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Abstract: A purely distributed control paradigm is proposed for discrete-event systems (DES). In
contrast to control by one or more external supervisors, distributed control aims to design built-in
strategies for individual agents. First a distributed optimal nonblocking control problem is formulated.
To solve it, a top-down localization procedure is developed which systematically decomposes an
external supervisor into local controllers while preserving optimality and nonblockingness. An efficient
localization algorithm is provided to carry out the computation, and an automated guided vehicles (AGV)
example presented for illustration. Finally, the ‘easiest’ and ‘hardest’ boundary cases of localization are
discussed.
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1. INTRODUCTION

NEtworked intelligent agents are of ever-increasing impor-
tance in control, robotics, and artificial intelligence be-

cause of their extensive application domains: AGV systems
in manufacturing cells, multi-robot search teams, and software
agents on the Internet. To govern this type of system, particular
attention has been focused on distributed control: each agent
has its own local built-in control strategies – but with no ex-
ternal supervisor, thus embodying individual autonomy. Little
work has been reported on distributed control of DES in the
framework of supervisory control theory (SCT) [1].

SCT was initiated by Ramadge and Wonham [2, 3], with cor-
nerstone results of the field established for a monolithic archi-
tecture, an organization wherein all plant components are con-
trolled by a single centralized supervisor. With this supervisor,
the controlled behavior can be made optimal (i.e., minimally
restrictive) with respect to imposed specifications, as well as
nonblocking. Stimulated by the twin goals of improving under-
standability of control logic and reducing computational effort
of the monolithic approach, subsequent literature has witnessed
the emergence of alternative modular system architectures: de-
centralized architecture [4, 5, 6, 7, 8, 9], hierarchical architec-
ture [10, 11], and heterarchical architecture [12, 13, 14]. The
defining characteristic of these architectures is a ‘supervisor-
subordinate’ paradigm: a monolithic supervisor, or an organi-
zation of modular supervisors, monitors the behavior of subor-
dinate agents and makes all decisions on their behalf, while the
controlled agents themselves act ‘blindly’ based on the com-
mands they receive. These architectures are not properly con-
sidered to be distributed control, namely a flat system organiza-
tion where the global functions are performed by the individual
agents and not by higher-level, external supervisors. With this
in mind, we address the following question: given a collection
of agents as the plant and some desired collective behavior as
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the specification, what should individual agents do (in terms of
sensing and decision making) so as to enforce the specification,
and realize performance identical to that achieved by optimal
and nonblocking monolithic or modular control?

Only recently has work on distributed control architecture ad-
dressing similar questions begun to appear [15, 16, 17]. None
of this work, however, deals with both optimal and nonblocking
control. The present paper fills that gap. Further, our approach
can in principle handle large-scale systems, as will be demon-
strated on a benchmark application; whereas only small-sized
examples are given in the cited previous work.

We note that the term “distributed architecture” along with
“distributed control” and “agent” has been used in the literature
with different meanings (e.g. [18]); in particular it may refer to
decentralized architecture with communicating modular super-
visors. With decentralized supervision, the global control action
is typically allocated among specialized supervisors enforcing
individual specifications. By contrast, with distributed supervi-
sion (in our usage) it is allocated among the individual active
agents.

Our investigation on distributed control of DES exploits a top-
down approach: first build an external (monolithic or modular)
optimal nonblocking supervisor; then decompose the external
supervisor into local controllers for individual agents. We call
this procedure supervisor localization, as displayed in Fig.1.
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The goal of supervisor localization is first of all to preserve
the optimality and nonblockingness of the external supervisor,
namely to realize performance identical to that achieved by
monolithic or modular control. It is also desired that each
localized controller be as ‘simple’ as possible, so that individual
strategies are readily comprehensible. Among diverse criteria
of ‘simplicity’, we focus on the state size. Both goals are
achieved by a suitable extension of supervisor reduction [19],
of which the essence is to ‘project’ the plant model out of
the supervisor model while preserving the controlled behavior.
To localize an external supervisor to a local controller for an
individual agent, we carry the reduction idea one step further: in
addition to projecting the plant model out of the supervisor, we
also project out those transitions corresponding to the controls
enforced by other agents. Namely, the localization procedure is
conducted based solely on control information directly relevant
to the target agent; we proceed this way for each agent in the
plant, taken individually. The result is that each agent acquires
its own local controller, as displayed in Fig.1.

The rest of this paper is organized as follows. Section 2 for-
mulates the distributed control problem; Section 3 presents the
development and main results of supervisor localization; Sec-
tion 4 proposes an efficient algorithm for computation; Section
5 illustrates supervisor localization with a familiar AGV exam-
ple; Section 6 discusses boundary cases of localizability; and
Section 7 states our conclusion.

2. PROBLEM FORMULATION

The plant to be controlled is modeled by a generator [1]
G = (Y, Σ, η, y0, Ym)

where Y is the state set; y0 ∈ Y is the initial state; Ym ⊆ Y is
the set of marker states; Σ is the finite event set, partitioned into
Σc, the controllable event subset, and Σu, the uncontrollable
subset; η : Y ×Σ → Y is the (partial) state transition function.
In the usual way, η is extended to η : Y × Σ∗ → Y (pfn), and
we write η(y, s)! to mean that η(y, s) is defined, where y ∈ Y
and s ∈ Σ∗. The closed behavior of G is the language

L(G) := {s ∈ Σ∗|η(y0, s)!}
and the marked behavior of G is the sublanguage

Lm(G) := {s ∈ L(G)|η(y0, s) ∈ Ym} ⊆ L(G)

G is nonblocking if the prefix closure Lm(G) = L(G).

We focus on the case where G consists of component agents Gk

defined over disjoint alphabets Σk (k ∈ K, K an index set):

Σ =
⋃̇
{Σk|k ∈ K}

With Σ = Σc ∪̇ Σu we assign control structure to each agent:

Σk
c = Σk ∩ Σc , Σk

u = Σk ∩ Σu

Let k ∈ K. We say that a generator LOCk (over Σ) is a local
controller for agent Gk if LOCk can disable only events in Σk

c .
Precisely, for all s ∈ Σ∗ and σ ∈ Σ, there holds

sσ ∈ L(G) & s ∈ L(LOCk) & sσ /∈ L(LOCk) ⇒ σ ∈ Σk
c .

The observation scope of LOCk is, however, neither confined
within Σk nor fixed beforehand. In fact, it will be systemati-
cally determined to guarantee the correct local control. Thus,
while a local controller’s control authority is strictly local, its
observation scope need not, and generally will not, be. With
local controllers embedded, each agent acquires a strictly local

control and generally a non-local observation strategy; the latter
is critical to achieve useful synchronization with other agents,
thereby ensuring correct local control decisions 1 .

The independent components are implicitly coupled through an
imposed specification language E ⊆ Σ∗ that (as usual) imposes
a behavioral constraint on G. Recall that a language F ⊆ Σ∗ is
controllable (with respect to G) if

FΣu ∩ L(G) ⊆ F

Now let C(E) be the set of all controllable sublanguages of E.
Then C(E) contains a (unique) supremal element, denoted by
sup C(E) [3] . Let SUP = (X, Σ, ξ, x0, Xm) be a generator
that represents the language sup C(E ∩ Lm(G)). SUP is the
monolithic optimal nonblocking supervisor for G (with respect
to E) 2 .

Now we formulate the Distributed Optimal Nonblocking Con-
trol Problem (>): Given G and SUP described above, construct
a set of local controllers LOC = {LOCk|k ∈ K}, one
for each agent, with L(LOC) =

⋂{L(LOCk)|k ∈ K} and
Lm(LOC) =

⋂{Lm(LOCk)|k ∈ K}, such that the following
two properties hold:

L(G) ∩ L(LOC) = L(SUP) (1a)

Lm(G) ∩ Lm(LOC) = Lm(SUP) (1b)
We say that LOC, satisfying (1a) and (1b), is control equiva-
lent to SUP with respect to G.

For the sake of easy implementation and transparent compre-
hensibility, it would be desired in practice that the state sizes of
local supervisors be appreciably less than that of their ‘parent’
monolithic supervisor:

(∀k ∈ K) |LOCk| ¿ |SUP|
where | · | denotes the state size of the argument. Inasmuch
as this property is neither precise nor always achievable, it
must needs be omitted from the formal problem statement;
nevertheless it should be kept in mind.

3. SUPERVISOR LOCALIZATION

We solve the distributed control problem (>) by developing a
supervisor localization procedure.

It follows from Σ =
⋃̇{Σk|k ∈ K} that the set {Σk

c ⊆
Σc|k ∈ K} forms a partition on Σc. Fix an element k ∈ K.
Following [19], we first establish a control cover on X , the state
space of SUP, based only on control information pertaining to
Σk

c , as captured by the following four functions. First define
E : X → 2Σ according to

E(x) = {σ ∈ Σ|ξ(x, σ)!}
Thus E(x) denotes the set of events that are enabled at x. Next
define Dk : X → 2Σk

c according to

Dk(x) = {σ ∈ Σk
c |¬ξ(x, σ)! & (∃s ∈ Σ∗)[ξ(x0, s) = x &

η(y0, sσ)!]}
Thus Dk(x) is the set of controllable events in Σk

c that must be
disabled at x. Define M : X → {1, 0} according to

M(x) = 1 iff x ∈ Xm

1 For simplicity we assume in this paper that observation of an event is
simultaneous with its occurrence.
2 Throughout the paper we assume that SUP is nonempty.



Thus M is a predicate on X that determines if a state is marked
in SUP. Finally define T : X → {1, 0} according to

T (x) = 1 iff (∃s ∈ Σ∗)ξ(x0, s) = x & η(y0, s) ∈ Ym

So T is a predicate on X that determines if some corresponding
state is marked in G. Note that for each x ∈ X , we have by (1b)
T (x) = 0 ⇒ M(x) = 0 and M(x) = 1 ⇒ T (x) = 1.
Definition 1. Let x, x′ ∈ X . We say x and x′ are control
consistent (cf [19]) (with respect to Σk

c ), and write (x, x′) ∈
Rk ⊆ X ×X if

(i) E(x) ∩Dk(x′) = ∅ = E(x′) ∩Dk(x)
(ii) T (x) = T (x′) ⇒ M(x) = M(x′)

Informally, a pair of states (x, x′) is in Rk if (i) there is no
event in Σk

c that is enabled at x but is disabled at x′, or vice
versa (consistent disablement information); and (ii) x and x′ are
both marked or unmarked in SUP provided that they are both
marked or unmarked in G (consistent marking information).
It should be noted that Rk need not be transitive in general,
and consequently need not be an equivalence relation. This fact
leads to the following definition of control cover (with respect
to Σk

c ). First recall that a cover on a set X is a family of
nonempty subsets (or cells) of X whose union is X .
Definition 2. Let Ik be some index set, and Ck = {Xk

ik ⊆
X|ik ∈ Ik} be a cover on X . Ck is a control cover (cf [19,
Definition 2.1]) on X (with respect to Σk

c ) if

(i) (∀ik ∈ Ik)(∀x, x′ ∈ Xk
ik) (x, x′) ∈ Rk

(ii) (∀ik ∈ Ik,∀σ ∈ Σ)[(∃jk ∈ Ik)(∀x ∈ Xk
ik)ξ(x, σ)! ⇒

ξ(x, σ) ∈ Xk
jk ]

A control cover Ck lumps states of SUP into (possibly overlap-
ping) cells Xk

ik(ik ∈ Ik). According to (i) all states that reside
in a cell Xk

ik must be pairwise control consistent; and (ii) for
every event σ ∈ Σ, all states that can be reached from any state
in Xk

ik by a one-step transition σ must be covered by some cell
Xk

jk . Recursively, two states x, x′ belong to a common cell in
Ck if and only if (1) x and x′ are control consistent; and (2)
two future states that can be reached respectively from x and x′
by the same string are again control consistent. We say that a
control cover Ck is a control congruence if Ck happens to be a
partition on X , namely its cells are pairwise disjoint.

Having established a control cover Ck on X based only on the
control information of Σk

c , we can always obtain an induced
generator Jk = (Ik,Σ, κk, ik0 , Ik

m) by the following construc-
tion (cf [19]):

(i) ik0 ∈ Ik such that x0 ∈ Xk
ik
0

(ii) Ik
m = {ik ∈ Ik|Xk

ik ∩Xm 6= ∅}
(iii) κk : Ik × Σ → Ik (pfn) with κk(ik, σ) = jk

if (∃x ∈ Xk
ik)ξ(x, σ) ∈ Xk

jk & (∀x′ ∈ Xk
ik)[ξ(x′, σ)! ⇒

ξ(x′, σ) ∈ Xk
jk ]

Note that, owing to overlapping, the choices of ik0 and κk may
not be unique, and consequently Jk may not be unique. In that
case we simply pick an arbitrary instance of Jk. Clearly if Ck

happens to be a control congruence, then Jk is unique.

Let J := {Jk|k ∈ K} be the set of all induced generators for the
partition {Σk

c ⊆ Σc|k ∈ K}, with L(J) :=
⋂{L(Jk)|k ∈ K}

and Lm(J) :=
⋂{Lm(Jk)|k ∈ K}. Our first result shows that

J is a solution to (>).
Proposition 3. J is control equivalent to SUP with respect to
G, i.e.,

L(G) ∩ L(J) = L(SUP)
Lm(G) ∩ Lm(J) = Lm(SUP)

Proof. See [20]. ¥

Next we investigate if the converse is true: that is, can a set of
generators that is control equivalent to SUP always be induced
from a set of suitable control covers on X? In response, we
bring in the following two definitions.
Definition 4. A generator LOC = (Z, Σ, ζ, z0, Zm) is normal
(with respect to SUP) [19, Definition 2.2] if

(i) (∀z ∈ Z)(∃s ∈ L(SUP)) ζ(z0, s) = z
(ii) (∀z ∈ Z, ∀σ ∈ Σ)ζ(z, σ)! ⇒ (∃s ∈ L(SUP))[ζ(z0, s) =

z & sσ ∈ L(SUP)]
(iii) (∀z ∈ Zm)(∃s ∈ Lm(SUP)) ζ(z0, s) = z

Informally, a generator is normal with respect to SUP if (i) each
of its states is reachable by at least one string in L(SUP); and
(ii) each of its one-step transitions, say σ, defined at a state that
is reached by a string s in L(SUP), preserves membership of
sσ in L(SUP); and (iii) each of its marked states is reachable
by at least one string in Lm(SUP).
Definition 5. Given generators LOC = (Z, Σ, ζ, z0, Zm) and
J = (I,Σ, κ, io, Im). LOC and J are DES-isomorphic with
isomorphism θ [19, Definition 2.3] if there exists a map θ :
Z → I such that

(i) θ : Z → I is a bijection
(ii) θ(z0) = i0 & θ(Zm) = Im

(iii) (∀z ∈ Z, σ ∈ Σ)ζ(z, σ)! ⇒ [κ(θ(z), σ)! & κ(θ(z), σ) =
θ(ζ(z, σ))]

(iv) (∀i ∈ I, σ ∈ Σ)κ(i, σ)! ⇒ [(∃z ∈ Z)ζ(z, σ)! & θ(z) = i]

Under normality and DES-isomorphism, we have the following
result in response to the converse question posed above.
Theorem 6. Let LOC := {LOCk = (Zk,Σ, ζk, zk

0 , Zk
m)|k ∈

K} be a set of normal generators that is control equivalent to
SUP with respect to G. Then there exists a set of control covers
C := {Ck|k ∈ K} on X with a corresponding set of induced
generators J := {Jk|k ∈ K} such that (∀k ∈ K) Jk and LOCk

are DES-isomorphic.

Proof. See [20]. ¥

To summarize, every set of control covers generates a solution
to (>) (Proposition 3); and every solution to (>) can be induced
from some set of control covers (Theorem 6). In particular, a set
of state-minimal generators can be induced from some set of
control covers. However, such a set is in general not unique,
even up to DES-isomorphism. This conclusion accords with
that for a state-minimal supervisor in supervisor reduction [19].

4. LOCALIZATION ALGORITHM

It would be desirable to have an efficient algorithm that always
computes a set of state-minimal generators, despite its non-
uniqueness. Unfortunately, this minimal state problem is NP-
hard [19], and consequently we cannot expect a polynomial-
time algorithm that can compute a control cover which yields a
state-minimal generator.



Nevertheless, a polynomial-time algorithm for supervisor re-
duction is known [19]. The algorithm generates a control con-
gruence, rather than a control cover, and empirical evidence is
given showing that significant state size reduction can often be
achieved. Therefore we employ this algorithm, suitably mod-
ified to work for supervisor localization, and call the altered
version a localization algorithm (LA).

We sketch the idea of LA as follows. Given SUP = (X, Σc∪̇Σu,
, , ) and Σk

c ⊆ Σc, LA generates a control congruence Ck

on X with respect to Σk
c . LA initializes Ck to be the single-

ton partition on X , i.e., Ck
init = {[x] ⊆ X|[x] = {x}},

where [x] denotes the cell in Ck to which x belongs. Then LA
merges [x] and [x′] into one cell if x and x′, as well as all
their corresponding future states reachable by identical strings,
are control consistent. This mergibility condition is checked
by lines 14 and 19 in the pseudocode displayed below: line
14 checks control consistency for the current state pair (x, x′)
and line 19 recursively checks consistency for all their related
future states. To generate a control congruence it is crucial to
prevent states from being shared by more than one cell. This is
achieved by inserting in LA three ‘filters’ – at lines 3, 5, and
18 – to eliminate redundant mergibility tests as well as element
overlapping in Ck. LA loops until all of the states are checked.

Localization Algorithm (LA) 3

int main()1
for i : 0 to n− 2 do2

if i > min{m|xm ∈ [xi]} then continue;3
for j : i + 1 to n− 1 do4

if j > min{m|xm ∈ [xj ]} then continue;5
wl = ∅;6
if Check Mergibility(xi, xj , wl, i) = T then7

Ck = {[x] ∪⋃
x′:{(x,x′),(x′,x)}∩wl 6=∅[x

′] | [x], [x′] ∈ Ck}
end8

end9

bool Check Mergibility(xi, xj , wl, cnode)10
for each xp ∈ [xi] ∪

⋃
x:{(x,xi),(xi,x)}∩wl6=∅[x] do11

for each xq ∈ [xj ] ∪
⋃

x:{(x,xj),(xj ,x)}∩wl6=∅[x] do12
if {(xp, xq), (xq, xp)} ∩ wl 6= ∅ then continue;13

if (xp, xq) /∈ Rk then return F ;14
wl = wl ∪ {(xp, xq)};15
for each σ ∈ Σ with ξ(xp, σ)!, ξ(xq, σ)! do16

if [ξ(xp, σ)] = [ξ(xq, σ)] ∨17
{(ξ(xp, σ), ξ(xq, σ)), (ξ(xp, σ), ξ(xq, σ))}∩
wl 6= ∅ then continue;
if min{m|xm ∈ [ξ(xp, σ)]} < cnode ∨18
min{m|xm ∈ [ξ(xq, σ)]} < cnode then
return F ;
if Check Mergibility(ξ(xp, σ), ξ(xq, σ),19
wl, cnode) = F then return F ;

end20

end21

end22
return T ;23

3 Notation: X = {x0, . . . , xn−1} is an ordering of states. wl ⊆ X ×X is a
list of state pairs whose mergibility is pending. T , F denote true, false.

Remark 7. LA preserves all computational properties of the
reduction algorithm in [19] – LA terminates, generates a control
congruence, and has time complexity O(n4), where n is the
state size of SUP. For an example that illustrates LA see [20].

5. DISTRIBUTED CONTROL OF AN AGV SYSTEM

We apply the supervisor localization procedure to solve the
distributed control problem of AGV serving a manufacturing
workcell, taken from [1]. The results are computed by the
proposed localization algorithm (implemented in a C++ pro-
gram); the desired control equivalence between the set of local
controllers and the optimal nonblocking supervisor is verified
in TCT [21], by confirming

isomorph(meet({LOCk|k ∈ K}, G),SUP) = TRUE
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Fig. 2. AGV: system configuration

The manufacturing workcell (displayed in Fig. 2) consists of
two input stations IPS1, IPS2 for parts of types 1, 2; three
workstations WS1, WS2, WS3; and one completed parts station
CPS. A team of five independent AGVs – AGV1,...,AGV5
– travel in fixed interleaving routes, loading/unloading and
transporting parts in the cell. We model the AGV system as
the plant to be controlled, on which three types of control
specifications are imposed: the mutual exclusion (i.e. single
occupancy) of shared zones, the capacity limit of workstations,
and mutual exclusion of the shared loading area of the input
stations. Readers are referred to [1, Section 4.7] for generator
models of plant components and specifications, as well as the
detailed description of events. The distributed control objective
is to design for each AGV a set of local strategies – but with no
external supervisors.

The monolithic approach generates a monolithic supervisor of
4406 states [1]. We localize this global supervisor with respect
to each AGV: the resultant local controllers have 23, 44, 13,
20, 10 states respectively. However, since the computation com-
plexity of our localization algorithm is O(n4), where n is the
state size of the supervisor, it is inefficient to directly localize
the central supervisor. In addition, with local controllers having
the state sizes listed above, individual control logics remain
hard to understand.

Instead, we combine our supervisor localization with decentral-
ized control theory; namely, we localize decentralized super-
visors, in general of smaller state size, to the relevant agents.
The resultant local controllers can achieve control equivalence
with the monolithic supervisor as long as the decentralized



supervisors do 4 . For this example, we employ the decentral-
ized solution presented in [14]: decentralized supervisors, one
corresponding to each control specification, are first synthe-
sized by using the standard method; denote them by Z1SUP,
Z2SUP, Z3SUP, Z4SUP, WS13SUP, WS14SUP, WS2SUP,
WS3SUP, and IPSUP, respectively. Since this example is
prone to deadlock, a coordinator CO must be designed; we
do so using control flow nets and model abstraction by natural
observer [14]. This approach is computationally efficient, and
the solution has been verified to be control equivalent to the
optimal nonblocking monolithic supervisor. More details are
provided in Table 1.

Table 1. Decentralized solution in [14]

AGVs related State # Reduced State #
Z1SUP 1, 2 24 2
Z2SUP 2, 3 24 2
Z3SUP 2, 4 36 2
Z4SUP 4, 5 18 2

WS13SUP 3, 5 24 2
WS14SUP 4, 5 34 2
WS2SUP 1, 3 24 2
WS3SUP 2, 4 62 2

IPSUP 1, 2 24 2
CO 1, 2 165 7

Next we localize each supervisor to its associated AGVs, re-
spectively. The state transition diagrams of resultant local con-
trollers are displayed in Figs. 3–7 (for clarity extraneous self-
loops are omitted), grouped with respect to individual AGVs.
Thus we have established a purely distributed control architec-
ture, wherein each of the AGV ‘robots’ pursues its independent
‘lifestyle’, while being coordinated implicitly with its fellows
through their local shared observable events.
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4 This statement is proved in [20].
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6. BOUNDARY CASES

We identify two boundary cases of supervisor localization
which indicate, as a property of the localization problem itself,
an extreme degree of ‘easiness’ or ‘hardness’, respectively.

6.1 Fully-localizable

This case is the ‘easy’ situation where component agents are
completely decoupled: each agent works independently without
any interaction through shared events.



Given a plant G (over Σ) composed of agents over disjoint
alphabets Σk, define natural projections Pk : Σ∗ → (Σk)∗
(k ∈ K). For an imposed specification E = ||{Ep|p ∈ P}
(P an index set) let SUP be the corresponding monolithic
supervisor.
Definition 8. SUP is fully-localizable if there exists a set of
local controllers {LOCk|k ∈ K} that is control equivalent to
SUP such that for every k ∈ K, L(LOCk) = P−1

k (Lk) for
some Lk ⊆ (Σk)∗.

A sufficient condition that ensures full-localizability is the
following.
Proposition 9. If for all p ∈ P there is k ∈ K such that
Ep ⊆ (Σk)∗, then SUP is fully-localizable.

Proof. Follows from the assumption that Σk(k ∈ K) are
pairwise disjoint and Definition 8. ¥

The assumption of Proposition 9 says that every component
specification is imposed exclusively on some component agent.
In that case, local controllers can be obtained locally without
going through the top-down localization procedure. Similar
results in the modular control context can be found in the
literature (e.g. [22]).

6.2 Non-localizable

The other extreme of the localization problem is the ‘hard’ case
where component agents are coupled so tightly that each one
has to be ‘globally aware’.
Example 10. In Fig. 8, two agents Ai (i = 1, 2) share a com-
mon resource that is not allowed to be occupied simultaneously.
It is easy to see that SUP is a monolithic supervisor which
enforces the mutual exclusion specification. Then by applying
the localization algorithm to SUP, we generate for agent Ai

a local controller LOCi. However, both local controllers are
nothing but the same as SUP; namely, our supervisor localiza-
tion accomplished nothing useful.

0 1
i = 1, 2

: controllable

: uncontrollable

Ai
Enteri

Exiti

Enteri

Exiti

0 1

Enter2Enter1

Exit1 Exit2

SUP

0 1

Enter2Enter1

Exit1 Exit2

LOC
i

(responsible for event ‘Enteri’)

Fig. 8. Example: non-localizable

In general, we aim to find conditions that can identify the
situation where the localization fails to achieve a ‘truly local’
result. In that case we need only make copies of SUP for the
relevant agents.

Definition 11. Let MLOCk be a state-minimal local controller
for agent Gk (defined over Σk ⊆ Σ). SUP is non-localizable
(with respect to Σk

c ) if |SUP| = |MLOCk|.

First note that |SUP| = |MLOCk| implies that SUP =
MLOCk. This is because if SUP is already state-minimal, then

no more pairs of states in SUP can be further merged, which in
turn implies that the transition structure will remain the same.

By Theorem 6, MLOCk is induced from some control cover,
denoted Ck. We proceed to determine the number of cells in Ck.
Given SUP = (X, Σ, ξ, x0, Xm), by the definition of control
cover two states x, x′ ∈ X that belong to an identical cell must
satisfy both conditions

(1) (x, x′) ∈ Rk

(2) (∀s ∈ Σ∗) ξ(x, s)! & ξ(x′, s)! ⇒ (ξ(x, s), ξ(x′, s)) ∈ Rk

Negating (1) and (2), we get

(3) (x, x′) /∈ Rk

(4) (∃s ∈ Σ∗) ξ(x, s)! & ξ(x′, s)! & (ξ(x, s), ξ(x′, s)) /∈ Rk

Hence, two states x, x′ belong to different cells of Ck if and
only if either (3) or (4) holds. Let

ΩCk := max {n|(∃X ′ ⊆ X) |X ′| = n & (∀x, x′ ∈ X ′) x 6=
x′ ⇒ (3) or (4)}
The above discussion has proved the following fact.

Proposition 12. |MLOCk| = ΩCk . ¥

Now a necessary and sufficient condition for non-localizability
is immediate.
Proposition 13. SUP is non-localizable (with respect to Σk

c ⊆
Σ) if and only if |SUP| = ΩCk

Proof. Follows from Definition 11 and Proposition 12. ¥

In fact the above condition is hardly more than a restatement of
the definition of non-localizability. We have still said nothing
about how to check whether or not the condition holds. Never-
theless, a slight modification of ΩCk will lead to a computation-
ally verifiable sufficient condition for non-localizability.

Consider

Ωk := max {n|(∃X ′ ⊆ X) |X ′| = n & (∀x, x′ ∈ X ′) x 6=
x′ ⇒ (x, x′) /∈ Rk}
That is, we disregard those cases where control inconsistency is
caused by related future states. It should be obvious that Ωk ≤
ΩCk . More importantly, if we construct an undirected graph
G = (V, E) with V = X and E = {(x, x′)|(x, x′) /∈ Rk},
then calculating Ωk amounts to finding the maximum clique
in G. Although the maximum clique problem is a well-known
NP-complete problem, there exist efficient algorithms that com-
pute suboptimal solutions [23]. In particular, the implemented
polynomial-time algorithm that computes lower bound estimate
(lbe) in [19, Section 4.2] can be directly employed for our
purpose. Let us denote by lbek the outcome of the suboptimal
algorithm with respect to Rk. Thus we have lbek ≤ Ωk ≤
ΩCk ≤ |SUP|, which gives rise to the following result.
Proposition 14. If |SUP| = lbek, then SUP is non-localizable
(with respect to Σk

c ⊆ Σ).

Proof. |SUP| = lbek implies that |SUP| = ΩCk , and conse-
quently |SUP| = |MLOCk| by Proposition 12. ¥

This condition is not necessary for non-localizability. If we
obtain |SUP| > lbek, lbek tells us little about localizability and
can only serve as a conservative lower bound estimate indicat-
ing how much localization might (conceivably) be achieved. If,



however, |SUP| = lbek does hold, then the problem instance
admits no useful solution, and we can avoid wasting further
computational effort. Continuing Example 10, and applying the
adopted algorithm from [19], we obtain lbei = 2 = |SUP|
(i = 1, 2). Hence SUP is non-localizable for either of the two
agents, and we then simply assign the agents with the copies of
SUP as their local controllers.

7. CONCLUSION

We have formulated a distributed control problem and pre-
sented a top-down approach, supervisor localization, that solves
the problem. A polynomial-time algorithm has been proposed
to carry out the computation and an AGV example has been
discussed for illustration. In addition, we have elucidated two
boundary cases of the localization problem.

Our investigation of distributed control design for DES has
added “purely distributed” architecture to the family consisting
of “monolithic” and “modular” architectures. This result gives
rise to an interesting question: Given a specific system with
a particular task, how to analyze quantitatively the tradeoffs
among these three architectures, in such a way that one could
decide which architecture was best suited to the task at hand?
We consider such a “theory of architecture” to be an ultimate
objective of SCT.
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