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Problem

Distributed Control Design

Plant: a collection of agents

Specification: desired collective behavior

Objective: individual strategy synthesis;
optimal andnonblocking
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Motivation

Flocking Schooling Foraging

Observations on
animal groups

Design of
man-made systems
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System architectures

Distributed
architecture

controller1 controller2 controller3

agent1 agent2 agent3

synchronized through shared events
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Small-scale systems

agent1 agent2 agent3

supervisor

agent1 agent2 agent3

controller1 controller2 controller3

Optimal & Nonblocking

Assumption: monolithic supervisor computable
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Small-scale systems

Localization

agent1 agent2 agent3

supervisor

agent1 agent2 agent3

controller1 controller2 controller3

Optimal & Nonblocking

Assumption: monolithic supervisor computable

Question: Can we design a localization algorithm that
preserves optimality and nonblockingness?
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Supervisor reduction

Plant:G = (Y,Σ, η, y0, Ym)
Supervisor:SUP= (X,Σ, ξ, x0, Xm)

Find a reduced supervisorSIM = (I,Σ, κ, i0, Im) s.t.

(1) control equivalence:

L(G) ∩ L(SIM ) = L(SUP)

Lm(G) ∩ Lm(SIM ) = Lm(SUP)

(2) state reduction (desirable in practice):

|I| ≪ |X|
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Supervisor reduction (cont’d)

Disablement information
E : X → Pwr(Σ)

x 7→ {σ ∈ Σ|ξ(x, σ)!}
D : X → Pwr(Σc)

x 7→ {σ ∈ Σc|¬ξ(x, σ)! &
(∃s ∈ Σ∗)[ξ(x0, s) = x & η(y0, sσ)!]}

Marking information
M : X → {0, 1}

M(x) = 1 iff x ∈ Xm

T : X → {0, 1}
T (x) = 1 iff (∃s ∈ Σ∗)ξ(x0, s) = x & η(y0, s) ∈ Ym
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Supervisor reduction (cont’d)

Control consistency relationR ⊆ X × X
(x, x′) ∈ R iff

(i) E(x) ∩ D(x′) = ∅ = E(x′) ∩ D(x)

(ii) T (x) = T (x′) ⇒ M(x) = M(x′)

Let C = {Xi ⊆ X|i ∈ I} be acover onX.
C is acontrol coverif

(i) (∀i ∈ I)(∀x, x′ ∈ Xi) (x, x′) ∈ R

(ii) (∀i ∈ I)(∀σ ∈ Σ)(∃j ∈ I)[(∀x ∈ Xi)ξ(x, σ)! ⇒
ξ(x, σ) ∈ Xj]

Further, ifC is apartition onX,
thenC is acontrol congruence.
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Supervisor reduction (cont’d)

Construct an induced generatorSIM = (I,Σ, κ, i0, Im)

(i) i0 ∈ I s.t.x0 ∈ Xi0

(ii) Im = {i ∈ I|Xi ∩ Xm 6= ∅}

(iii) κ : I × Σ → I (pfn) with κ(i, σ) = j if
(∃x ∈ Xi)ξ(x, σ) ∈ Xj & (∀x′ ∈ Xi)[ξ(x

′, σ)! ⇒
ξ(x′, σ) ∈ Xj]

Result: SIM is a reduced supervisor.
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Localization – structural analysis
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Localization – structural analysis

supervisor

agent1
(α)

agent2
(β)

state set X

control information wrt α

control information wrt β

control information wrt α

control consistency relation on X

Xlocalization

x1

x2
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x6
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+
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Localization – algorithmic implementation

Our algorithm provably

decomposes monolithic supervisor to local controllers;

preserves optimality and nonblockingness;

has time-complexity ofO(n4),
wheren is the state size of monolithic supervisor.
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Large-scale systems

Problem: state space explosion,
monolithic supervisor not feasibly computable

agent1 agent n

controller1 controller n· · ·

· · ·

?

agent1 agent n· · ·
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Large-scale systems

Problem: state space explosion,
monolithic supervisor not feasibly computable

Approach: modular supervisory control+ localization

supervisor1 supervisor m

coordinator1 coordinator k

coordinator

· · ·

· · ·

Localization

agent1 agent n

controller1 controller n· · ·

· · ·agent1 agent n· · ·

Optimal & Nonblocking
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Solution

A decomposition-aggregation procedure

agent1 agent2 agent3

specification1

agent4

specification2 specification3

agent5

specification4

15



Solution

A decomposition-aggregation procedure

agent1 agent2 agent3

supervisor1

agent4

supervisor2 supervisor3

agent5

supervisor4

15



Solution

A decomposition-aggregation procedure

agent1 agent2 agent3 agent4 agent5

supervisor1 supervisor2 supervisor4

coordinator1

supervisor3

15



Solution
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Solution

A decomposition-aggregation procedure

Localize !
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Example 1: Automated Guided Vehicles
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IPS2

WS1

WS2

WS3

CPS

Z1

AGV2AGV1 AGV2

AGV1

AGV1

AGV2
enters

AGV1

AGV2

AGV2

AGV1
enters

supervisor controller1 controller2

Localization

enters

exits

enters

exits
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Example 2: Production Cell
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Example 2: Production Cell
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Example 2: Production Cell

fb1
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Example 2: Production Cell
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Example 2: Production Cell

press
rotary

arm2

arm1

(1) press is not at bottom

& (2) arm2 is not of length 0

& (3) rotary base is at 35 deg

base

Collision iff

press

ro to 35
arm2 80

ro to 35
arm2 80

ro -90
arm2 0

ro -90
arm2 0

arm2 0

arm2 80
ro to -90

ro 35
ro to -90

ro 35

press ascend press ascend

press ascend
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Architectural comparison

Distributed vs. decentralized:

agent1 agent2 agent3

supervisor1 supervisor2

coordinator

Distributed

controller1 controller2 controller3

agent1 agent2 agent3

synchronized through shared events

Decentralized
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Architectural comparison

Distributed vs. decentralized:

agent1 agent2 agent3

supervisor1 supervisor2

coordinator

Distributed

controller1 controller2 controller3

agent1 agent2 agent3

synchronized through shared events

Decentralized

Key factors:state size, computing load, observation
scope

Key issues:cost-benefit tradeoffs, system robustness,
criteria for architectural choice
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Comparison 1
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Comparison 2

at degree 90◦
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Comparison 2
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Comparison 3
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Comparison 3

Ta_SBf

FB_s1Off

FB_O Ta_U

FEED BELT

Ta_SBf

FB_s1Off

FB_O

TABLE

Ta_U

FB_s1Off

LOCALIZATION

Decentralized Supervisor

24



Conclusions

Language-based model:
supervisor localization algorithm
(small-scale systems)
decomposition-aggregation procedure
(large-scale systems)

State-based model:state tree structure (STS),
efficient monolithic supervisor synthesis

STS-based supervisor localization algorithm
(small-scale systems)

Trade-offsbetween decentralized control and distributed
control
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Future work

STS-based supervisor localization algorithms forvery
(!) large-scalesystems

Extensivequantitative trade-offsbetween decentralized
control and distributed control

Application tofault tolerancevia localized controller
redundancy

Application tocollective behaviorof many agents:
formation control
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The Distributed Control Principle
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