
Int J Adv Manuf Technol
DOI 10.1007/s00170-010-2561-2

ORIGINAL ARTICLE

Supervisor localization for large discrete-event systems
Case study production cell

Kai Cai · W. M. Wonham

Received: 3 October 2009 / Accepted: 1 February 2010
© Springer-Verlag London Limited 2010

Abstract We study the design of distributed control
for large-scale discrete-event systems. Our approach,
called supervisor localization, allocates external super-
visory control action to individual plant components
as their internal control strategies. The approach is
demonstrated in detail on a benchmark application,
the Production Cell: a distributed control architecture
is established wherein every component acquires a set
of local controllers. Further, we provide a quantitative
analysis of tradeoffs between the distributed and de-
centralized architectures, thereby pointing the way to
criteria for architectural choice.

Keywords Discrete-event systems · Distributed
supervisory control · Supervisor localization

1 Introduction

Rapid developments of embedded and network tech-
nologies have made low-cost computing power and
efficient communication pervasive in engineering prac-
tice. These technological advances have brought about
significant changes in the design and implementation of
many large-scale industrial systems (like manufacturing

This work was supported in part by the Natural Sciences and
Engineering Research Council (Canada), Grant no. 7399.

K. Cai (B) · W. M. Wonham
Systems Control Group, Department of Electrical
and Computer Engineering, University of Toronto,
Toronto, M5S 3G4, Ontario, Canada
e-mail: caikai@control.utoronto.ca

W. M. Wonham
e-mail: wonham@control.utoronto.ca

cells and chemical plants). In particular, there is a
trend toward systems of smart agents, where systemic
computation is distributed among individual compo-
nent agents, and global supervision is replaced with
agents’ local decision-making supported by information
exchange among peers.

In the spirit of smart agent systems, we proposed
[1–4] a novel distributed control paradigm for discrete-
event systems (DES) in the framework of supervisory
control theory (SCT) [13, 22]. We assume that the plant
to be controlled comprises independent asynchronous
components, which are coupled implicitly through con-
trol specifications.1 The objective of distributed control
is to allocate control action to each individual compo-
nent in such a way that the resulting private or localized
controllers collectively achieve optimal (i.e., minimally
restrictive) and nonblocking controlled behavior for
the overall system. Under this scheme, each private
controller controls only its own (controllable) events,
although it may very well need to observe events origi-
nating in other components.

Distinct, though related, control architectures are
decentralized, hierarchical, and heterarchical (e.g., [6,
20, 24]). Both distributed and these modular ap-
proaches aim to achieve efficient computation and
transparent control logic, while realizing global opti-
mality and nonblockingness. A structural distinction,
however, is that, with modular supervision, the global
control action is typically allocated among specialized
supervisors enforcing individual specifications. By con-
trast, with our distributed supervision, it is allocated

1This assumption is commonly adopted in dealing with practical
DES control problems (e.g., [6, 9, 19]).

Int J Adv Manuf Technol

among the individual active (i.e., plant) components.
Intuitively, one could think of the modular architec-
tures as employing ‘intelligent’ supervisors to direct
‘dumb’ components, while our distributed paradigm
as equipping components with embedded controllers,
thereby turning them into ‘smart agents’.

To address control design in the distributed architec-
ture, we developed [1–4] an algorithm called supervi-
sor localization (SL), which decomposes a synthesized
monolithic supervisor into local controllers for indi-
vidual active components. It is then proved that the
family of local controllers (one for each component)
provides the same global control action as the mono-
lithic supervisor did—and is therefore optimal and
nonblocking for the entire plant. In the case of large-
scale systems,2 owing to state explosion the monolithic
supervisor may not be feasibly computable. Indeed,
Gohari and Wonham [8] proved that the monolithic
supervisor synthesis is NP-hard, inasmuch as the state
space size grows exponentially in the number of indi-
vidual plant components and specifications. To manage
such complexity, we proposed [3, 4] combining the
SL algorithm with a flexible heterarchical architecture
[6] which reduces computational effort in localization.
This combination leads to a decomposition-aggregation
procedure (DAP): First design an organization of mod-
ular supervisors that achieves global optimality and
nonblockingness; then apply SL to decompose each of
these modular supervisors into local controllers for the
relevant components.

We note that a recent paper [16] proposed a scheme
similar in general terms to our own, but proposed a
control synthesis that amounts merely to making copies
of the (reduced) monolithic supervisor for each compo-
nent, with certain corresponding, extraneous selfloops
removed. By contrast, our SL algorithm is suitably
adapted from supervisor reduction [18]—for each com-
ponent in turn, we reduce a given supervisor in a
way that depends on the controllable events specific
to that component alone—thus achieving a truly local
result. Moreover, [16] did not provide an approach to
large systems, while our proposed DAP [3, 4] is an
effective solution procedure that combines the SL algo-
rithm with a (more-or-less universal) modular architec-
ture [6].

In this paper and its conference precursor [3], we
study in detail the distributed control design of a bench-
mark application, the Production Cell, having state size

2We take the pragmatic view that a system is large-scale when-
ever “it is made up of a large number of parts that interact in a
nonsimple way” [17].

of order 108. The primary contribution of this study is
the demonstration that the SL algorithm [1–4] and the
modular theory in [6] can be combined to provide an
effective attack on large-scale systems. Further, in the
present paper, we provide detailed tradeoffs between
the localization result for the Production Cell and the
decentralized result [7] previously derived for the same
example. This type of analysis could help a designer to
choose between the competing control architectures.

The rest of the paper is organized as follows: First,
in Section 2, we briefly review the distributed control
theory for large-scale DES. In Sections 3 and 4, we
describe the Production Cell system and present the
solution to the distributed control problem. Then, we
make quantitative comparisons between the distributed
and decentralized architectures in Section 5. Finally, we
state conclusions in Section 6.

2 Distributed control theory

2.1 Problem formulation

The plant to be controlled is modelled by a (non-
empty) generator G defined over a (finite) alpha-
bet �, with closed and marked languages L(G) and
Lm(G) [22]. The alphabet � is partitioned into the
controllable event subset �c and the uncontrollable
subset �u, written � = �c ∪̇ �u. Consider the case
where G consists of asynchronous components Gk (k ∈
K,K an index set), called ‘active’. Namely, the Gk are
defined over pairwise disjoint alphabets �k, with � =⋃̇{�k|k ∈ K}. Let Lk := L(Gk) and Lm,k := Lm(Gk);
then, we have L(G) = ||{Lk|k ∈ K} and Lm(G) =
||{Lm,k|k ∈ K}, where “||” denotes synchronous product
[22]. For simplicity, we assume that, for every k ∈ K,
Gk is nonblocking (i.e., the pref ix-closure [22] L̄m,k =
Lk). Then, G is necessarily nonblocking (i.e., L̄m(G) =
L(G)).

The components are implicitly coupled through a
control specification language E that imposes behav-
ioral constraints on G. As in the literature (e.g., [12,
19]), assume that E is decomposable into specifications
Ep ⊆ �∗

e,p (p ∈ P , P an index set), where the �e,p ⊆ �

need not be pairwise disjoint; namely, E = ||{Ep|p ∈
P}. Thus, E is defined over �e := ⋃{�e,p|p ∈ P}. Let
Pe : �∗ → �∗

e be the corresponding natural projec-
tion [22], and write P−1

e : Pwr(�∗
e) → Pwr(�∗) for the

inverse-image function of Pe, where Pwr(·) denotes
powerset.

Let F ⊆ �∗, and recall that F is controllable [22]
(with respect to G) if F̄�u ∩ L(G) ⊆ F̄ (where F̄ is the
prefix-closure of F). Whether or not F is controllable,

Int J Adv Manuf Technol

we denote by C(F) the family of all controllable sub-
languages of F. Then, C(F) is nonempty and contains a
(unique) supremal element, denoted sup C(F) [22, 23].

For the plant G and the specification E described
above, let a generator SUP (over �) be the corre-
sponding monolithic supervisor that is optimal and
nonblocking. Since we are concerned with large-scale
DES, assume that SUP is not feasibly computable.
The marked language of SUP can, nevertheless, be
expressed algebraically as Lm(SUP) = sup C(P−1

e E ∩
Lm(G)).

Now we define local controllers for individual com-
ponents. With � = �c ∪̇ �u, we assign control structure
to each component as follows:

�k
c = �k ∩ �c, �k

u = �k ∩ �u.

Fix k ∈ K. We say that a generator LOCk (over �) is
a local controller for component Gk if LOCk can disable
only events in �k

c . Precisely, for all s ∈ �∗ and σ ∈ �,
there holds

sσ ∈ L(G), s ∈ L
(
LOCk), sσ /∈ L

(
LOCk) ⇒ σ ∈ �k

c .

As to its observation, in nontrivial cases3 LOCk

observes, and responds to, events generated by com-
ponents other than Gk, thereby ensuring correct local
control decisions. Thus, while a local controller’s con-
trol authority is strictly local, its observation scope need
not, and generally will not, be.4

We emphasize that, in supervisor localization, the
observation scope of each local controller emerges as
part of the result and is not specified a priori. How small
that scope can be will depend on how close our spe-
cialized supervisor reduction algorithm (of polynomial
complexity) is to being optimal (which is NP-hard);
see [4] for further details. This flexibility considerably
reduces the practical difficulties of implementing the
localized results, as compared to approaches evolved
from co-observability [14], where the directly observ-
able event sets of decentralized controllers are laid
down in advance (for a recent review, see, e.g., [10]).

We are ready to formulate the distributed control
problem (�): Construct for each component Gk (k ∈
K) a set of local controllers LOCk = {LOCk

ik |ik ∈ Ik}
(Ik an index set), with L(LOCk) = ⋂{L(LOCk

ik)|ik ∈
Ik} and Lm(LOCk) = ⋂{Lm(LOCk

ik)|ik ∈ Ik}. Further,
let LOC = {LOCk|k ∈ K} be the family of all local
controllers, with L(LOC) = ⋂{L(LOCk)|k ∈ K} and

3See [1, Section 2.6], [4, Section II-D], for the trivial case where
no coupling among components is imposed by specifications.
4For simplicity, we assume in this paper that observation of an
event is simultaneous with its occurrence.

Lm(LOC) = ⋂{Lm(LOCk)|k ∈ K}. It is then required
that

L(G) ∩ L(LOC) = L(SUP) (1a)

Lm(G) ∩ Lm(LOC) = Lm(SUP) (1b)

We say that the collection LOC of local controllers,
satisfying (1a) and (1b), is control equivalent to SUP
with respect to G.

For the sake of easy implementation and compre-
hensibility, it would be desired in practice that the
state sizes of local controllers be very much less than
that of their ‘parent’ monolithic supervisor; that is,
(∀k ∈ K, ∀ik ∈ Ik) |LOCk

ik |
 |SUP|, where | · | denotes
state size of the argument. Inasmuch as this property is
neither precise to state nor always achievable, it must
needs be omitted from the formal problem statement;
in applications, nevertheless, it should be kept in mind.

2.2 Solution procedure

We outline the solution procedure DAP to the dis-
tributed control problem (�) for large-scale DES. This
procedure consists of seven steps, of which the first
six systematically synthesize a group of modular
supervisors that achieves global optimal and nonblock-
ing control [6], and the last step applies the SL algo-
rithm [1–4] to decompose each of those synthesized
supervisors into local controllers. We now illustrate
DAP through the simple but representative example
displayed in Figs. 1 and 2; for a formal presentation of
the procedure, we refer the reader to [3, 4].

1. Plant model abstraction: Part of the plant dynamics
that is unrelated to the imposed specifications may
be concealed. By hiding irrelevant transitions, we
can simplify the models of components. The tech-
nique for model abstraction is to find for each com-
ponent a natural projection satisfying observer and
output control consistent properties [6, Sections II,

Fig. 1 Modular supervisor synthesis

Int J Adv Manuf Technol

Fig. 2 Modular supervisor localization

III]; such a projection preserves critical information
about the original component models with respect
to optimality and nonblockingness. For illustration,
see “Step 1” in Fig. 1, where the component Gi (i =
1, ..., 5) with a dashed box denotes its abstraction.

2. Decentralized supervisor synthesis: The system now
consists of component model abstractions and con-
trol specifications. Since each specification may
impose coupling only on a subset of component ab-
stractions, a corresponding optimal and nonblock-
ing decentralized supervisor can be synthesized, by
standard methods [22, 23], based only on those rel-
evant abstractions. This is displayed in Fig. 1, “Step
2,” where Ei (i = 1, ..., 4) denotes a specification
and Si the corresponding decentralized supervisor.

3. Subsystem decomposition and coordination: After
synthesizing decentralized supervisors, we view the
whole system as comprised of a set of modules,
each consisting of a decentralized supervisor with
associated component abstractions. In this step,
we decompose the overall system into small-scale
subsystems, through grouping these modules based
on their interconnection dependencies (e.g., event-
coupling). If the modules admit certain special
structure, control-f low net [5] is an effective ap-
proach for subsystem decomposition.
Having obtained a group of small subsystems, we
verify the nonblocking property for each of them.5

If a subsystem happens to be blocking, we design
a coordinator6 to resolve the conflict [6, Proposi-
tion 7, Theorem 4]. For the example in Fig. 1, in
“Step 3,” we decompose the system consisting of
four modules into two subsystems (Sub1 and Sub2),
leaving the supervisor S3 in between. In case Sub1

is blocking (i.e., the two supervisors S1 and S2 are

5We use TCT [21] procedure nonconflict for this verification.
6A coordinator is a generator that does not directly enforce a
‘safety’ specification, but only resolves conflict among decentral-
ized supervisors. In other words, a coordinator enforces only a
nonblocking specification.

Fig. 3 Top view of production cell

conflicting), a coordinator C1 is designed to resolve
this conflict.

4. Subsystem model abstraction: After ensuring non-
blockingness within each subsystem, we need to
verify the nonconflicting property for the group
of subsystems. Directly verifying this property re-
quires expensive computation; instead, we again
apply the technique of model abstraction to
simplify every subsystem, followed by the non-
conflicting check at the abstracted level. This is
illustrated in Fig. 1, “Step 4,” where the subsys-
tem Subi (i = 1, 2) with a dashed box denotes its
abstraction. In addition, for the intermediate su-
pervisor S3, we apply the reduction algorithm [18]
to obtain its (control-equivalent) reduced model,
denoted by RS3.

5. Abstracted subsystem decomposition and coordina-
tion: This step is analogous to Step 3), but for
subsystem model abstractions instead of modules.
Concretely, we organize subsystem abstractions
into groups according to their interconnection de-
pendencies (e.g., event-coupling). Again, control-
flow net may be an effective tool if a certain
special structure is present. Then, for each group,
we check if the included subsystem abstractions are
nonconflicting, and if not, design a coordinator to

ST_add

ST

FB_s1On

FB_s1Off

FB_F

FB_O

FB

Fig. 4 Plant models of stock and feed belt

Int J Adv Manuf Technol

Fig. 5 Interconnection of feed belt

resolve the conflict. In Fig. 1, “Step 5,” we treat the
two subsystem abstractions and the intermediate
reduced supervisor as a single group. If this group
turns out to be blocking, another coordinator C2 is
designed to resolve the conflict.

6. Higher-level abstraction: Repeat Steps 4 and 5 until
there remains a single group of subsystem abstrac-
tions in Step 5.
The modular control design terminates at Step
6; we have obtained a hierarchy of decentralized
supervisors and coordinators. Specifically, Step 2
produces a set of decentralized supervisors, and
Steps 3–6 iteratively generate a set of coordinators.
For the example in Fig. 1, a hierarchy of four decen-
tralized supervisors and two coordinators has been
synthesized.
While, in the previous Steps 1–6, we have generally
followed the prescription of [3, 4], other system-
atic approaches to the construction of heterarchical
controls (e.g., [15]) could serve as well. In this
sense, the required preparation is nonspecific for
our localization Step 7, which follows.

7. Decentralized supervisors and coordinators local-
ization: In this last step, we apply the SL algorithm
to localize each of these decentralized supervisors
and coordinators to local controllers for their rele-
vant components. To determine if a component is
related to a supervisor or coordinator, we employ
the criterion called control coupling7 [3, 4]. This
step for the running example is displayed in Fig. 2,
with dashed lines denoting the control coupling
relations among supervisors/coordinators and com-
ponents. Thus, we apply the localization algorithm
only with respect to entities joined by dashed lines.

Now, we state the main result, proved in [4].

7The control coupling relation can be determined by inspecting
the control data table generated by the TCT procedure condat
[21].

Cr_Off
FB_F

FB1

ST_add ST_add
Cr_Off

FB_F
Cr_Off

FB2

ST_add

FB_s1Off FB_s1Off FB_s1On

Fig. 6 Specification models of feed belt

Theorem 1 The procedure DAP solves the distributed
control problem (�).

3 Production cell: system description

This section and the next apply DAP to solve the dis-
tributed control problem for a benchmark application,
the Production Cell originating with [11], in a version
we adapt from [7]. We suitably modify the modeling
in [7] for clearer interpretation of the cell’s physical
operations; the order 108 of the system state size is kept
the same. In [7], optimal and nonblocking decentralized
supervision has been established by the modular ap-
proach in [6]. This result will now be carried further to
achieve our objective of distributed control: that is, the
allocation of the global control action among individual
active components.

Production Cell consists of nine asynchronous com-
ponents: stock, feed belt, elevating rotary table, ro-
tary base, arm1, arm2, press, deposit belt, and crane.
The cell processes workpieces, called “blanks,” as dis-
played in Fig. 3. In the following, we describe the
operation of each component.

Fig. 7 Interconnection of elevating rotary table

Int J Adv Manuf Technol

Ta_U Ta_STf

Ta_D
Ta_B

Ta_SBf

Ta_50 Ta_S50 f

Ta_C
Ta_0

Ta_S0 f

Ta_V

Ta_H

Ta_T

Ta_CC

Fig. 8 Plant model of elevating rotary table

3.1 Stock

Stock adds blanks into the cell by placing them on feed
belt (ST_add); see the generator ST in Fig. 4.8

3.2 Feed belt

Feed belt transports blanks towards table. According to
FB in Fig. 4, once loaded, the feed belt forwards blanks
(FB_F). Sensor1 at the end of the belt switches to “on”
when it detects the arrival of a blank (FB_s1On). Feed
belt outputs a blank onto table if the latter is available
(FB_O). Sensor1 switches to “off” when a blank leaves
(FB_s1Of f).

Feed belt interacts with stock, crane, and table
(as displayed in Fig. 5), subject to the following two
specifications (Fig. 6):

– FB1: Feed belt forwards (FB_F) only when there
are blanks loaded (by events Cr_Off or ST_add);
and it can hold at most two blanks.

– FB2: If there is already one blank on feed belt, then
for safety reasons a new blank is prohibited from
being loaded before the first reaches the end of the
belt and activates Sensor1 (FB_s1On).

3.3 Elevating rotary table

Table elevates and rotates in order to transfer blanks
from feed belt to arm1; see the illustration in Fig. 7.
As displayed in Fig. 8, the generators Ta_V and Ta_H
describe table’s vertical elevation and horizontal ro-
tation, respectively. Thus, the complete behavior of
table is represented by the synchronous product Ta :=
Ta_V || Ta_H. Specifically, after being loaded by feed
belt, table moves up (Ta_U , Ta_T, Ta_ST f) and turns
counterclockwise (CCW) to −50◦ (Ta_CC, Ta_50,
Ta_S50 f) for arm1 to pick up a blank. Thereafter,

8In generator models, by convention, we mark controllable
events with a tick on the corresponding arrows.

FB_s1Off

Ta_UTa_SBf

Ta1

Ta_STf

A1_mOnTa_D

Ta2

FB_s1Off

Ta_CCTa_S0 f

Ta3

Ta_S50 f

A1_mOnTa_C

Ta4

Ta_STf

Ro_90

Ro_90

A1T

Fig. 9 Specification models of elevating rotary table

table moves down (Ta_D, Ta_B, Ta_SBf) and turns
clockwise (CW) back to 0◦ (Ta_C, Ta_0,Ta_S0 f).

Table must synchronize with feed belt and arm1
when transferring blanks; the corresponding specifi-
cations are shown in Fig. 9:

– Ta1 and Ta3: Table accepts a blank from feed belt
(FB_s1Of f) only when it is at bottom (Ta_SBf)
and at angle 0◦ (Ta_S0 f); only after accepting a
blank is table permitted to move up (Ta_U) and
turn CCW (Ta_CC).

– Ta2 and Ta4: Table transports a blank to arm1
(A1_On) only when it is at top (Ta_ST f) and at
angle −50◦ (Ta_S50 f); only after transferring a
blank is table permitted to move down (Ta_D) and
turn CW (Ta_C).

– Collision between two blanks could occur if and
when arm1 has been loaded with one blank by
table, rotary base has not yet turned CCW to 90◦
(Ro_90), and table returns to top with a new blank
(Ta_ST f). The specification that prevents this col-
lision is enforced by A1T, according to which table
is not allowed to return to top before the loaded
arm1 turns away to 90◦.

3.4 Press

Press operates at three different positions: bottom,
middle, and top (Fig. 10). According to Fig. 11, it is
initially at bottom, and ascends to middle where arm1
may load a blank (Pr_U B, Pr_MU , Pr_SMf). After
being loaded, press continues to top where it forges the
blank (Pr_U M, Pr_T, Pr_ST f). Then, it descends back

Fig. 10 Interconnection
of press

Int J Adv Manuf Technol

Pr_UB Pr_SM f

Pr_UM

Pr_DPr_M D

Pr_M U

Pr_T

Pr_STf

Pr_B

Pr_SBfPr

Fig. 11 Plant model of press

to bottom and prepares to unload the forged blank to
arm2 (Pr_D, Pr_MD, Pr_B, Pr_SBf).

Press coordinates with arm1, arm2 as specified in
Fig. 12:

– Pr1: Press can accept a blank from arm1 (A1_Of f)
only at its middle position (Pr_SMf); only after
accepting a blank can press move to top (Pr_U M).

– Pr2: Press can transfer a blank to arm2 (A2_On)
only at its bottom position (Pr_SBf); only after the
transfer can press move to middle (Pr_U B).

– There are, additionally, two collision scenarios.
First, press collides with arm1 if and when it is at
top, arm1 is longer than 37, and rotary base is at
90◦. Second, press collides with arm2 if and when it
is not at bottom, arm2 is longer than 0, and rotary
base is at 40◦. The specifications for avoiding these
collisions are enforced by A1P and A2P, according
to which the respective three conditions in each
case are prevented from being met simultaneously.
Note that the initial and marked state of A1P is the
state in the middle; this is because arm1 initially
has length 52 (see A1 in Fig. 14), and hence, the
events Ro_90 and Pr_T cannot both occur before
arm1 retracts to safe length (A1_37). Similarly, the
initial and marked state of A2P is also the middle
one since rotary base is initially at 40◦ (refer to
Ro in Fig. 14); consequently, the events A2_80 and
Pr_MU may not both happen before base turns to
90◦ (Ro_90).

Pr_SM f

A1_OffPr_UM
Pr1

Pr_UB

Pr_SBfA2_On
Pr2

Ro_90

A1_37

Pr_M U

A2_0A1P A2P

Pr_T

A1_65
Ro_90
Pr_T

A1_65

Ro_40
Pr_M D

A1_37
Ro_40
Pr_M D

Ro_90
Pr_B

A2_0
Ro_90
Pr_B

Ro_40
A2_80

Pr_M U
Ro_40
A2_80

Fig. 12 Specification models of press

Fig. 13 Interconnection of rotary base, arm1, and arm2

3.5 Rotary base, arm1, and arm2

Rotary base, arm1, and arm2 cooperatively transfer
blanks from table through press to deposit belt (see
Fig. 13). As displayed in Fig. 14, rotary base initially
at 40◦ rotates CCW to 90◦ (Ro_CC, Ro_90, Ro_S90),
and then CW back to 40◦ (Ro_C, Ro_40, Ro_S40).
Arm1, once loaded (A1_On), first retracts to length 37
(A1_B37, A1_37, A1_S37) so as to avoid collision, and
then extends to length 65 (A1_F65, A1_65, A1_S65),
at which point it can unload a blank onto press
(A1_Of f); after unloading arm1 retracts to its initial
length 52 (A1_B52, A1_52, A1_S52). Lastly, arm2 first
extends its length to 80 (A2_F80, A2_80, A2_S80), at
which point it can pick up a blank from press (A2_On);
it then retracts to 57 (A2_B57, A2_57, A2_S57) and
places a blank onto deposit belt (A2_Of f); thereafter,
it retracts to 0, its initial length (A2_B0, A2_0, A2_S0).

Fig. 14 Plant models of rotary base, arm1, and arm2

Int J Adv Manuf Technol

Fig. 15 Specification models of rotary base, arm1, and arm2

The collaboration among base and two arms must
satisfy the specifications in Fig. 15:

– R1 and R2: Arm1 and arm2 may be loaded only
when base is at 40◦ (Ro_S40); only after both are
loaded may base turn CCW (Ro_CC).

– R3 and R4: Arm1 and arm2 may unload only when
base is at 90◦ (Ro_S90); only after both unloading
actions are completed may base turn CW (Ro_C).

Notice that the marked states in R2 and R4 are so
chosen because arm2 has no blank to be loaded or to
load during the first work cycle of base. An analogous
reason accounts for the choice of marked state of Pr2
in Fig. 12: Press has no blank to load arm2 for the first
iteration of its actions.

3.6 Deposit belt

As shown in Fig. 16, once loaded, deposit belt forwards
blanks (DB_F) towards the other end; there, Sensor2
switches to “on” (DB_s2On) when it detects the arrival
of a blank, and “off” (DB_s2Of f) to show that the
blank has been checked by the test unit. If the blank
passes the check (DB_y), then it will be output from
the system (FB_O); otherwise (DB_n), it waits to be
picked up by crane.

Deposit belt interacts with arm2 and crane (as dis-
played in Fig. 17), subject to the following three spec-
ifications (Fig. 18):

– DB1: Deposit belt forwards (DB_F) only when
there are blanks loaded, and it can hold at most two
blanks.

Fig. 16 Plant model of deposit belt

Fig. 17 Interconnection of deposit belt

– DB2: If there is already one blank on deposit belt,
then, for safety, a new blank can be loaded only af-
ter the first is checked by the test unit (DB_s2Of f).

– DB3: If a blank fails the test (DB_n), then it has to
be taken by crane back for another cycle (Cr_On).

3.7 Crane

Crane transports faulty blanks from deposit belt to
feed belt; see the illustration in Fig. 19. As shown in
Fig. 20, the generators Cr_V and Cr_H describe, re-
spectively, the vertical and horizontal motions of crane.
Thus, the complete behavior of crane is represented by
the synchronous product Cr := Cr_V || Cr_H. Con-
cretely, after picking up a faulty blank from deposit
belt (Cr_On), crane moves up (Cr_U , Cr_66, Cr_SV f)
and horizontally towards feed belt (Cr_2FB, Cr_FB,
Cr_SH f), to which it delivers the blank (Cr_Off).
Thereafter, crane moves down (Cr_D, Cr_95, Cr_SV f)
and horizontally back towards deposit belt (Cr_2DB,
Cr_DB, Cr_SH f).

4 Production cell: distributed control

We are ready to apply the procedure DAP to the
distributed control design for Production Cell.

1. Plant model abstraction: Projecting out the tran-
sitions that are unrelated to the imposed spec-
ifications, we effectively simplify the models of
table, press, arm1, arm2, and crane, as displayed in
Fig. 21.

2. Decentralized supervisor synthesis: For each spec-
ification, we group together its event-coupled com-
ponent abstractions, and synthesize for each group

Fig. 18 Specification model of deposit belt

Int J Adv Manuf Technol

Fig. 19 Interconnection of crane

an optimal nonblocking decentralized supervisor
using TCT procedure supcon [21]. The result is
presented in Fig. 22, with component abstractions
in blocks and supervisors in ovals, and solid lines
denoting event-coupling. To display the generator
models of these supervisors, we further apply TCT
procedure supreduce [21]; the resulting reduced
supervisors are shown in Fig. 23 (for clarity, extra-
neous selfloops are omitted).

3. Subsystem decomposition and coordination: We
have obtained 18 decentralized supervisors; thus,
we view the whole system as comprised of 18 mod-
ules, each consisting of a decentralized supervisor
with associated component abstractions. Following
[7], we decompose the overall system into two
subsystems, leaving five supervisors in between, as
shown with dotted lines in Fig. 22. It is further
checked that Sub1 has 1,524 states and is nonblock-
ing, while Sub2 has 535 states but turns out to
be blocking. To resolve the conflict, we design for
Sub2 a coordinator CO1, as displayed in Fig. 24;
this coordinator forces arm2 to stay put at its initial
state during the first work cycle of press. The result-
ing nonblocking subsystem is denoted by NSub2,
having 339 states.

4. Subsystem model abstraction: We must now verify
the nonconflicting property among Sub1, NSub2,
and the five intermediate supervisors. For this,
we again employ the abstraction technique to
simplify the two subsystem models; the resulting
abstractions are denoted by Sub1′ and Sub2′, hav-
ing, respectively, 460 and nine states. Compared

Cr_On Cr_66 Cr_SVf

Cr_DCr_95
Cr_SVf

Cr_2FB Cr_FB Cr_SHf

Cr_2DBCr_DB
Cr_SHf

Cr_V

Cr_H

Cr_U

Cr_Off

Cr_On

Cr_Off

Fig. 20 Plant model of crane

Cr_Off

Cr Cr_On

Ta_U

Ta_STf

Ta_D

Ta_SBf

Ta_V
Ta_CC

Ta_S50 f

Ta_C

Ta_S0 f

Ta_H

A1_F65

A1_Off

A1_On

A1_37

A1_65

A1_B52

A1_B37
A1

A2_B57

A2_F80

A2_B0

A2_0

A2_80

A2_On

A2_Off

A2

Pr_UB Pr_SM f

Pr_UM

Pr_DPr_M D

Pr Pr_M U

Pr_T
Pr_B

Pr_SBf

Fig. 21 Model abstractions of plant components

to their original state sizes, the two abstractions
are economical. In addition, for the five intermedi-
ate supervisors, we take their (control-equivalent)
reduced generator models (i.e., the results of the
supreduce procedure in TCT [21]).

5. Abstracted subsystem decomposition and coordi-
nation: We treat Sub1′, Sub2′, and the five inter-
mediate (reduced) supervisors as a single group,
and directly check the nonblocking property. This
group turns out, however, to be blocking, for the
following reason. The whole cell contains a loop
with material feedback, of faulty blanks, and the
feedback event DB_n is uncontrollable. Thus, at
least one empty slot must be maintained in the cell,
because otherwise, if DB_n occurs, the loop will
be ‘choked’. Also, it can be checked that the total
capacity of the cell is eight. Therefore, a coordina-
tor CO2 (see Fig. 24) is designed, which disables
adding blanks (ST_add) into the cell if and when
there are seven there already.

6. Higher-level abstraction: The modular supervisory
control design terminates with the previous Step 5.
We have obtained a hierarchy of 18 decentralized

Cr

Stock

FB

FB1S

FB2S

Ta_V

A1

Ta1S

Ta3S

Ta2S

Ta4STa_H

A2

Pr

Pr1S

Pr2S

DB3S

DB2S

DB DB1S

Ro

R3S

R1S

R4S

R2S

A1PS

A2PS

A1TS

Sub1 Sub2

Fig. 22 Interconnection structure of production cell

Int J Adv Manuf Technol

Cr_Off
FB_F

FB1S

ST_add ST_add
Cr_Off

FB_F
Cr_Off

FB2S

ST_add

FB_F

Ta1S
Ta_SBf

FB_s1Off

FB_O

Ta3S
Ta_S0 f

FB_s1Off

FB_O

FB_s1Off FB_s1Off FB_s1On

Ta_U Ta_CC

Ta4S

Ta_C

A1_On
Ta2S

Ta_D

Ta_STf

A1_On

Ta_S50 f

A1TS
Ro_90

Ta_STf

Ta_U
Ro_90

Pr1S

Pr_UM

A1_Off
Pr2S

A2_On

Pr_SBf

Pr_UB

Pr_SM f
Ro_CC

A1_37

Pr_UB

A2_0A1PS A2PS

Pr_UM

A1_F65
Ro_CC
Pr_UM

A1_F65

Ro_40
Pr_M D

A1_37
Ro_40
Pr_M D

Ro_90
Pr_B

A2_0
Ro_90
Pr_B

Ro_C
A2_F80

Pr_UB
Ro_C
A2_F80

R1S

Ro_CC

A1_On

R3S

Ro_C

A1_Off
R2S

A2_On

Ro_S40

Ro_CC

R4S
A2_Off

Ro_S90

Ro_S90

Ro_C

Ro_S40

Ro_S90

DB1S

A2_Off

D
B

_F

DB_O

D
B

_
n

Cr_On

DB_O

A2_Off

Cr_On

A2_Off

Cr_On

D
B

_F

D
B

_
n

DB_s2Off

DB2S

A2_Off

DB3S

DB_n

Cr_On

DB_F DB_F

Fig. 23 Reduced generator models of decentralized supervisors

CO1

A2_F80

Pr_B ST_add

DB_O

ST_add ...

ST
_a

dd

DB_y

ST
_a

dd

DB_O

DB_y

148

0 1 6 7

DB_O DB_O DB_O

CO2 (all states marked)

Fig. 24 Generator models of coordinators

Cr

ST

FB

FB1S

FB2S

Ta_V

A1

Ta1S

Ta3S

Ta2S

Ta4STa_H

A2

Pr

Pr1S

Pr2S

DB3S

DB2S

DB DB1S

Ro

R3S

R1S

R4S

R2S

A1PS

A2PS

A1TS

CO1

CO2

Fig. 25 Control-coupling relations

ST_add

DB_O

ST_add ...

ST
_a

dd

DB_y

ST
_a

dd

DB_O

DB_y

148

0 1 6 7

DB_O DB_O DB_O

Cr_Off

FB_s1Off
FB1_ST

ST_add ST_add
Cr_Off

FB_s1Off

Cr_Off

FB2_ST

ST_add

FB_s1On

CO2_ST (all states marked)

Fig. 26 Local controllers for stock

Fig. 27 Local controllers for feed belt

Ta4_TA
Ta_C

Ta3_TA
Ta_CC

FB_s1Off

Ta1_TA
Ta_U

FB_s1Off

Ta2_TA
Ta_D

A1_On

A1_On

A1T_TA
Ro_90

Ta_STf

Ta_U
Ro_90

Fig. 28 Local controllers for elevating rotary table

Pr1_PR
Pr_UM

A1_Off

Pr2_PR
A2_On

Pr_SBf

Pr_UB

Ro_CC

A1_37A1P_PR

A1_F65
Ro_CC
A1_F65

Ro_40
A1_37
Ro_40

Pr_UM Pr_UM

Ro_C

A2_0A2P_PR

A2_F80
Ro_C

A2_F80

Ro_90
A2_0

Ro_90

Pr_UB Pr_UB

Fig. 29 Local controllers for press

R1_RO
Ro_CC

A1_On

R3_RO
Ro_C

A1_Off

Pr_UM

A1_37A1P_RO

A1_F65
Pr_UM
A1_F65

Pr_M D
A1_37
Pr_M D

Ro_CC Ro_CC

Pr_UB

A2_0A2P_RO

A2_F80
Pr_UB
A2_F80

Pr_B
A2_0
Pr_B

Ro_C Ro_C

R2_RO
A2_On

Ro_S40

Ro_CC

R4_RO
A2_Off

Ro_S40

Ro_C

Fig. 30 Local controllers for robot

Int J Adv Manuf Technol

R1_A1

A1_On

R3_A1

Ro_S90

A1_Off

Pr_UM

Ro_40A1P_A1

Ro_CC
Pr_UM
Ro_CC

Pr_M D
Ro_40

Pr_M D

A1_F65 A1_F65

Ta2_A1

Ta_STf

A1_On
Ta4_A1

Ta_S50 f

A1_On
Pr1_A1

Pr_SM f

A1_Off

Ro_S40

Fig. 31 Local controllers for arm1

supervisors and two coordinators; their synchro-
nized behavior is globally optimal and nonblocking
[7].

7. Decentralized supervisors and coordinators local-
ization: We first determine the control-coupling
relations between supervisors/coordinators and
components; we do this by inspecting the corre-
sponding condat tables in TCT [21]. The result is
displayed in Fig. 25, with dashed lines denoting
the control-couplings. For instance, DB1S disables
(controllable) events in DB, CR, and A2. Then,
we apply the SL algorithm to localize each su-
pervisor/coordinator for its control-coupled com-
ponent; the resulting local controllers are displayed
in Figs. 26, 27, 28, 29, 30, 31, 32, 33, and 34 (for
clarity, extraneous selfloops are omitted), grouped
with respect to individual components. We observe
that all controllers decomposed from the super-
visors have only two to four states; thus, their
control logic can be easily understood by referring
to the corresponding specification descriptions in
Section 3. Finally, by Theorem 1, these local con-
trollers will collectively achieve global optimality
and nonblocking.

Pr2_A2
A2_On

Pr_SBf

Cr_On

DB1_A2

DB_O
A2_Off A2_0

Cr_On
DB_O
A2_0

A2_Off A2_0

Cr_On
DB_O

Cr_On
DB_O DB2_A2

A2_Off

DB_s2Off

R2_A2
A2_On

Ro_S40

R4_A2
A2_Off

Ro_S40 Ro_S90

Ro_S90
Ro_C

CO1_A2
A2_F80

Pr_B

Ro_C

Pr_BA2P_A2

Pr_UB
Ro_C

Pr_UB

Ro_90
Pr_B

Ro_90

A2_F80 A2_F80

Fig. 32 Local controllers for arm2

Cr_On

DB1_DB

A2_Off

DB_F

DB_n
A2_Off
DB_n

Cr_On
DB_F

DB3_DB

DB_n

Cr_On
DB2_DB

A2_Off

DB_F

DB_F

Fig. 33 Local controllers for deposit belt

5 Architectural comparisons

We have now presented the supervisor localization
result for the Production Cell example. The result is a
distributed control architecture wherein every compo-
nent acquires a set of private controllers. In the present
section, we compare this result with the decentralized
result [7] previously derived for the same example.
This investigation is important: having obtained these
two distinct architectures, one naturally explores cost–
benefit tradeoffs that may qualify one or the other as
better suited to implement the tasks of the Production
Cell. As the system modeling in [7] has been slightly
modified, in Section 4, we therefore compare the result
of Step 7 and that of Steps 1–6.

In general, comparing architectures quantitatively
could involve many factors (such as state size, com-
puting load, and sensing/communication scope), some
of them not intrinsic to the architecture itself, but all
of them involving costs which will be case-dependent.
Hence, we compare the distributed and decentralized
architectures for each specific task (i.e., specification)
in the Production Cell, taken individually; in each case,
we analyze tradeoffs with respect to certain primary
factors, thereby pointing the way to criteria for archi-
tectural choice.9

First, we present a task to which the distributed
architecture may be better suited. Recall that, when a
decentralized supervisor is localized, its control action
is always distributed to the resulting local controllers,
in the sense that each local controller can disable only
the controllable events present in its associated plant
component. Controlling fewer events than its parent
supervisor, a local controller may be expected to have
a smaller state space, a narrower observation scope,
and simpler control logic. This is true in the following
example.

Example 1 Consider the control specification DB1 as
displayed in Fig. 18, which imposes a behavioral

9We need not investigate the specification A1T and the two
coordination tasks, because the corresponding supervisor and co-
ordinators are control-coupled only to a single plant component,
and hence, the decentralized and distributed controls are the
same.

Int J Adv Manuf Technol

Cr_Off

FB_s1Off
FB1_CR

ST_add ST_add
Cr_Off

FB_s1Off

Cr_Off

FB2_CR

ST_add

FB_s1On

Cr_On

DB1_CR

A2_Off

DB_F

DB_n
A2_Off
DB_n

Cr_On
DB_F

DB3_CR

DB_n

Cr_On

Fig. 34 Local controllers for crane

restriction on the components deposit belt, crane, and
arm2. The restriction of DB1 is equivalent to that of
a buffer with capacity two, incremented by arm2, and
decremented by deposit belt and crane. The objective
is to protect the buffer against underflow and overflow,
and, in addition, to prevent deposit belt forwarding
(DB_F) if it is not loaded by arm2.

The corresponding decentralized supervisor, DB1S,
is shown in Fig. 35. It has five states, three events
(DB_F, Cr_On,A2_Off) to control, and five events
(DB_F,DB_n, DB_O, Cr_On, A2_Off) to observe.
Compared to the specification model, the increase in
state size is because DB1S has to distinguish the two
distinct paths, through either DB_O or DB_n, of reach-
ing the marked state in the generator DB of deposit belt
(see Fig. 16). Only when DB_O occurs can the buffer
be decremented.

Now we localize DB1S for deposit belt, crane, and
arm2, respectively, the result being displayed in Fig. 35.
The local controller DB1_DB for deposit belt controls
a single event DB_F, and thus, its control logic involves
the disablement of solely this event. To convey the
logic, the generator DB1_DB needs only three states,
and the number of events that have to be observed
reduces to four. The local controller DB1_Cr for crane

is the same as that for deposit belt, except that the
single event to be controlled is Cr_On. Lastly, the
local controller DB1_A2 for arm2 controls the event
A2_Of f , and four states are needed to express the
corresponding disablement logic. As to the observation
scope, while the events DB_F and DB_n are excluded,
DB1_A2 has to observe the new event A2_0 which
signals the completion of a work cycle of arm2 (refer
to A2 in Fig. 21).

We have thus seen that, for this task, DB1, every
local controller is simpler than its parent supervisor
DB1S in terms of control logic, state size, and observa-
tion scope. In practice, this means that the computing
and sensing loads on each local controller may be less
than that on the supervisor, and therefore, the distrib-
uted architecture may be a better choice.

It is not always, however, that the localized con-
trollers will be simpler than their parent supervisor in
every respect. There could often be tradeoffs between
some factors, as illustrated in the case below.

Example 2 Consider the specification R4 as displayed
in Fig. 15, which imposes two constraints on the behav-
iors of base and arm2: (1) arm2 may unload (A2_Of f)
only when base is at 90◦ (Ro_S90), and (2) only after
the unloading is base permitted to turn CW (Ro_C).
The corresponding decentralized supervisor, R4S in
Fig. 36, has three states, two events (Ro_C, A2_Off)
to control, and three events (Ro_C, Ro_S90, A2_Off)
to observe.

Localizing R4S for base and arm2, respectively, we
display the result in Fig. 36. The local controller R4_RO
of base is responsible only for the disablement of Ro_C,

Fig. 35 Decentralized and
distributed control for
DB1 task

DB1S
A2_Off

D
B

_F

DB_O D
B

_
n

Cr_On

DB_O

A2_Off

Cr_On

A2_Off

Cr_On

D
B

_F

D
B

_
n

Cr_On

DB1_DB

A2_Off

DB_F

DB_n
A2_Off
DB_n

Cr_On
DB_F

Cr_On

DB1_CR

A2_Off

DB_F

DB_n
A2_Off
DB_n

Cr_On
DB_F

Cr_On

DB1_A2

DB_O
A2_Off A2_0

Cr_On
DB_O
A2_0

A2_Off A2_0

Cr_On
DB_O

Cr_On
DB_O

Int J Adv Manuf Technol

R4S

A2_Off

Ro_S90

Ro_S90

Ro_C

R4_A2

A2_Off

Ro_S40 Ro_S90

Ro_S90
Ro_C

R4_RO

A2_Off

Ro_S40

Ro_C

Fig. 36 Decentralized and distributed control for R4 task

and its state size reduces to two. As to the observation
scope, while the event Ro_S90 is excluded, R4_RO
needs to observe the new event Ro_S40, which signals
the completion of a work cycle of base (see Ro in
Fig. 14). As to the local controller R4_A2 of arm2,
although it controls solely the event A2_Off, its state
size remains at three, and even one more event Ro_S40
has to be observed compared to the supervisor R4S.

Thus, we have seen that, for the task R4, localization
results in reduction in state size of one controller, but an
increment in observation scope of the other controller.
In practice, state size might relate to storage space
and computing load, while observation scope could
correspond to sensing or communication costs. It is
left to the designer to weigh these factors according to
the specific application at hand in order to choose one
control architecture over the other.

Among the tasks in the Production Cell, the above
two examples are the only cases where state space
reduction is achieved. For all the remaining tasks, al-
though each localized controller has the same number
of states as the corresponding supervisor, it does enjoy
a smaller observation scope, i.e., fewer events need to
be observed. We exhibit one representative example
below.

Example 3 Consider the specification Ta1 as displayed
in Fig. 9, which imposes two constraints on the behav-
iors of table and feed belt: (1) feed belt may unload
(FB_s1Of f) only when table is at bottom (Ta_SBf),
and (2) only after the unloading may table ascend
(Ta_U). The decentralized supervisor Ta1S enforcing
this specification is shown in Fig. 37; it has two states,
two events (Ta_U , FB_O) to control, and four events
(Ta_U , Ta_SBf , FB_O, FB_s1Of f) to observe.

Ta1S

Ta_SBf

FB_s1Off

FB_O Ta_U

Ta1_FB

Ta_SBf

FB_s1Off

FB_O

Ta1_TA

Ta_U

FB_s1Off

Fig. 37 Decentralized and distributed control for Ta1 task

The corresponding localized controllers for table and
feed belt are displayed in Fig. 37. Again, each has two
states; however, Ta1_T A does not observe the events
Ta_SBf and FB_O, and Ta1_FB does not observe
Ta_U . Thus, each local controller has a narrower ob-
servation scope compared to its parent supervisor. If,
in an application, sensing or communication costs are
of primary concern, the distributed architecture may be
advantageous. On the other hand, if issues related to
state size play a critical role, decentralized control may
be preferred.

We have provided a preliminary analysis of detailed
tradeoffs between the distributed and decentralized
architectures involved in each particular task of the
Production Cell. In the authors’ view a more general
formulation of cost-benefit architectural comparisons
might turn out to have ample intrinsic interest, and
awaits further development.

6 Conclusion

Applying the proposed decomposition-aggregation
procedure [3, 4], we have successfully established a
distributed control architecture for the benchmark Pro-
duction Cell. In this architecture, every plant compo-
nent is controlled by its own local controllers, while
being coordinated with its fellows through their shared
observable events. Such a control scheme enables dis-
tributed and embedded implementation of control ac-
tion into individual components, which is the essence
of the emergent smart agent systems.

Int J Adv Manuf Technol

In addition, we have compared the distributed ar-
chitecture with a decentralized one which appeared in
[7]. Concretely, we have analyzed detailed tradeoffs be-
tween the two architectures for each specific task in the
Production Cell. Although the analysis is preliminary, it
points to a general theory of control architecture, which
we consider to be an ultimate objective of SCT.

References

1. Cai K (2008) Supervisor localization: a top-down approach
to distributed control of discrete-event systems. Master’s the-
sis, ECE Dept, University of Toronto. http://www.control.
toronto.edu/DES/CaiKai_MASc_Thesis.pdf

2. Cai K, Wonham WM (2009a) Supervisor localization: a top-
down approach to distributed control of discrete-event sys-
tems. In: Proc. 2nd Mediterranean conf. on intelligent sys-
tems and automation (CISA09), Zarzis, Tunisia, pp 302–308

3. Cai K, Wonham WM (2009b) Supervisor localization for
large-scale discrete-event systems. In: Proc. 48th IEEE conf.
on decision and control, Shanghai, pp 3099–3105

4. Cai K, Wonham WM (2010) Supervisor localization: a top-
down approach to distributed control of discrete-event sys-
tems. IEEE Trans Automat Contr 55(3)

5. Feng L, Wonham WM (2006) Computationally efficient su-
pervisory design: control flow decomposition. In: Proc. int.
workshop discrete event systems (WODES06), Ann Arbor,
pp 9–14

6. Feng L, Wonham WM (2008) Supervisory control architec-
ture for discrete-event systems. IEEE Trans Automat Contr
53(6):1449–1461

7. Feng L, Cai K, Wonham WM (2009) A structural approach
to the nonblocking supervisory control of discrete-event sys-
tems. Int J Adv Manuf Technol 41(11):1152–1167

8. Gohari P, Wonham WM (2000) On the complexity of super-
visory control design in the RW framework. IEEE Trans Syst
Man Cybern B Cybern 30(5):643–652 (Special Issue on DES)

9. Hill R, Tilbury D (2006) Modular supervisory control of
discrete-event systems with abstraction and incremental hier-
archical construction. In: Proc. int. workshop discrete event
systems (WODES06), Ann Arbor, pp 399–406

10. Hiraishi K (2009) On solvability of a decentralized super-
visory control problem with communication. IEEE Trans
Automat Contr 54(3):468–480

11. Lewerentz C, Lindner T (eds) (1995) Formal development
of reactive systems—case study production cell. Springer,
London

12. Lin F, Wonham WM (1988) Decentralized supervisory con-
trol of discrete-event systems. Inf Sci 44:199–224

13. Ramadge PJ, Wonham WM (1987) Supervisory control of
a class of discrete event processes. SIAM J Control Optim
25(1):206–230

14. Rudie K, Wonham WM (1992) Think globally, act locally: de-
centralized supervisory control. IEEE Trans Automat Contr
37(11):1692–1708

15. Schmidt K, Moor T, Perk S (2008) Nonblocking hierarchical
control of decentralized discrete event systems. IEEE Trans
Automat Contr 53(10):2252–2265

16. Seow KT, Pham MT, Ma C, Yokoo M (2009) Coordina-
tion planning: applying control synthesis methods for a class
of distributed agents. IEEE Trans Control Syst Technol 17
(2):405–415

17. Simon HA (1962) The architecture of complexity. Proc Am
Philos Soc 106:467–482

18. Su R, Wonham WM (2004) Supervisor reduction for discrete-
event systems. Discrete Event Dyna Syst Theory Appl
14(1):31–53

19. Willner Y, Heymann M (1991) Supervisory control of con-
current discrete-event systems. Int J Control 54(5):1143–
1169

20. Wong KC, Wonham WM (1996) Hierarchical control of
discrete-event systems. Discrete Event Dyna Syst Theory
Appl 6(3):241–273

21. Wonham WM (2009a) Design software: XPTCT, Systems
Control Group, ECE Dept, University of Toronto, Version
133, Windows XP, updated July 1, 2009. http://www.control.
toronto.edu/DES

22. Wonham WM (2009b) Supervisory control of discrete-
event systems, Systems Control Group, ECE Dept, Univer-
sity of Toronto, updated July 1, 2009. http://www.control.
toronto.edu/DES

23. Wonham WM, Ramadge PJ (1987) On the supremal con-
trollable sublanguage of a given language. SIAM J Control
Optim 25(3):637–659

24. Yoo TS, Lafortune S (2002) A general architecture for decen-
tralized supervisory control of discrete-event systems. Dis-
crete Event Dyna Syst Theory Appl 12(3):335–377

http://www.control.toronto.edu/DES/CaiKai_MASc_Thesis.pdf
http://www.control.toronto.edu/DES/CaiKai_MASc_Thesis.pdf
http://www.control.toronto.edu/DES
http://www.control.toronto.edu/DES
http://www.control.toronto.edu/DES
http://www.control.toronto.edu/DES

	Supervisor localization for large discrete-event systems
	Abstract
	Introduction
	Distributed control theory
	Problem formulation
	Solution procedure

	Production cell: system description
	Stock
	Feed belt
	Elevating rotary table
	Press
	Rotary base, arm1, and arm2
	Deposit belt
	Crane

	Production cell: distributed control
	Architectural comparisons
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

