a

timed generator are specified in terms of this digital clock although timercount does not

play a formal role in the development. It is assumed that upon entering a state, t0 is set

equal to the current real-time so that timercount (t0, t) defines the number of integral time

units that have elapsed since entering that state. We associate lower and upper time bounds

with the occurrence of each event at all the states. The lower bound indicates the number

of time units (as measured by timercount) that must elapse before the event is eligible to

occur. The upper bound indicates the number of time units that may elapse (as measured

by timercount) before the event is guaranteed to occur. In graphical representations, it

will be convenient to represent these time bounds using a matrix. Thus each state will have

an associated timer matrix that represents the time bounds of all the events enabled at

that state. The time bounds of a given event may differ from state to state. The eligibility

of an event to occur at a state is defined in terms of its time bounds. This allows us to

define the language generated by a timed generator. This language does not model time

using any special events but it incorporates the temporal constraints imposed by the time

bounds on events. The language generated by a timed generator is (defined to be) the

open-loop behaviour of a timed system. As in the RW framework, we consider the role of a

supervisor to restrict this behaviour to meet a given design specification. This restriction

of the system behaviour may be carried out in two different ways. The first way is to
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directly prevent an event (called a prohibitible event) from occurring at a state. This is the

only means of control in the RW framework. The second way is to indirectly prevent an

event from occurring at a state by ensuring that some other event (called a forcible event)

is guaranteed to always occur before it. This control action is called pre-empting an event

occurrence by forcing another event to occur before it. The concept of forcing is present

in the BW framework in a slightly different guise. These two control actions allow us to

define the notion of controllability and supremal controllable sublanguage along the lines

of the standard RW framework.

We now give the formal definitions. Let B ⊆ (N ∪ {∞})×N be such that if (x, y) ∈ B

then x ≥ y. Here we assume that ∞ > z for all z ∈ N.

Definition 119 A Timed Generator (TG) G =
(
XG, ΣG, EG, xG

0 , XG
m, FG

)
is a 6-tuple

where
(
XG, ΣG, EG, xG

0 , XG
m

)
is the underlying automaton and FG =

{
fG

σ : σ ∈ ΣG
}

is a

family of timer functions. For any σ ∈ ΣG, the timer function fG
σ : XG → B maps each

state to the upper and lower time bounds of σ at that state. Let x ∈ XG and assume that

fG
σ (x) = (b1, b2) . Then uG

σ (x) = b1 and lGσ (x) = b2 are the upper and lower time bounds

of σ at x. It will often be convenient to refer to the underlying automaton directly; we will

use UG to refer to
(
XG, ΣG, EG, xG

0 , XG
m

)
. When G is clear from the context, we will drop

the superscript.

Remark 2 As in [Bra93],[BW94], we also require that there should not exist a sequence

of transitions (x1, σ1, x2) , . . . , (xn, σn, x1) ∈ EG such that lσ1 (x1) = · · · = lσn (xn) = 0. If

this were allowed then it would represent a scenario where a chain of events could occur

infinitely often in a finite amount of time. There are no other restrictions on the timer

functions fσ.
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Definition 120 Let G be a timed generator. The set of enabled events at any state

x ∈ XG is defined to be

Enab (G, x) := Enab
(
UG, x

)
.

An event σ ∈ Σ is enabled at x if σ ∈ Enab (G, x) .

Definition 121 Let G be a timed generator. The set of eligible events at any state x ∈ XG

is defined to be

Elig (G, x) := {σ ∈ Enab (G, x) : (∀α ∈ Enab (G, x)) lσ (x) ≤ uα (x)} .

An event σ ∈ Elig (G, x) is eligible to occur at x if its lower bound is not greater

than the upper bound of any enabled event. In other words, an event is eligible to occur

at a state if no other event is guaranteed to occur before it. If there exists a transition

(x, σ, x1) ∈ EG such that σ /∈ Elig (G, x) then σ can never occur at x even though it is

enabled there.

Definition 122 Let G be a timed generator. Then G is proper if Elig (G, x) = Enab (G, x)

for all x ∈ XG. If G is a timed generator then the corresponding proper timed generator is

defined to be PG =
(
XP , ΣP , EP , xP

0 , XP
m, FP

)
where

(
XP , ΣP , EP , xP

0 , XP
m

)
:=
(
XG, ΣG, EG − E, xG

0 , XG
m

)
rch

,

E :=
{
(x1, σ, x2) ∈ EG : σ ∈ Enab (G, x1)− Elig (G, x1)

}
,

FP :=
{

fG
σ

∣∣
XGp : σ ∈ ΣP

}
.
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Here fG
σ

∣∣
XP implies the restriction of fG

σ to XP . We will drop the superscript when G

is clear from the context

Thus PG is defined by removing all those transitions from G that are enabled at some

state but not eligible to occur at that state. The timer functions of PG are defined by

simply restricting the timer functions of G to the state set of PG.

Definition 123 Let G be a timed generator. The closed and marked languages gener-

ated by G are defined to be the closed and marked languages generated by the underlying

automaton of the corresponding proper timed generator, i.e.

L (G) := L
(
UP G

)
,

Lm (G) := Lm

(
UP G

)
.

Example 124 Let G be a timed generator as shown in Figure 7.5. The timer matrices

0, 2 4
0 3

1, - -
- -

2, - -
- -

α β

G

Figure 7.5: A timer graph that is not proper
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shown in the nodes represent the time bounds of α and β. Then we have

Enab (G, 0) = {α, β} ,

Enab (G, 1) = Enab (G, 2) = ∅.

The lower time bound of β at state 0 is 3 which is greater than the upper time bound, 2, of

α. Thus β is not eligible to occur at state 0. So we have

Elig (G, 0) = {α} ,

Elig (G, 1) = Elig (G, 2) = ∅.

From this we can compute the proper timed generator PG corresponding to G (as shown in

Figure 7.6). Now the closed and marked languages generated by G are

0, 2 4
0 3

1, - -
- -

α

PG

Figure 7.6: A proper timer graph

L (G) = {ε, α} ,

Lm (G) = {α} .
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2

Remark 3 The language generated by a timed generator does not explicitly include time.

However, if we want, we can give an interpretation that does explicitly include time in a

manner similar to the language generated by a timed transition graph in the BW framework.

Let us consider the timed generator G shown in Figure 7.7. At state 0, the time bounds of

0, ∞ 2
0 1

1, - 2
- 0

2, - -
- -

3, - -
- -

α β

β
G

Figure 7.7: A timed generator

α and β are (0,∞) and (1, 2) respectively; at state 1, the time bounds of β are (0, 2) . So, at

the initial state, the timer functions tell us that α can occur right away while β must wait

for one time unit to elapse before it can occur. Let t represent the passage of one unit of

time as measured by a digital clock. Now consider the graph H shown in Figure 7.8. The

dashed boxes correspond to the states of the timed generator G. The box labelled 0 reflects

the process going on at the initial state of G: α can occur right away while β is not possible

before the first occurrence of t. Now if α occurs then G tells us that the time bounds for β
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α

t

βα

t

t

βα

β

3

1

2

0

H

β

β t

Figure 7.8: An explicit timed interpretation of a timed generator

are 0 and 2. This is reflected in the box labelled 1 in H. So after the occurrence of α we

may have any of the following strings: β, tβ, or t2β. The details of the various boxes in H

are captured in G using timer functions. Given any timed generator G it is always possible

to construct a corresponding timed transition graph similar to H. This is due to the fact

that each state in G can be expanded into a corresponding box in H independently of all

the other states. Each box has a unique entry point and has as many t events as required

by the timer functions of G. We can think of G as being analogous to a timed activity

transition graph (TATG) of H. A TATG is obtained by projecting out the tick transition

from a TTG. Thus, in a sense, a timed generator is akin to a TATG equipped with timer
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functions.

7.4. Controllability and Supervision

In this section we assume that we are given a timed generator G = (X, Σ, E, x0, Xm, F)

with L = L (G) as its closed language. In order to use G as a model for supervisory

control, we need to impose on it some sort of control technology. This control technology

specifies ways in which the transitions G can be controlled by a supervisor. As in the

RW framework, our control technology has events that can be disabled, namely prohibitible

events. A supervisor may remove a prohibitible event from the list of eligible events at a

state. An event σ ∈ Σ can be prohibitible at a state x ∈ X only if uσ (x) = ∞. It is possible

for an event to be prohibitible at one state and not prohibitible at another. Let ΣG
c (x) ⊆ Σ

represent the set of prohibitible events at any state x ∈ X in G. Our control technology

also has events, namely forcible events, that may be used to pre-empt the occurrence of

other events. Let ΣG
f ⊆ Σ represent the set of forcible events in G. With each forcible

event we associate a partial map mσ : X → N such that lσ (x) ≤ mσ (x) ≤ uσ (x) for

all x ∈ X. (We implicitly assume that any such statements about a partial map like mσ

apply to “all x ∈ X at which mσ (x) is defined.”) We shall assume that mσ (x) = lσ (x)

unless stated otherwise. Our control technology permits a supervisor to remove an event

α from the list of eligible events at a state x ∈ X if a forcible event σ is eligible there such

that mσ (x) < lα (x) . This supervisory action is called pre-emption of α by σ. Here mσ (x)

represents the number of time units that must elapse before a supervisor is able to force σ

to occur. This number can be used to model any forcing constraints that prevent σ from
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being forced as soon as it is eligible. For any set F ⊆ Σ let

ΣG
p (x, F ) :=

{
α ∈ Elig (G, x) :

(
∃σ ∈ ΣG

f ∩ Elig (G, x) ∩ F
)
mσ (x) < lα (x)

}
represent the set of events that may be pre-empted at a state x by some eligible forcible

event in F . If ΣG
p (x, Elig (G, x)) 6= ∅ then it necessarily means that ΣG

f ∩ Elig (G, x) 6= ∅

although more than one forcible event may be eligible at x. Let ΣG
u (x) represent the set of

eligible events that are not prohibitible at x; this is called the set of uncontrollable events

at x. Let U be the underlying automaton of the corresponding proper timed generator

of G. For any s ∈ L (G) , a state x ∈ XG is the state corresponding to s in G if it

is the state corresponding to s in U. Let Elig (L, s) := Elig (G, x) where x is the state

corresponding to s. Similarly, let ΣG
u (s) := ΣG

u (x) , ΣG
p (s, F ) := ΣG

p (x, F ) , uG
σ (s) := uG

σ (x)

and lGσ (s) := lGσ (x) . From this point on the treatment in this section follows along the lines

of similar treatment in the RW framework [Won01]. In effect, we extend the RW notion of

controllability and supervision to timed generators.

Definition 125 A supervisory control for G is any map V : L → 2Σ such that for all

s ∈ L

V (s) ⊇ ΣG
u (s)− ΣG

p (s, V (s)) .

As before, we write V/G to denote that G is under the supervision of V. The closed be-

haviour of V/G is the language L (V/G) ⊆ L defined inductively as given below.

(i) ε ∈ L (V/G) .

(ii) If s ∈ L (V/G) , σ ∈ V (s) and sσ ∈ L then sσ ∈ L (V/G) .

(iii) No other strings belong to L (V/G) .
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The marked behaviour of V/G is

Lm (V/G) = L (V/G) ∩ Lm (G) .

We say that V is a nonblocking supervisory control (NSC) for G if Lm (V/G) = L (V/G) .

A supervisory control must permit all those uncontrollable events that cannot be pre-

empted. If ΣG
p (s, V (s)) = ∅ then no forcible event is available at s so in that case a

supervisory control must permit all the eligible uncontrollable events.

Definition 126 A language K ⊆ L is controllable with respect to G if for all s ∈ K

Elig (K, s) ⊇ ΣG
u (s)− ΣG

p (s, Elig (K, s)) .

A language is controllable if it allows an eligible uncontrollable event whenever it cannot

be pre-empted. As in RW, controllability of a language is a property only of its prefix

closure. We now present a technical definition that will be needed later.

Definition 127 Let H ⊆ K ⊆ Σ∗. Then H is K-closed if H = H∩K. Thus H is K-closed

if it contains every one of its prefixes that belong to K.

Theorem 128 Let K ⊆ Lm (G) , K 6= ∅. Then there exists a nonblocking supervisory

control V for G such that Lm (V/G) = K if and only if

(i) K is controllable with respect to G, and

(ii) K is Lm (G)-closed.
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Proof. (If) Define V : L → 2Σ as follows.

V (s) :=

 Elig (K, s) if s ∈ K

Σ if s ∈ L−K
.

We first show that V is a supervisory control for G, i.e.

V (s) ⊇ ΣG
u (s)− ΣG

p (s, V (s)) .

If s ∈ L−K then

V (s) = Σ

⊇ ΣG
u (s)− ΣG

p (s, V (s))

and if s ∈ K then

V (s) = Elig (K, s)

⊇ ΣG
u (s)− ΣG

p (s, Elig (K, s))

= ΣG
u (s)− ΣG

p (s, V (s))

since K is controllable with respect to G. Now L (V/G) = K since V (s) = Elig (K, s) so

Lm (V/G) = L (V/G) ∩ Lm (G)

= K ∩ Lm (G)

= K
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since K is Lm (G)-closed. Thus Lm (V/G) = K = L (V/G) which implies that V is a

nonblocking supervisory control for G.

(Only If) Let V be a nonblocking supervisory control for G with Lm (V/G) = K. Since

V is nonblocking, we have L (V/G) = K so

K = L (V/G) ∩ Lm (G)

= K ∩ Lm (G)

which shows that K is Lm (G)-closed. We now show that K is controllable with respect to

G. Let s ∈ K. We need to show that

Elig (K, s) ⊇ ΣG
u (s)− ΣG

p (s, Elig (K, s)) .

By the definition of L (V/G) we have

Elig (K, s) = V (s) ∩ Elig (L, s)

⊇
(
ΣG

u (s)− ΣG
p (s, V (s))

)
∩ Elig (L, s)

= ΣG
u (s)− ΣG

p (s, V (s))

= ΣG
u (s)− ΣG

p (s, V (s) ∩ Elig (L, s))

= ΣG
u (s)− ΣG

p (s, Elig (K, s))

which shows that K is controllable.

As in RW, we introduce a slight generalization of NSC in which the supervisory action

includes marking as well as control.

Definition 129 Let M ⊆ Lm (G) . A marking nonblocking supervisory control (MNSC)
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for the pair (M,G) is a supervisory control V such that the marked behaviour of V/G is

defined as

Lm (V/G) = L (V/G) ∩M.

Theorem 130 Let K ⊆ Lm (G) , K 6= ∅. Then there exists an MNSC for (K,G) such

that Lm (V/G) = K if and only if K is controllable with respect to G.

Proof. (If) Again let V (s) := Elig (K, s) . Then following along the lines of the proof

of Theorem 128 we get L (V/G) = K. Thus

Lm (V/G) = L (V/G) ∩K

= K ∩K

= K

so that Lm (V/G) = K = L (V/G) . Thus V is nonblocking for G.

(Only If) We have K = Lm (V/G) = L (V/G) . The rest of the proof is the same as

the proof for Theorem 128.

Example 131 Let us continue with the parking setup. Let the timed generator shown in

Figure 7.9 be called G. We still want to avoid getting a ticket. Let this specification (shown

in Figure 7.1) be called K. From Theorem 130 we know that an MNSC exists if K is

controllable. We now show how its controllability may be verified. Let s ∈ K ⊆ L (G) .

Case 1: Assume that s corresponds to the idle state in G. There is no uncontrollable

event eligible at idle so ΣG
u (s) = ∅. Then

Elig (K, s) = {park}
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⊇ ΣG
u (s)

⊇ ΣG
u (s)− ΣG

p (s, Elig (K, s)) .

Case 2: Assume that s corresponds to the occupied state in G. From Figure 7.9 we can

see that

ΣG
u (occupied) = {ticket}

= ΣG
p (occupied, {unpark})

so ΣG
u (s)− ΣG

p (s) = ∅. Again

Elig (K, s) = {unpark}

⊇ ∅

= ΣG
u (s)− ΣG

p (s, {unpark}) .

These are the only two cases that we need to consider because no string belonging to K

contains the event ticket. Thus we see that K is controllable and we can find a marking

nonblocking supervisory control to enforce it. 2

7.5. Supremal Controllable Sublanguages

The treatment in this section also follows along the lines of RW [Won01]. Let G =

(X, Σ, E, x0, Xm, F) be a timed generator.

Definition 132 Let S ⊆ Σ∗. Then the set of all sublanguages of S that are controllable
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with respect to G is defined to be

C (G, S) := {K ⊆ S : K is controllable with respect to G} .

Proposition 133 Let S ⊆ Σ∗. Then C (G, S) is nonempty and closed under arbitrary

unions. In particular, C (G, S) contains a unique supremal element (denoted by sup C (G, S)).

Proof. The empty language is trivially controllable so it belongs to C (G, S) which

implies that C (G, S) 6= ∅. Let Ki belong to C (G, S) for all i in some index set I and

let K =
⋃

i∈I Ki. Then K ⊆ S since Ki ⊆ S for all i ∈ I. We need to show that K is

controllable with respect to G. Let s ∈ K ∩ L (G). Then Elig (K, s) =
⋃

i∈I Elig (Ki, s)

since K =
⋃

i∈I Ki. Since Ki are controllable with respect to G it follows that

Elig (K, s) =
⋃
i∈I

Elig (Ki, s)

⊇
⋃
i∈I

[
ΣG

u (s)− ΣG
p (s, Elig (Ki, s))

]
⊇ ΣG

u (s)−
⋃
i∈I

ΣG
p (s, Elig (Ki, s))

= ΣG
u (s)− ΣG

p

(
s,
⋃
i∈I

Elig (Ki, s)

)
= ΣG

u (s)− ΣG
p (s, Elig (K, s)) .

If s ∈ K − L (G) then Elig (L (G) , s) = ∅ so

ΣG
u (s)− ΣG

p (s, Elig (K, s)) = ∅
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⊆ Elig (K, s) .

Thus K is controllable with respect to G. Finally, for the supremal element we have

sup C (G, S) =
⋃
{K : K ∈ C (G, S)} .

Definition 134 Let H, K ⊆ Σ∗. We say that H is K-marked if H ⊇ H ∩ K. So H is

K-marked if any prefix of H that belongs to K also belongs to H.

Lemma 135 [Won01, page 295] Let S ⊆ Σ∗ be Lm (G)-marked. Then sup C (G, S ∩ Lm (G))

is Lm (G)-closed.

We now present the main results of this section.

Theorem 136 Let S ⊆ Σ∗ be Lm (G)-marked, and let K = sup C (G, S ∩ Lm (G)) . If

K 6= ∅ then there exists a nonblocking supervisory control V for G such that Lm (V/G) = K.

Proof. K is Lm (G)-closed by Lemma 135; it is controllable by definition. The desired

result now follows from Theorem 128.

This theorem may be interpreted as follows. The language S represents a specification

that needs to be imposed on G. If K is non-empty then it is the maximally permissive

solution to the problem of supervising G such that its behaviour abides by the specification

S. Additionally, the control is nonblocking. If K is empty then there exists no nonblocking

supervisor that can impose S on G.

As in Section 7.4, we now present the following result on the marking nonblocking

supervisory control of G.
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Theorem 137 Let S ⊆ Σ∗ and let K = sup C (G, S ∩ Lm (G)) . If K 6= ∅ then there exists

a marking nonblocking supervisory control V for G such that Lm (V/G) = K.

7.6. Temporal Specifications

Let a timed generator G represent a physical system. Then a language S ⊆ ΣG∗ can be

used to specify how the system should behave. We have seen that if sup C (G, S ∩ Lm (G))

is nonempty then we can construct a nonblocking supervisor to achieve the desired system

behaviour. The timing information inherent in G may allow the construction of a supervisor

that would not have been possible otherwise. This is what happens in the parking scenario

shown in Figure 7.1. The parking specification cannot be achieved if the timing information

is absent. The parking specification itself contains no explicit temporal requirement but

its achievement is not possible without temporal information. However there may exist

scenarios where we may want to specify temporal requirements explicitly. In this section

we show how that may be done in the framework of timed generators.

Definition 138 Let G1 and G2 be two timed generators over the same alphabet Σ. Then

the meet of G1 and G2 (denoted G1 ∧ G2)is a timed generator G :=
(
U, FG

)
where

U = UG1 ∧UG2 and the timer functions are defined as follows. Let x = (x1, x2) ∈ XG and

σ ∈ Σ; then

fG
σ (x) :=

(
min

(
uG1

σ (x1) , uG2
σ (x2)

)
, max

(
lG1
σ (x1) , lG2

σ (x2)
))

.

The meet of G1 and G2 is well-defined only if min
(
uG1

σ (x1) , uG2
σ (x2)

)
≥ max

(
lG1
σ (x1) , lG2

σ (x2)
)
.

An event σ ∈ Σ is prohibitible at x in G if and only if it is prohibitible at x1 at G1 and at

x2 in G2. An event σ ∈ Σ is forcible in G if and only if it is forcible in both G1 and G2.
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If σ is forcible then mG
σ (x) = max

(
mG1

σ (x1) , mG2
σ (x2)

)
.

Remark 4 If G1 and G2 have to cooperate on the execution of an event σ then it is not

possible for σ to occur before it is eligible to occur in both G1 and G2. Similarly, it is

not possible for σ to be delayed longer than it can be delayed in either G1 or G2. This

requirement is the same as in [Bra93],[BW94].

Example 139 Let us reconsider the parking spot scenario shown in Figure 7.1. We can

model the parking spot using a timed generator as shown in Figure 7.9. The various states

i, ∞  - -
30 - -

o, - ∞ 999
-  7 950

l, - ∞ -
- 0 -

parkunpark

ticket

unpark

i, ∞  - -
30 - -

o, - 949 -
-   7   -

parkunpark

Timed Parking Spot Timed Parking Spec

Figure 7.9: Timed Generator for the Parking Spot

are shown with timer matrices representing the output of timer functions. For brevity, we

have labelled idle with i, occupied with o, and late with l. The controllability attributes of
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various events are as follows.

Σf = {unpark}

Σc (idle) = {park, unpark} Σu (idle) = {ticket}

Σc (occupied) = {park, unpark} Σu (occupied) = {ticket}

Σc (late) = {park, unpark} Σu (late) = {ticket}

The only forcible event is unpark and it can be used to preempt ticket at the occupied state.

Thus

Σp (occupied, {unpark}) = {ticket} .

2

Let S be a timed generator such that Lm (S) = S. We can define its timer functions

to reflect our temporal requirements. Then the timer functions of G ∧ S will retain that

temporal specification. Now we just need to check the controllability of S with respect

to G ∧ S. If S is controllable then there exists an MNSC that implements the linguistic

specification S as well as the temporal specification conveyed by S. We present a couple of

examples to illustrate this.

Example 140 Let us consider our running example of the parking spot. Let the new

specification be that the car should be unparked within 500 seconds of being parked. Consider

the timed generator shown in Figure 7.10. The linguistic interpretation still remains the

same: do not get a ticket. However the upper bound of unpark at the occupied state is now

500. This reflects the requirement that the car should be unparked within 500 seconds. 2

Example 141 Let us consider the setup of Example 116. The specification for this system,

H, is shown in Figure 7.2. It says that α should be forced to occur right away at the initial
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i, ∞  -
30 -

o, - 500
-     7

parkunpark

New Timed Parking Spec

Figure 7.10: Temporal Specification for Parking Setup

state. A timed generator representing this specification is shown in Figure 7.11. The upper

0
0

1
0α 1

0α

Figure 7.11: Timed Generator for the Scenario of Example 116

bound of α is set to zero at the initial state to reflect the temporal aspect of H. The bounds

for the second occurrence of α are left unchanged. Therefore the second occurrence of α is

not constrained. 2

7.7. Closure Of Timed Generators Under Control

As mentioned earlier, one of the major drawbacks of the BW framework is that it is

not closed under control. In BW, the design begins with a TTG that corresponds to an

ATG. However, there may not exist an ATG corresponding to a TTG under control. In

this section we show that timed generators are closed under control. Let G be a timed

generator and K ⊆ L (G) be a controllable sublanguage. Let V be an MNSC that restricts
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G to K. Then, as we now show, there always exists a timed generator that generates K

and respects the dynamics of G. For the rest of this section we assume that G and K are

given.

Definition 142 Let K be any timed generator that generates K. Then we say that K is

faithful to G if for all s ∈ K, σ ∈ ΣG

lKσ (s) ≥ lGσ (s)

uK
σ (s) ≤ uG

σ (s)
.

If K is faithful to G then its time bounds reflect the status of the corresponding time

bounds in V/G. It is important that any construction of a timed generator for K be

faithful to G because K is intended to represent the behaviour of the closed-loop system.

The language K is synthesized under the supervisory control V and any timed generator

for K should reflect that. We also want K to have the least restrictive time bounds while

maintaining its faithfulness to G.

Let K be a proper timed generator with a minimal-state underlying automaton that

generates K, i.e. Lm (K) = K. For each σ ∈ Σ let fK
σ : XK → B be a function defined as

follows. Let x ∈ XK and let s ∈ K ⊆ L (G) be a string corresponding to x. Let y ∈ XG
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be the state in G corresponding to s. Then

fK
σ (x) :=



fG
σ (y) if (σ /∈ Σf )∨

Elig (K, x) ⊇ Σu (s) ∩ Elig (G, y)∨

mG
σ (y) > m

(
m, lGσ (y)

)
if (σ ∈ Σf )∧

Elig (K, x) + Σu (s) ∩ Elig (G, y)∧

mG
σ (y) ≤ m

where

m =

(
min

α∈ΣG
p (y)

lGα (y)

)
− 1.

Also, if σ ∈ Σf then

mK
σ (x) := mG

σ (y) .

Thus, for a non-forcible event σ, the timer function fK
σ is defined to be the same as fG

σ

restricted to the strings in K. This scheme is also followed for forcible events except when

an uncontrollable event has been pre-empted. So if one or more uncontrollable events have

been pre-empted at a state x ∈ XK then uK
σ (x) is defined to be one time unit less than

the earliest time at which a pre-empted event is eligible. This is done only if the forcible

event is actually capable of performing the pre-emption, i.e. if mG
σ (y) is smaller than the

earliest time at which a pre-empted event is eligible. Note that this does not designate any

particular forcible event to do the pre-emption. That choice is left to the designer.

Theorem 143 Let K be a timed generator as defined above. Then K is faithful to G. If

K′ is any other timed generator that is faithful to G and generates K then for all s ∈ K,
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σ ∈ ΣG we must have uK′
σ (s) ≤ uK

σ (s) and lK
′

σ (s) ≥ lKσ (s) .

Proof. K is faithful by definition. Its lower bounds are always equal to the lower bounds

of the corresponding events in G. The upper bound of any non-forcible event also always

equals the upper bound of the corresponding event in G. The upper bounds of its forcible

events may be less, but never more, than the upper bounds of the corresponding events in

G.

Now assume that K′ is a faithful timed generator that generates K. Let s ∈ K. Then

for all σ ∈ ΣG − ΣG
f we must have

uK′

σ (s) ≤ uG
σ (s)

= uK
σ (s) .

Now let σ ∈ Σf . If ΣG
p (s) = ∅ then again we must have

uK′

σ (s) ≤ uG
σ (s)

= uK
σ (s) .

So let us assume that ΣG
p (s) 6= ∅. If uK′

σ (s) > uK
σ (s) then there must exist some uncon-

trollable event α ∈ ΣG
p (s) eligible at s such that uK′

σ (s) ≥ lGα (s) . This would mean that

K is no longer controllable since α /∈ Elig (K, s) and there is no forcible event that could

have pre-empted it. However this is contradictory to our assumption that K′ is faithful to

G. Thus in this case also we must have uK′
σ (s) ≤ uK

σ (s) .

In a sense, K is the most faithful timed generator for K. It reflects the least restrictive

supervisory control needed to synthesize K. We now present a few examples to illustrate
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the closure of timed generators under control.

Example 144 Let us reconsider the parking spot scenario shown in Figures 7.1 and 7.9.

We already know that the parking specification is controllable. The corresponding timed

generator is shown in Figure 7.12. 2

i,i, ∞  - -
30 - -

o,o, - 949 -
-   7   -

parkunpark

Figure 7.12: Timed Generator for the Parking Specification

Example 145 Let us consider the setup of Example 116. Here the problem arises be-

cause α has two different upper bounds. This problem does not arise in the framework of

timed generators because the time bounds are local to each state. The corresponding timed

generator is shown in Figure 7.11. 2

Example 146 Let us consider the setup of Example 118. A timed generator that generates

the language L is shown in Figure 7.13. A timed generator that generates the language H

is shown in Figure 7.14. Now it is easily seen that the language K is no longer controllable

with respect to the timed generator of H. This is due to the fact that the timed generator

of H contains information regarding the control action used to synthesize H. As a result,

the event α is no longer prohibitible at the initial state (its upper bound is not ∞). 2
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x0,
∞ ∞
0 0

x1,
- -
- -

x2,
- -
- -

α β

Figure 7.13: Timed Generator that generates L of Example 118

x0,
0 ∞
0 0

x1,
- -
- -

x2,
- -
- -

α β

Figure 7.14: Timed Generator that generates H of Example 118

7.8. Derivation of a TG from an ATG

Thus far in this chapter we have specified timed generators directly. The timed generator

framework has been laid down without explicitly mentioning activity or timed transition

graphs. However it may sometimes be convenient to specify a physical system using an

ATG. In this section we show how we may derive an equivalent timed generator repre-

sentation. Let A be an ATG and assume that the time bounds for the various events
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are given. We are interested in finding a timed generator model G for the system mod-

elled by A. Let TA and PA represent the TTG and the TATG corresponding to A. Then

L (PA) = Qt (L (TA)) and Lm (PA) = Qt (Lm (TA)) where Qt is the natural projection

that removes the occurrences of the tick event. The language L (PA) reflects the various

phase relationships between the events of the system modelled by A. Thus any timed gen-

erator modelling the same physical system should also generate L (PA) . In particular, we

must have L (G) = L (PA) and Lm (G) = Lm (PA) . This can be done by choosing PA as

the underlying automaton for G, i.e. by setting UG = PA. We also need to specify the

timer functions for G. In order to do that, we make the following two observations.

1. The state set XPA of PA can be induced from an appropriate cover of the state set

XTA of TA [HU79]. This process is called subset-construction. So with each state

x ∈ XPA we can associate a subset TAx ⊆ XTA. With each state q ∈ XTA there is

an associated timer matrix Tq which reflects the status of the various event timers at

q. Let

Bx = {Tq : q ∈ TAx}

be the set of timer matrices corresponding to the subset TAx.

2. Let w ∈ L (PA) be a string corresponding to a state x ∈ XPA. Recall from Chapter

6 that

Sw =
{
s ∈ L (TA) ∩ ΣTA∗ΣPA : Qt (s) = w

}
is the set of strings in L (TA) that correspond to w. Let

B′
x = {Ts : s ∈ Sw}

be the set of timer matrices corresponding to the strings in Sw. These timer matrices
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reflect the status of the event timers after the occurrence of a string s. From Section

6.4 we know that a partial order can be defined on B′
x under which the minimal and

maximal elements correspond to the shortest and longest prefix path strings in Sw.

Now the timer functions can be defined in accordance with the minimal and maximal

elements of B′
x. However, B′

x is not easy to compute directly. On the other hand, Bx can

be easily constructed but, in general, it is bigger than B′
x , i.e. Bx ⊇ B′

x. This can be seen

as follows. Every string s ∈ Sw belongs to L (TA) and Qt (s) = w. Now w corresponds

to x ∈ XTA so Ts ∈ Bx. Thus we want to consider only those elements of Bx which also

belong to B′
x. In other words, we can represent the set B′

x as

B′
x =

{
Tq : q ∈ TAx and x corresonds to some s ∈ L (TA) ∩ ΣTA∗ΣPA

}
.

Now B′
x can be easily constructed from the knowledge of TA and PA. Let Tmin (x) and

Tmax (x) be the minimal and maximal elements of B′
x . Let σ ∈ ΣPA = Σ. Then the timer

function fG
σ : X → B can be defined as

fG
σ (x) = (u, l)

where u is the upper timer value of σ in Tmin (x) and l is the lower timer value of σ in

Tmax (x) . In addition, if σ ∈ Σf then mσ (x) is set equal to the lower timer value of σ in

Tmin (x) . Since Tmax (x) is the prefix longest path, we can be sure that lσ (x) represents the

smallest time (as measured by the digital clock) that must elapse before σ may occur at x.

Similarly, we can be sure that uσ (x) represents the greatest time that may elapse before σ

must occur at x. We have also defined mσ (x) to be equal to the lower timer value of σ in

Tmin (x) . We present a small example to clarify the reason behind this choice.
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Example 147 Let A be an ATG as shown in Figure 7.15. Let us assume that the default

α β

β
A

Figure 7.15: Reason for setting mσ: ATG

timer values are given by the following triples: (α, 0, 1) and (β, 1, 1) . The corresponding

TTG, GA, is shown in Figure 7.16. Let us assume that β is a forcible event. Now consider

the scenario where α has occurred at the initial state. The system could be in either of the

states shown in the dashed rectangle. So the lower bound of β could be either 0 or 1. Clearly

the value of mβ should not be less than the lower bound. From Chapter 6 we know that the

maximal value of the lower bound corresponds to the shortest prefix string. So we set mβ

equal to 1 in this case. 2

We now illustrate the overall derivation process with the help of a simple example.

Example 148 Let A be an ATG as shown in Figure 7.17. Let us assume that the default

timer values are given by the following triples: (α, 0, 1) and (β, 1, 1) . The corresponding

TTG, GA, is shown in Figure 7.18. The timer matrix corresponding to each state is

shown in the corresponding node of the graph. The timed activity transition graph PA is

shown in Figure 7.19. Next to each state of the TATG, we have shown the corresponding
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1  1

0  1

1  1

0  1
1  1

0  0

1  1

0  0
1  1

0  1

1  1

0  1

α t

t α β

β

GA

Figure 7.16: Reason for setting mσ: TTG

α,β α,β

Figure 7.17: ATG A for which an equivalent TG is to be found

subset of the state set of GA. From this we get

B0 = {0, 1} B1 = {2, 3, 6}

B2 = {4} B3 = {5, 7, 8, 9, 10} .

It can be seen from Figure 7.18 that state 1 in GA corresponds to the string t and therefore



7.8. DERIVATION OF A TG FROM AN ATG 195

1 1
0 1

0 0
0 0

1 1
0 1

1 0
0 0

0 1
0 1

1 1
0 1

0 0
0 0

1 1
0 1

1 1
0 1

1 1
0 1

1 1
0 1

t α

β αα

α β α

t

α β

Figure 7.18: TTG GA

α β

α,β α

0

1

3

2

{0,1}

{2,3,6}
{4}

{5,7,8,9,10}PA

Figure 7.19: TATG PA

it must belong to B0 − B′
0. Similarly, state 6 in GA corresponds to the string αt and
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therefore it must belong to B1 −B′
1. This gives

B′
0 = {0} B′

1 = {2, 3}

B′
2 = {4} B′

3 = {5, 7, 8, 9, 10}

and

Tmin (0) =

 1 1

0 1

 Tmax (0) =

 1 1

0 1


Tmin (1) =

 1 1

0 1

 Tmax (1) =

 1 0

0 0


Tmin (2) =

 0 1

0 1

 Tmax (2) =

 0 1

0 1


Tmin (3) =

 1 1

0 1

 Tmax (3) =

 1 1

0 1



.

The derived timed generator is shown in Figure 7.20. 2

0, 1 1
0 1

1, 1 1
0 0

2, 0 -
0 -

3, - -
- -

α β

α,β α

Figure 7.20: Derived Timed Generator G
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Remark 5 Each state in an ATG may give rise to
∏

σ∈Σ t0σ states in the corresponding

TTG where

t0σ :=

 uσ if uσ 6= ∞

lσ otherwise

is the default timer value of an event σ. This is the reason why a TTG may be much bigger

in size than the ATG. We have shown a number of examples where a timed generator

provides a much more compact representation than a TTG. However, if we are deriving a

timed generator from an ATG then it is possible that the timed generator is even bigger

in size than the corresponding TTG. This may be explained as follows. It is no longer

sufficient to give one number, namely t0σ, to specify the timer values of σ. The lower and

upper bounds of σ may vary from state to state. Thus each state in an ATG may give rise

to
∏

σ∈Σ (lσ · u′
σ) states in the timed generator, where

u′
σ :=

 uσ if uσ 6= ∞

1 otherwise
.

Luckily, the number of states in the timed generator is usually far fewer. A typical scenario

where the number of states in a timed generator is more than the number of states in a

TTG is when the ATG has a lot of self-looped events with finite upper bounds.

7.9. Synchronous Composition of Timed Generators

In this section we show how to compose timed generators. Often a system comprises many

subsystems and the overall system behaviour is due to the concurrent operation of the

subsystems. The timed generator model of such a system may be obtained by forming the

synchronous composition of the timed generators of the subsystems. When the subsystems
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are defined over the same alphabet then the synchronous composition reduces to the meet

defined in Definition 138. We present an algorithm for forming the synchronous composition

of timed generators. The procedure is quite similar to the derivation of a timed generator

from an ATG: we want to find the timer values corresponding to the shortest and longest

paths in the concurrent operation of two timed generators. This is much simpler than the

corresponding problem in a timed transition graph due to the fact that we already know the

timer functions in the component timed generators. The timer functions for the composite

system can be found by simple arithmetic manipulations; there is no need to compute the

actual paths. For example, consider the concurrent operation of two machines and assume

that an event α1 is eligible in the first machine and an event α2 is eligible in the second

machine. Now presume that α1 occurs in the first machine. The task now is to find the

timer values corresponding to the various events. The timer values corresponding to all

the events in the first machine can be easily deduced from its timer functions. The timer

values corresponding to α2 may be inferred as follows. Since α1 could not have occurred

before lα1 time units it follows that α2 has at most uα2

.
− lα1 time units before it is forced

to occur. Similarly, since α1 could not have taken longer than uα1 time units to occur it

follows that α2 can occur no earlier than lα2

.
− uα1 time units. The timer values for the

remaining eligible events in the second machine may be computed similarly. The complete

algorithm is given in Appendix B.

7.10. Design Examples Using Timed Generators

We now present a couple of examples to illustrate control design with timed generators.

Example 149 Let us consider a simple factory comprising two machines and a buffer

connecting them. The setup is shown in Figure 7.21. Machine G1 takes its input from a
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G1 G2

1-Slot
Buffer

Figure 7.21: A Simple Factory Setup

never-ending source of raw materials and deposits a semi-finished product into a one slot

buffer. Machine G2 takes its input from the buffer and deposits the final product into an

unfillable storage space. The timed generators for G1 and G2 are shown in Figure 7.22.

Here αi represents the machine Gi starting its operation while βi represents the machine

0, ∞ -
1  -

1, - 2
- 2

α1 β1

G1

0, ∞ -
2 -

1, - 2
- 2

α2 β2

G2

Figure 7.22: Component Machines of the Simple Factory

finishing its operation. Let us assume that αi are forcible and initially prohibitible while

βi are uncontrollable. It is assumed that mGi
αi

(x) = lGi
αi

(x) for i = 1, 2 and x = 0, 1. The

concurrent operation of the two machines is given by their synchronous composition G

partly shown in Figure 7.23. The timed generator G has 16 states and 27 transitions. A

TTG representation of this setup has 30 states and 42 transitions. Further note that an

increase in the clock frequency would not affect the size of G; the timer values would just

have to be increased by the same factor.

Let us impose two specifications on this setup. The first specification is a behavioural

specification requiring that the buffer should neither overflow nor underflow. This can be
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0, ∞ - ∞ -
1  -  2 -

1, - 2  ∞ -
- 2   0 -

2, ∞ -  - 2
0 -  - 2

5, - 2  - 2
- 0  - 2

3, ∞ - ∞ -
1  -  0 -

4, ∞ - ∞ -
0  -  2 -

6, - 2  - 2
- 2  - 0

7, - 0 ∞ -
- 0  2 -

8, ∞ -  - 2
1  -  - 0

9, - 2 ∞ -
- 0  2 -

10, ∞ -  - 0
1  -  - 0

α1 α2

α2 α1

β2 β1

β1 β2

β1α1
β2 α2

α1 α2

β1 β2

β2
β1

Figure 7.23: Synchronous Composition of G1 and G2
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represented by the language shown in Figure 7.24. The second specification is a temporal

β1

α1,β2 β2

α2

Figure 7.24: Under/Overflow Specfication

specification requiring that the machine G2 should start its operation within two time units

whenever it can do so safely. The timed generator shown in Figure 7.25 represents the

maximal behaviour of the small factory subject to the buffer under/overflow specification.

The temporal specification can now be imposed by the timed generator shown in Figure 7.26

because mG
α2

(2) = 0. This specification simply sets to 1 the upper time bound of α2. The

overall controlled behaviour of the factory is the same as Figure 7.26. The event α2 is no

longer prohibitible if the buffer is nonempty. 2

Example 150 Here we consider a manufacturing cell presented in [Bra93, page 105]. The

manufacturing cell is shown in Figure 7.27 and consists of two machines (M1 and M2),

an input conveyor and an output conveyor. The input conveyor provides raw materials

from an infinite source to the two machines while the output conveyor deposits the finished

product into an infinite sink. Two types of parts, p1 and p2 are processed by both machines.

Part p1 takes 3 time units to be processed on M1 and 1 time unit on M2. Part p2 takes

2 time units on M1 and 4 time units on M2. The closed loop behaviour of the cell must

satisfy the following behavioural and temporal specifications.

Behavioural Specs: • A part can only be processed by one machine at a time,

• A p1 part must be processed first by M1 and then by M2,
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0, ∞ - - -
1  - - -

1, - 2 -  -
- 2 -  -

2, -  - ∞ -
-  -  0 -

3, ∞ -  - 2
0  -  - 2

4, ∞ 2 ∞ 2
1 2  2 0

5, ∞ - - -
0  - - -

6, - - - 0
- - - 0

7, - 2  - -
- 0  - -

α1

β1

α2

α1
β2

β2
β1

β2 α1

β1

Figure 7.25: Maximal Behaviour of the Small Factory subject to the Under/Overflow Spec
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0, ∞ - - -
1  - - -

1, - 2 -  -
- 2 -  -

2, -  -  1 -
-  -  0 -

3, ∞ -  - 2
0  -  - 2

4, ∞ 2 ∞ 2
1 2  2 0

5, ∞ - - -
0  - - -

6, - - - 0
- - - 0

7, - 2  - -
- 0  - -

α1

β1

α2

α1
β2

β2
β1

β2 α1

β1

Figure 7.26: Temporal Specification for the Small Factory
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Manufacturing Cell

M1 M2

Conveyor
1

Conveyor
2

p1M1

p1 p2
p1

p2

p2

Figure 7.27: A Manufacturing Cell

• A p2 part must be processed first by M2 and then by M1,

• One p1 part and one p2 part must be processed in each production cycle.

Temporal Specs: • A production cycle must take at most 10 time units to complete,

• The production cycle time is to be minimized.

The timed generators of M1 and M2 are shown in Figure 7.28. The events αij represent

machine Mi starting work on part pj while the events βij represent machine M2 finishing

work on part pj. The lower bounds of βij are assumed to be equal to 1. It is further assumed

that αij are forcible and prohibitible everywhere while βij are uncontrollable. It is further

assumed that mMi
αij

is the same as lMi
αij

at all the states. The synchronous composition of

M1 and M2 has 56 states and 121 transitions and represents the open loop behaviour of

the manufacturing cell. The TTG representation of the manufacturing cell has 81 states

and 121 transitions. So the TTG representation has 44 percent more states than the timed

generator representation.

We can impose the behavioural specifications exactly along the lines of [Bra93]. The

various behavioural specifications are shown in Figure 7.29. Specifications S1 and S2 ensure
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Manufacturing Cell

M1 M2

Conveyor
1

Conveyor
2

p1M1

p
1 p

2

p
1

p2

p2

0, ∞ - ∞ -
1  - 1  -

2, - 3 - -
- 3 - -

1, - 3 - -
- 3 - -

α11

β11

α12

β12M1

0, ∞ - ∞ -
1  -  1 -

2, - - - 4
- - - 4

1, - 1 - -
- 1 - -

α21

β21

α22

β22M2

Figure 7.28: Manufacturing Cell: M1 and M2

that only one machine processes a part at a time; specifications S3 and S4 impose the desired

order of processing; and specification S5 ensures that a production cycle includes a p1 as

well as a p2 part. The timed generator representing the optimal closed loop behaviour of the

manufacturing cell subject to the behavioural specification has 33 states and 42 transitions.

The TTG representation of this closed loop behaviour has 108 states and 144 transitions.
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α12

β12

α22

β22
∗ ∗ ∗

*={α11,β11,α21,β21}

S2

α11

β11

α21

β21
∗ ∗ ∗

*={α12,β12,α22,β22}

S1

β11

α21

α11,β21,∗
∗

*={α12,β12,α22,β22}

S3

β22

α12

α22,β12,∗
∗

*={α11,β11,α21,β21}

S4

∗

*={α11,β11,α12,α21,α22,β22}

S5

β21

β12

β12

β21∗ ∗

∗

Figure 7.29: Manufacturing Cell: Behavioural Specifications
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We now try to find out the minimum time it takes to complete a production cycle over

all possible paths. This will allow us to verify that a production cycle takes no longer than

10 time units as well as find the production cycle path that takes the least time. Since

we have no control over the uncontrollable events, we can only use the forcible events to

expedite the production cycle. We do this by forcing them to occur as soon as possible,

i.e. by setting the upper bound of a forcible event to the least possible value that can be

assigned to it. We can now compute the time it may take to finish a production cycle by

summing the upper bounds of all the events in a production cycle. It turns out that the

least time required for a production cycle is 7 units. One of the optimal production paths is

α22α11β11β22α21α12β21β12. 2

7.11. Summary

In this chapter we presented a new model for timed discrete event systems, namely timed

generators. We showed that timed generators are closed under control. This ensures

that further control design may be carried out on a system already under control. Timer

graphs scale well because time is modelled implicitly using timer functions. This feature

is especially useful when a system has events with widely different time scales as in the

case of the simple example of a parking setup where one event takes much longer to occur

than the other events. We showed that a timed generator provides a much more economical

representation of this setup than a timed transition graph. We showed that the RW notions

of controllability and supremal controllable sublanguages carry over to the timed generator

framework. We also showed that any system that can be modelled in the BW framework

can be modelled using timed generators. Finally, we presented a couple of examples to

illustrate the control design process using timed generators.



8. Conclusions

We have presented methods for complexity reduction in discrete event systems (DES). We

began by exploring the state explosion problem. The size of a DES increases multiplica-

tively with respect to the size of its component systems. So as the number of components

increases, the overall size of a DES can increase very rapidly even if the individual com-

ponents are relatively small in size. A centralized approach to the supervisory control of

such a DES may not be feasible. We presented a modular supervisory synthesis approach

for such systems. Our approach is symbolic in nature: it produces a function that can be

efficiently evaluated at each state to compute the control action. This is in contrast to

the standard practice of producing a lookup table for the supervisory control action. A

lookup table for a DES with a large number of states may be impractical to implement

so some sort of symbolic methodology may in fact be necessary. The main drawback of

our approach is that it does not handle nonblocking. The control action guarantees the

satisfaction of a given safety specification but may cause the system to block. However we

are able to extend our approach to implement deadlock-avoidance. Nonblockingness can be

achieved in a large number of systems as a result of deadlock-freeness but it is not possible

to know this apriori. Thus our symbolic supervision scheme is best suited for systems which

comprise a large number of subsystems but where nonblockingness is not a big concern. If

it is important to ensure nonblockingness then the standard RW approach may be more

suitable.

208
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In RW, a supervisor is implemented using an automaton. The supervision is carried

out by synchronizing the plant with the supervisor automaton. An event is permitted in

the plant only if it is also permitted in the supervisor automaton. Often the supervisor

automaton contains a lot more information than is necessary for control. This redundant

information often concerns the structure of the plant. Since the plant is synchronized with

the supervisor, it may be possible to remove this structural information from the supervisor

without affecting the control action. This may make it feasible to reduce the size of the

supervisor automaton. We present a heuristic greedy algorithm for supervisor reduction.

The algorithm constructs a new supervisor that provides the same control action as the

original supervisor. This is done by constructing an appropriate cover of the state set of

the original supervisor. There is no guarantee that the new supervisor is actually smaller

in size than the original supervisor. However the algorithm seems to perform quite well in

practice.

Finally we present a new and compact model for timed discrete event systems (TDES),

namely, timed generators. A timed generator comprises an automaton and timer functions

for each event in the alphabet of the automaton. A timer function for an event defines

upper and lower timer bounds on the occurrence of the event at any given state of the

automaton. We do not use any special events to model the passage of time; timers are used

instead. There are two timers corresponding to each event: one for the lower bound and one

for the upper bound. The timer functions are used to initialize these timers. Upon entering

a state, the timers are initialized and start counting down to zero. An event is considered

eligible to occur if its lower timer has counted down to zero. An event is forced to occur

when its upper timer has counted down to zero. We show that the timed generators are

closed under control. It is always possible to construct a timed generator that corresponds

to another timed generator under supervisory control. This addresses a major drawback
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of BW [Bra93],[BW94].

8.1. Limitations and Future Research

The symbolic supervisory scheme presented in this thesis does not handle nonblocking.

Nonblocking is an NP-complete problem and it is highly unlikely that an efficient and

general method can ever be found to achieve it. This clearly suggests that we should be

looking for special, yet not too restrictive, traits in a system that make it amenable to

the synthesis of nonblocking supervisory control. All natural complex systems are highly

hierarchical in nature and perhaps that is the best way of handling complexity. So a next

step in the symbolic supervision scheme could explore the decomposition of a system into

different level. We could explore the conditions under which a control function at a high

level would be implementable at a lower level. Similarly, we could look for conditions under

which nonblockingness at a high level guarantees nonblockingness at a lower level.

The symbolic supervision scheme is presented for the scenario where the plant comprises

various components but there is only one specification. If we have multiple specifications

then we have to construct their meet and use that as the overall specification. It would be

nice if the scheme could be extended for multiple specifications. Perhaps this can be done

by finding control functions for all the specifications separately and then composing them

somehow.

The framework of timed generators can be easily extended for modular decomposition

and control. However the case of hierarchical decomposition and control is not so clear.

A number of issues need to be resolved. For instance, does the clock have to remain the

same across different levels or is it possible to have different clocks for different levels?

It is easy to think of scenarios where the clock at a lower level has more resolution (i.e.



8.1. LIMITATIONS AND FUTURE RESEARCH 211

runs at a higher frequency) than the clock at a higher level. Since we use timers to model

the passage of time, intuitively there should no reason that prevents the usage of different

clocks at different levels. After all, there is no special event that models time and needs

to be reported to a higher level. But we still need to define timer functions at the higher

level. It seems inevitable that the output of these timer functions would depend on the

timer functions at the lower level. Thus we need to look carefully at the case of hierarchical

control in timed generators.

In Section 7.8 we have presented an algorithm for deriving a timed generator from an

activity transition graph. During each pass of the main loop of this algorithm we have to

compute the timer matrices corresponding to the prefix minimal and maximal paths. It

would be nice if the solutions from a previous step could be used to generate the solutions

at the current step. From Section 6.5.1 we know that the prefix minimal and maximal

solutions (strings) at one step cannot be used to generate the solutions at the next stage.

However it may still be possible to find a relation between their timer matrices.

Finally, it would be nice to extend to timed generators the symbolic supervision scheme

of Chapter 3. This would require defining appropriate distribution and join operations over

timed generators.



A. Some Proofs

A.1. Proof of Theorem 104

We first state and prove a result that will be useful in proving Theorem 104.

Lemma 151 For 2 ≤ k ≤ n,

i1 +
n∑

k=2

i′k = K1 + K2i1 (A.1)

where K1 ∈ N is a term which depends only on lαk
, and K2 ∈ {0, 1}.

Proof. We prove this result by induction on n.

Base Step: 1. Let n = 1. Then (A.1) holds with K1 = 0 and K2 = 1.

2. Let n = 2. Using (6.3) we know that i′2 is equal to either lα2 or lα2 − i1. Thus

(A.1) holds with either K1 = lα2 and K2 = 1 or with K1 = lα2 and K2 = 0.

Assumptive Step: Let us assume that (A.1) holds for all values less than or equal to

n− 1, i.e.

i1 +

j∑
k=2

i′k = Kj
1 + Kj

2i1, (A.2)

where Kj
1 ∈ N and Kj

2 ∈ {0, 1} for 2 ≤ j ≤ n− 1.

212
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Inductive Step: Assuming that (A.2) holds for 2 ≤ j ≤ n − 1, we need to show that

(A.1) holds. From (6.3) we know that

i′n =



lαn if (α1 · · ·αn−2αn /∈ A)

∨ (αn = αn−1)

lαn−̇i′n−1 if

 (α1 · · ·αn−3αn /∈ A)

∨ (αn = αn−2)


∧ (α1 · · ·αn−2αn ∈ A)

...

lαn−̇
(∑n−1

k=2 i′k + i1
)

if (αn ∈ Lact) ∧ (α1αn ∈ A)

∧ . . . ∧ (α1 · · ·αn−2αn ∈ A) .

If i′n = 0 then (A.1) reduces to (A.2) which is assumed to be true. Therefore we only

need to concern ourselves with the case when i′n 6= 0. In such a case, the assymetric

subtraction operator in the above equation can be replaced by the standard subtrac-

tion operator. So adding i1 +
∑n−1

k=2 i′k to both sides of the above equation and using

(A.2) we get

i1 +
n∑

k=2

i′k =



lαn + i1 +
∑n−1

k=2 i′k if (α1 · · ·αn−2αn /∈ A)

∨ (αn = αn−1)

lαn − i′n−1 if

 (α1 · · ·αn−3αn /∈ A)

∨ (αn = αn−2)


+i1 +

∑n−1
k=2 i′k ∧ (α1 · · ·αn−2αn ∈ A)

...

lαn −
(∑n−1

k=2 i′k + i1
)

if (αn ∈ Lact) ∧ (α1αn ∈ A)

+i1 +
∑n−1

k=2 i′k ∧ . . . ∧ (α1 · · ·αn−2αn ∈ A)
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=



lαn + i1 +
∑n−1

k=2 i′k if (α1 · · ·αn−2αn /∈ A)

∨ (αn = αn−1)

lαn + i1 +
∑n−2

k=2 i′k if

 (α1 · · ·αn−3αn /∈ A)

∨ (αn = αn−2)


∧ (α1 · · ·αn−2αn ∈ A)

...

lαn if (αn ∈ Lact) ∧ (α1αn ∈ A)

∧ . . . ∧ (α1 · · ·αn−2αn ∈ A)

=



(
lαn + Kn−1

1

)
+ Kn−1

2 i1 if (α1 · · ·αn−2αn /∈ A)

∨ (αn = αn−1)(
lαn + Kn−2

1

)
+ Kn−2

2 i1 if

 (α1 · · ·αn−3αn /∈ A)

∨ (αn = αn−2)


∧ (α1 · · ·αn−2αn ∈ A)

...

lαn if (αn ∈ A) ∧ (α1αn ∈ A)

∧ . . . ∧ (α1 · · ·αn−2αn ∈ A)

.

It is clear from the above equation that we can find K1 ∈ N and K2 ∈ {0, 1} to

satisfy (A.1) irrespective of the value taken by i′n.

We are now ready to prove Theorem 104. Assume that the solution to (6.5) is given

by an integer x and the solution to (6.6) is given by some integer y. Clearly, we must have

y ≥ x because x is the length of the shortest path. So all we need to do is show that y ≤ x;

we use induction on n to do that.

Base Step: Let n = 1. Then from (6.4) we know that y = lα1 = i∗1. Since lα1 is the lower
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bound on α1, we must have lα1 ≤ x.

Assumptive Step: Let us assume that the result holds for n− 1, i.e.

fn−1() = min
{i1|ti1α1∈M1[]}

(i1 + fn−1 (i1))

=
n−1∑
k=1

i∗k. (A.3)

Inductive Step: Given that (A.3) holds, we now need to show that the result holds for

n, i.e.

fn() =
n∑

k=1

i∗k.

From (6.5), we know that

fn() = min
{i1|ti1α1∈M1[]}

(i1 + fn (i1)) .

In the above equation, fn(i1) represents the number of ticks in the shortest string

among strings of the form ti2α2 · · · tinαn with the restriction that these strings must

be suffixes of the string ti1α1. Consider the sublanguage of L that would be generated

if the initial state of G were the state corresponding to ti1α1. In this sublanguage, we

can use (A.3) to find the number of ticks in the shortest strings among strings of the

form ti2α2 · · · tinαn. Then, adjusting for the subscripts, we have

fn(i1) =
n∑

k=2

i′k.
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We can now rewrite (6.5) as

fn() = min
{i1|ti1α1∈M1[]}

(i1 + fn (i1))

= min
{i1|ti1α1∈M1[]}

(
i1 +

n∑
k=2

i′k

)
= min

{i1|ti1α1∈M1[]}
(i1 + i′2 + · · ·+ i′n) . (A.4)

Using Lemma 151 we can rewrite (A.4) as

fn() = min
{i1|ti1α1∈M1[]}

(i1 + i′2 + · · ·+ i′n)

= min
{i1|ti1α1∈M1[]}

(K1 + K2i1) (A.5)

where K1 ∈ N and K2 ∈ {0, 1} . Since K1 is independent of i1, the minimization

problem is now trivial: we can solve (A.5) by assigning the smallest possible value to

i1. However, we know that i1 ≥ lα1 so i1 = lα1 = i∗1 is the solution to (A.5). Therefore

fn() = min
{i1|ti1α1∈M1[]}

(i1 + i′2 + · · ·+ i′n)

= i∗1 + i∗2 + · · ·+ i∗n

=
n∑

k=1

i∗k.

A.2. Proof of Theorem 105

We use induction on n to show that (6.8) is a solution to (6.7).
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Base Step: If n = 1 then j∗1 = lα1 which is the length of the shortest possible path.

Assumptive Step: Let us assume that the result holds for n− 1, i.e.

f ′
n−1() = min

{jn|tjnαn∈M ′
n[]}

(jn + f ′
2 (jn))

=
n∑

k=2

j∗k . (A.6)

Inductive Step: Now assuming that (A.6) holds, we need to show that (6.8) is the solution

to (6.7). Let ti
∗
1α1 · · · ti

∗
nαn be the (postfix) piecewise shortest path; from Theorem

104 we know that it must be also be an overall shortest path. Let tj
′
2α2 · · · tj

′
nαn be

the (postfix) piecewise shortest path starting at tj
∗
1 α1. Again, from Theorem 104 we

know that it must be a shortest path starting at tj
∗
1 α1.So (A.6) implies that

j′2 + · · ·+ j′n = j∗2 + · · ·+ j∗n.

Also, from Lemma 151, we have

j∗1 + j′2 + · · ·+ j′n = K1 + K2j
∗
1 ,

where K2 ∈ {0, 1} and K1 does not depend on j∗1 . This gives

j′2 + · · ·+ j′n = K1 + (K2 − 1) j∗1

Case 1: K2= 0. In this case, we have

j∗1 + j∗2 + · · ·+ j∗n = j∗1 + j′2 + · · ·+ j′n
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= j∗1 + K1 − j∗1

= K1.

Similarly, we must have

i∗1 + i∗2 + · · ·+ i∗n = i∗1 + K1 − i∗i

= K1

= j∗1 + j∗2 + · · ·+ j∗n

which implies that
∑n

k=1 j∗k must be the length of a shortest path since
∑n

k=1 i∗k

is the length of a shortest path.

Case 2: K2= 1. In this case, we have

j∗2 + · · ·+ j∗n = j′2 + · · ·+ j′n

= K1

= i∗2 + · · ·+ i∗n. (A.7)

Thus we must have tj
∗
1 α1t

i∗2α2 · · · ti
∗
nαn ∈ L as shown below. Let k ∈ {2, . . . , n}

be the first index such that j′k 6= i∗k. From (6.3) we know that it is only possible

if αk has been enabled since ε; in that case we must have

i∗k − j′k = j∗1 − i∗1.
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If tj
∗
1 α1t

i∗2α2 · · · ti
∗
kαk /∈ L we must have

uαk
− lαk

< i∗k − j′k

= j∗1 − i∗1. (A.8)

We also must have

j∗1 + j∗2 + · · ·+ j∗k ≤ uαk

because αk has been enabled since ε. Therefore, using (A.8), we get

j∗2 + · · ·+ j∗k ≤ uαk
− j∗1

< (lαk
+ j∗1 − i∗1)− j∗1

= lαk
− i∗1

= i∗2 + · · ·+ i∗k.

Since j∗2 + · · · + j∗n = i∗2 + · · · + i∗n we must have j∗k+1 + · · · + j∗n > i∗k+1 +

· · · + i∗n which is in contradiction to our assumption that j∗k+1 + · · · + j∗n is the

length of a shortest path between αk and αn. Thus tj
∗
1 α1t

i∗2α2 · · · ti
∗
kαk ∈ L.

The whole argument can now be repeated by taking tj
∗
1 α1t

i∗2α2 · · · ti
∗
kαk as the

starting point and so on to conclude that tj
∗
1 α1t

i∗2α2 · · · ti
∗
nαn ∈ L. Now, in turn,

we must have that ti
∗
1α1t

j∗2 α2 · · · tj
∗
nαn ∈ L as shown below. Assume that αl,

l ∈ {2, . . . , n} , was last enabled after the occurrence of αh, h ∈ {0, · · · , n− 1} ,

h < l, with the convention that α0 = ε. Then, we must have uαl
≥ max(i∗h+1 +

· · ·+ i∗l , j
∗
h+1 + · · ·+ jl). This, in conjunction with the fact that i∗1 ≤ j∗1 , implies

that ti
∗
1α1t

j∗2 α2 · · · tj
∗
nαn ∈ L. Since i∗1 is the shortest possible delay before the
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occurrence of α1, and ti
∗
1α1t

j∗2 α2 · · · tj
∗
nαn ∈ L, we must have j∗1 = i∗1. This, along

with (A.7), implies

j∗1 + j∗2 + · · ·+ j∗n = i∗1 + j∗2 + · · ·+ j∗n

= i∗1 + i∗2 + · · ·+ i∗n

which is the desired result



B. Synchronous Composition of Timed

Generators

proc sync

input: G1,G2

output: G : the synchronous composition of G1 and G2

begin

H := synchronous product of the automata UG1 and UG2 ;

counter = 0;

E := ∅;

unprocessed := {0};

X := {0};

stateInH[0] := xH
0 ;

for σ ∈ Σ do

if σ ∈ ΣG1 then

fG
σ [0] := (uG1

σ (xG1
0 ), lG1

σ (xG1
0 ));

else

fG
σ [0] := (uG2

σ (xG2
0 ), lG2

σ (xG2
0 ));

endif

if σ ∈ ΣG1
f ∩ ΣG2

f then

221
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mG
σ [0] := max(mG1

σ (xG1
0 ), mG2

σ (xG2
0 ));

endif

endfor

while unprocessed 6= ∅ do

let source be an element of unprocessed

unprocessed := unprocessed− {source};

sourceH := stateInH[source];

x1 := first component of sourceH;

x2 := second component of sourceH;

for all σ ∈ Elig(H, sourceH) do

targetH := ηH(sourceH, σ);

y1 := first component of targetH;

y2 := second component of targetH;

if σ ∈ ΣG1 then

for all α ∈ Σ do

if α ∈ ΣG1 − ΣG2 then

Uα := uG1
α (y1);

Lα := lG1
α (y1);

if α ∈ ΣG1
f then

Mα := mG1
α (y1);

endif

elseif α ∈ ΣG1 ∩ ΣG2 then

Uα := min(uG1
α (y1), u

G2
α (y2));

Lα := max(lG1
α (y1), l

G2
α (y2));
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if α ∈ ΣG1
f ∩ ΣG2

f then

Mα := max(mG1
α (y1), m

G2
α (y2));

endif

else

Uα := uG
α (source)

.
− lG1

α (x1);

Lα := lGα (source)
.
− uG1

α (x1);

if α ∈ ΣG2
f then

Mα := mG
α (source)

.
− lG1

σ (x1);

endif

endif

endfor

else

for all α ∈ Σ do

if α ∈ ΣG2 − ΣG1 then

Uα := uG2
α (y2);

Lα := lG2
α (y2);

if α ∈ ΣG2
f then

Mα := mG2
α (y2);

endif

elseif α ∈ ΣG1 ∩ ΣG2 then

Uα := min(uG1
α (y1), u

G2
α (y2));

Lα := max(lG1
α (y1), l

G2
α (y2));

if α ∈ ΣG1
f ∩ ΣG2

f then

Mα := max(mG1
α (y1), m

G2
α (y2));
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endif

else

Uα := uG
α (source)

.
− lG2

α (x2);

Lα := lGα (source)
.
− uG2

α (x2);

if α ∈ ΣG1
f then

Mα := mG
α (source)

.
− lG2

σ (x2);

endif

endif

endfor

endif

if (@x ∈ X)[stateInH[x] = targetH ∧ (∀α ∈ Σ)(fα[x] = (Uα, Lα) ∧mα[x] = Mα)] then

counter := counter + 1;

target := counter;

stateInH[target] := targetH;

X := X ∪ {target};

unprocessed := unprocessed ∪ {target};

for all α ∈ Σ do

fα[target] := (Uα, Lα);

if α ∈ ΣG1
f ∩ ΣG2

f then

mα[target] := Mα;

endif

endfor

else

let target := x s.t. stateInH[x] = target and (∀α ∈ Σ)(fα[x] = (Uα, Lα));
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endif

E := E ∪ {(source, σ, target)};

endfor

endwhile

Xm := X ∩ {x : stateInH[x] ∈ Hm};

F := {fσ : σ ∈ Σ};

G := (X, ΣG1 ∪ ΣG2 , E, 0, Xm, F);

end
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