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Abstract— We propose a top-down approach, called super-
visor localization, to distributed control of large-scale discrete-
event systems (DES). The essence of this approach is to allocate,
or localize, ‘external’ supervisory control action to individual
plant components as their ‘internal’ control strategies. To cope
with state explosion of large DES, we develop a decomposition-
aggregation procedure that employs a flexible decentralized and
hierarchical architecture which reduces computational effort
in localization. This procedure is demonstrated in detail on a
benchmark Production Cell that has state size of order 10

8.
Index Terms— Discrete-event systems, supervisory control,

supervisor localization.

I. INTRODUCTION

In [1], [2], [3] we proposed a distributed control paradigm

for DES consisting of coupled components. The plant to be

controlled is assumed to comprise independent asynchronous

components which are coupled implicitly through control

specifications. The objective of distributed control is to allo-

cate control action to each individual component such that

the resulting ‘private’ or localized controllers collectively

achieve optimal (i.e., minimally restrictive) and nonblocking

controlled behavior for the whole system.

Distinct, though related, architectures are decentralized, hi-

erarchical, and heterarchical (e.g., [4], [5]). Both distributed

and these modular approaches aim to achieve efficient com-

putation and transparent control logic, while realizing global

optimality and nonblockingness. A structural distinction,

however, is that with modular supervision, the global control

action is typically allocated among specialized supervisors

enforcing individual specifications. By contrast, with our

distributed supervision it is allocated among the individual

active (i.e., plant) components.

To address this type of distributed control, we developed in

[1], [2], [3] a procedure called supervisor localization (SL):

First synthesize the (optimal and nonblocking) monolithic

supervisor [6]; then decompose this supervisor into local

controllers for individual active components. It is then proved

that the family of local controllers (one for each component)

provides the same global control action as the monolithic

supervisor did – and is therefore optimal and nonblocking for

the entire system. We note that a recent paper [7] proposed

a scheme similar in general terms to our own, but provided

a control synthesis which amounts merely to making copies

of the (reduced) monolithic supervisor for each component,

with some corresponding, extraneous selfloops removed. By

contrast, our SL procedure exploits supervisor reduction [8]

and achieves a ‘truly local’ result.
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An underlying assumption of SL is that the monolithic

supervisor can be feasibly computed; this, however, may not

be the case for ‘large-scale’ DES owing to state explosion.

Nevertheless, it is proposed in [1], [2] that we may in prin-

ciple manage the complexity of large DES by combining SL

with existing efficient modular control theories. In the present

paper this combination is formalized as a decomposition-

aggregation procedure (DAP): First design an organization

of modular supervisors that achieves global optimality and

nonblockingness; then apply SL to decompose each of these

modular supervisors into local controllers for the relevant

components. The novel contribution of this paper is the

demonstration that our SL algorithm [1], [2], [3] and the

modular theory in [5] can be combined to provide an

effective attack on large systems. In Section II we formulate

the distributed control problem for large-scale DES, and

present DAP as a corresponding solution in Section III. Then

in Sections IV and V we demonstrate DAP on a benchmark

application – the Production Cell – having state size of order

108. Finally, we state our conclusion in Section VI.

II. DISTRIBUTED CONTROL PROBLEM

The plant to be controlled is modeled by a (nonempty)

generator G defined over a (finite) alphabet Σ, with closed

and marked behaviors L(G) and Lm(G), respectively [6]. As

emphasized we deal only with G comprised of asynchronous

components Gk (k ∈ K,K an index set), called ‘active’.

Namely, the Gk are defined over pairwise disjoint alphabets

Σk, and Σ = ˙⋃{Σk|k ∈ K}. Let Lk := L(Gk) and

Lm,k := Lm(Gk); then we have

L(G) = ||{Lk|k ∈ K} and Lm(G) = ||{Lm,k|k ∈ K}

where “||” denotes synchronous product [6]. For simplicity

we assume that for every k ∈ K, Gk is nonblocking (i.e.,

the prefix-closure L̄m,k = Lk). Then G is necessarily

nonblocking (i.e., L̄m(G) = L(G)).
With Σ = Σc ∪̇ Σu, the controllable and uncontrollable

event subsets, we assign control structure to each component:

Σk
c = Σk ∩ Σc , Σk

u = Σk ∩ Σu.

Let k ∈ K. We say that a generator LOCk (over Σ) is a

local controller for component Gk if LOCk can disable only

events in Σk
c . Precisely, for all s ∈ Σ∗ and σ ∈ Σ, there holds

sσ ∈ L(G) & s ∈ L(LOCk) & sσ /∈ L(LOCk) ⇒ σ ∈ Σk
c .

As to its observation, in nontrivial cases 1 LOCk observes,

and responds to, events generated by components other than

1See [1, Sect. 2.6], [2, Sect. 6.1] for the trivial case where no coupling
among components is imposed by control specifications.
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Gk, thereby ensuring correct local control decisions. Thus,

while a local controller’s control authority is strictly local,

its observation scope need not, and generally will not, be 2.

The components are implicitly coupled through a control

specification language E that imposes behavioral constraints

on G. As in the literature (e.g., [4]) assume that E is

decomposable into specifications Ep ⊆ Σ∗

o,p (p ∈ P , P an

index set), where the Σo,p ⊆ Σ need not be pairwise disjoint;

namely E = ||{Ep|p ∈ P}. Thus E is defined over Σo :=
⋃

{Σo,p|p ∈ P}. Let Po : Σ∗ → Σ∗

o be the corresponding

natural projection, and write P−1
o : Pwr(Σ∗

o) → Pwr(Σ∗)
for the inverse-image function of Po, where Pwr(·) denotes

powerset [6].

Let F ⊆ Σ∗, and recall that F is controllable (with respect

to G) if F̄Σu ∩L(G) ⊆ F̄ (where F̄ is the prefix-closure of

F ). Whether or not F is controllable, we denote by C(F ) the

family of all controllable sublanguages of F . Then C(F ) is

nonempty and contains a (unique) supremal element, denoted

sup C(F ) [6].

For the plant G and the specification E described above,

let a generator SUP (over Σ) be the corresponding monolithic

supervisor that is optimal and nonblocking. Since we are

concerned with large-scale DES, assume that SUP is not

feasibly computable. The marked language of SUP can,

nevertheless, be expressed algebraically as

Lm(SUP) = sup C(P−1
o E ∩ Lm(G)).

Now we formulate the distributed control problem (>):

Construct for each component Gk (k ∈ K) a family of

local controllers LOCk = {LOCk
ik
|ik ∈ Ik} (Ik an

index set), with L(LOCk) =
⋂

{L(LOCk
ik

)|ik ∈ Ik}

and Lm(LOCk) =
⋂

{Lm(LOCk
ik

)|ik ∈ Ik}. Further let

LOC = {LOCk|k ∈ K} be the set of all local controllers,

with L(LOC) =
⋂

{L(LOCk)|k ∈ K} and Lm(LOC) =
⋂

{Lm(LOCk)|k ∈ K}. It is required that

L(G) ∩ L(LOC) = L(SUP) (1a)

Lm(G) ∩ Lm(LOC) = Lm(SUP) (1b)

We say that LOC, satisfying (1a) and (1b), is control

equivalent to SUP with respect to G.

To progress, we need to review two concepts that will be

exploited in Section III. The natural projection Po : Σ∗ → Σ∗

o

is output control consistent (OCC) [5] for L(G) if for every

string s ∈ L(G) of the form s = s′σ1 · · ·σk (k ≥ 1) where

s′ is either the empty string or terminates with an event in

Σo, the following holds:

(

(∀i ∈ [1, k − 1])σi ∈ Σ − Σo

)

& σk ∈ Σo ∩ Σu ⇒
(

(∀j ∈ [1, k])σj ∈ Σu

)

.

By this definition, ensuring that Po is OCC amounts to

ensuring that for each uncontrollable event σ in Σo, σ’s

nearest ‘upstream’ controllable events are also in Σo.

The second concept is that of natural observer: Po is

2For simplicity we assume in this paper that observation of an event is
simultaneous with its occurrence.

called an Lm(G)-observer [5] if

(∀s ∈ L(G),∀to ∈ Σ∗

o) (Pos)to ∈ PoLm(G) ⇒

(∃t ∈ Σ∗) Pot = to & st ∈ Lm(G).

In case Po does not enjoy the observer property, we employ

the minimal extension (MX) algorithm developed in [9] to

‘reasonably’ extend Σo so that the augmented observable

subset does define an Lm(G)-observer.

III. SOLUTION PROCEDURE

We solve the distributed control problem (>) for large-

scale DES by combining the supervisor localization (SL)

[1], [2], [3] with an efficient modular control theory [5]. Our

solution is the decomposition-aggregation procedure (DAP)

consisting of the following seven steps.

1) Plant Model Abstraction: Part of the plant dynamics

that is unrelated to the imposed specification may be con-

cealed. By hiding irrelevant transitions, we can simplify the

models of components. The procedure is as follows [5].

(i) For every k ∈ K, check if Po|(Σk)∗ : (Σk)∗ → (Σo ∩
Σk)∗ is OCC for Lk; if not, for each σ ∈ Σo∩Σk

u add

its nearest upstream controllable events to Σo. Denote

the augmented observable alphabet by Σ′

o, and let P ′

o :
Σ∗ → (Σ′

o)
∗.

(ii) For every k ∈ K, check if P ′

o|(Σk)∗ : (Σk)∗ → (Σ′

o ∩
Σk)∗ is an Lm,k-observer. If so, go to (iii); otherwise,

employ the MX algorithm to compute an extension of

Σ′

o∩Σk that does define an Lm,k-observer. Denote the

extended alphabet again by Σ′

o, and the corresponding

natural projection again by P ′

o. Return to (i).

(iii) Compute model abstractions for each component, de-

noted by (Gk)′, with closed and marked languages

L′

k := P ′

o|(Σk)∗(Lk) and L′

m,k := P ′

o|(Σk)∗(Lm,k).

Note that abstractions (Gk)′ are defined over disjoint

alphabets (Σk)′ := Σ′

o ∩ Σk.

2) Decentralized Supervisor Synthesis: The system now

consists of component model abstractions (Gk)′ (k ∈ K)

and specifications Ep ⊆ Σ∗

o,p (p ∈ P). Since each Ep may

impose coupling only on a subset of component abstractions,

a decentralized supervisor with respect to Ep, denoted by

SUPp, can be obtained with only those relevant abstractions.

Specifically, we associate with each Ep its event-coupled

abstractions: those sharing events with Ep (i.e., (Σk)′ ∩
Σo,p 6= ∅); and then, we synthesize a corresponding optimal

nonblocking decentralized supervisor SUPp [5, Theorem 2].

3) Subsystem Decomposition and Coordination: After

synthesizing decentralized supervisors, we view the whole

system as comprised of a set of modules {Mp | p ∈ P},

each Mp consisting of a decentralized supervisor SUPp with

associated component model abstractions. In this step, we

decompose the overall system into small-scale subsystems,

through grouping these modules based on their intercon-

nection dependencies (e.g., event-coupling). If the modules

admit certain special structures, control-flow net [10] is an

effective approach for subsystem decomposition.
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Having obtained a group of small subsystems, we verify

the nonblocking property for each of them 3. If a subsystem

happens to be blocking, we design a coordinator 4 to

resolve the conflict by employing a method proposed in [5,

Proposition 7 and Theorem 4].

4) Subsystem Model Abstraction: After ensuring non-

blockingness within each subsystem, we need to verify the

nonconflicting property among these subsystems. Directly

verifying this property requires expensive computation; in-

stead, we again bring in the model abstraction technique to

simplify every subsystem, and check the nonconflictingness

on the abstracted level. The procedure is analogous to that

of Step 1) Plant Model Abstraction, above.

(i) Determine the shared event set, denoted by Σsub, of

these subsystems. Let Psub : (Σ′

o)
∗ → Σ∗

sub be the

corresponding natural projection.

(ii) Check if Psub is OCC for every subsystem; if not,

for each σ ∈ Σsub ∩ Σu add its nearest upstream

controllable events to Σsub. Denote the augmented

alphabet by Σ′

sub, and let P ′

sub : (Σ′

o)
∗ → (Σ′

sub)
∗.

(iii) Check if P ′

sub is an observer for every subsystem. If

so, go to (iv); otherwise, employ the MX algorithm

to compute an extension of Σ′

sub that does define an

observer for every subsystem. Denote the extended

alphabet again by Σ′

sub, and the corresponding natural

projection again by P ′

sub. Return to (ii).

(iv) Compute abstractions for each subsystem with P ′

sub.

5) Abstracted Subsystem Decomposition and Coordina-

tion: This step is analogous to Step 3, but for subsystem

model abstractions instead of modules. Concretely, we or-

ganize subsystem abstractions into groups according to their

interconnection dependencies (e.g., event-coupling). Again,

control-flow net may be an effective tool if certain special

structure is present. Then for each group, we check if the

included subsystem abstractions are nonconflicting; and if

not, design a coordinator to resolve the conflict.

6) Higher-Level Abstraction: Repeat Steps 4 and 5 until

there remains a single group of subsystem abstractions in

Step 5.

The modular supervisory control design terminates at Step

6; we have obtained a hierarchy of decentralized supervisors

and coordinators. Specifically, Step 2 gives a set of decentral-

ized supervisors {SUPp | p ∈ P}, and Steps 3 to 6 iteratively

generate a set of coordinators, denoted by {COq | q ∈ Q}
(Q an index set).

7) Decentralized Supervisors and Coordinators Localiza-

tion: We now apply the SL algorithm to localize each of

these decentralized supervisors SUPp (p ∈ P) and coordi-

nators COq (q ∈ Q) to local controllers for their relevant

components. First, we bring in a criterion to determine if a

component Gk (k ∈ K) is related to SUPp or COq. For SUPp

3We use TCT [11] procedure nonconflicting for this verification.
4A coordinator is a generator that does not directly enforce a ‘safety’

specification, but only resolves conflict among decentralized supervisors. In
other words, a coordinator enforces only a nonblocking specification.

INPUT

OUTPUT

deposit belt

elevating
rotary table

press

rotary base

arm2

arm1

feed belt

sensor1

test unit

crane

stock

sensor2

Fig. 1. Production cell

with state set Xp define Dk : Xp → Pwr(Σk
c ) according to

Dk(x) = {σ ∈ Σk
c |¬ξ(x, σ)! & (∃s ∈ Σ∗)[ξ(x0, s) = x

& η(y0, sσ)!]}.

Thus Dk associates each state x ∈ Xp with the subset of

controllable events of Gk that must be disabled at x. We then

say Gk is control-coupled to SUPp if (∃x ∈ Xp) Dk(x) 6= ∅;

in other words, SUPp disables some controllable events of

Gk 5. Thus the set of components that are control-coupled

to SUPp is {Gk | (∃x ∈ Xp) Dk(x) 6= ∅, k ∈ K}; and we

localize SUPp to local controllers only for this set. Similarly,

we localize COq = (Xq, , , , ) to local controllers only for

the set {Gk | (∃x ∈ Xq) Dk(x) 6= ∅, k ∈ K}.

Now we present our main result; the proof is given in [3].

Theorem 1: DAP solves distributed control problem (>).

IV. PRODUCTION CELL: SYSTEM DESCRIPTION

This section and the next apply DAP to solve the dis-

tributed control problem for a benchmark application, Pro-

duction Cell originating with [12], in a version we adapt

from [13] 6. In [13], optimal and nonblocking decentralized

supervision has been established by the modular approach

in [5]. This result will now be carried further to achieve our

objective of distributed control.

Production Cell consists of nine asynchronous compo-

nents: stock, feed belt, elevating rotary table, rotary base,

arm1, arm2, press, deposit belt, and crane. The cell processes

workpieces, called ‘blanks’, as displayed in Fig. 1.

A. Stock

Stock adds blanks into the cell by placing them on feed

belt (ST add); see ST in Fig. 2 7.

B. Feed belt

According to FB in Fig. 2 the feed belt, once loaded,

forwards blanks towards table (FB F ). Sensor1 at the end

5The control coupling relation can be determined by inspecting the control
data table generated by the TCT procedure condat [11].

6We have slightly modified the modeling in [13] for easier interpretation
of the cell’s physical operations.

7In generator models, by convention we mark controllable events with a
tick on the corresponding arrows.
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ST_add

ST

FB_s1On

FB_s1Off

FB_F

FB_O

FB

Fig. 2. Plant models of stock and feed belt

Cr_mOff

blank_add
Cr_mOff

blank_add

FB_s1OffFB_s1Off

FB1

Cr_mOff

blank_add

FB_s1On

FB2

FB_F FB_F

Fig. 3. Specification models of feed belt

Ta_U Ta_STf

Ta_D
Ta_B

Ta_SBf

Ta_50 Ta_S50f

Ta_C
Ta_0

Ta_S0f

Ta_V

Ta_H

Ta_T

Ta_CC

Fig. 4. Plant model of elevating rotary table

FB_s1Off

Ta_UTa_SBf

Ta1

Ta_STf

A1_mOnTa_D

Ta2

FB_s1Off

Ta_CCTa_S0f

Ta3

Ta_S50f

A1_mOnTa_C

Ta4

Ta_STf

Ro_90

Ro_90

A1T

Fig. 5. Specification models of elevating rotary table

of the belt switches to ‘on’ when it detects the arrival of

a blank (FB s1On). Feed belt outputs a blank onto table

if the latter is available (FB O). Sensor1 switches to ‘off’

when a blank leaves (FB s1Off ).

Feed belt interacts with stock, crane, and table, subject to

the following two specifications (Fig. 3):

• FB1: Feed belt forwards (FB F ) only when there are

blanks loaded; and it can hold at most two blanks.

• FB2: If there is already one blank on feed belt, then

for safety reasons a new blank is prohibited from being

loaded before the first reaches the end of the belt and

activates Sensor1 (FB s1On).

C. Elevating rotary table

Feed belt is located lower than arm1. As displayed in Fig.

4, after being loaded by feed belt table moves up (Ta U ,

Ta T , Ta STf ) and turns counterclockwise (CCW) to −50◦

(Ta CC, Ta 50, Ta S50f ) for arm1 to pick up a blank.

Thereafter table moves down (Ta D, Ta B, Ta SBf ) and

turns clockwise (CW) back to 0◦ (Ta C, Ta 0,Ta S0f ).

Table must synchronize with feed belt and arm1 when

transferring blanks; the corresponding specifications are

shown in Fig. 5:

Pr_UB Pr_SMf

Pr_UM

Pr_DPr_MD

Pr_MU

Pr_T

Pr_STf

Pr_B

Pr_SBfPr

Fig. 6. Plant model of press

Pr_SMf

A1_OffPr_UM

Pr1

Pr_UB

Pr_SBfA2_On

Pr2

Ro_90

A1_37

Pr_MU

A2_0A1P A2P

Pr_T

A1_65

Ro_90

Pr_T

A1_65

Ro_40

Pr_MD

A1_37

Ro_40

Pr_MD
Ro_90

Pr_B

A2_0

Ro_90

Pr_B

Ro_40

A2_80

Pr_MU

Ro_40

A2_80

Fig. 7. Specification models of press

• Ta1 and Ta3: Table can accept a blank from feed belt

(FB s1Off ) only when it is at bottom (Ta SBf ) and

at angle 0◦ (Ta S0f ); only after accepting a blank can

table ascend (Ta U ) and turn CCW (Ta CC).

• Ta2 and Ta4: Table can transfer a blank to arm1

(A1 On) only when it is at top (Ta STf ) and at angle

−50◦ (Ta S50f ); only after transferring a blank can

table descend (Ta D) and turn CW (Ta C).

• Collision between two blanks could occur if and when

arm1 has picked up one blank from table, rotary base

has not yet turned CCW to 90◦ (Ro 90), and table

returns to top with a new blank (Ta STf ). The speci-

fication that prevents this collision is enforced by A1T.

D. Press

Press operates at three different positions: bottom, middle,

and top. According to Fig. 6 it is initially at bottom, and

ascends to middle where arm1 may load a blank (Pr UB,

Pr MU , Pr SMf ). After being loaded, press continues to

top where it forges the blank (Pr UM , Pr T , Pr STf ).

Then it descends back to bottom and prepares to unload the

forged blank to arm2 (Pr D, Pr MD, Pr B, Pr SBf ).

Press coordinates with arm1, arm2 as specified in Fig. 7:

• Pr1: Press can accept a blank from arm1 (A1 Off )

only at its middle position (Pr SMf ); only after ac-

cepting a blank can press move to top (Pr UM ).

• Pr2: Press can transfer a blank to arm2 (A2 On) only

at its bottom position (Pr SBf ); only after the transfer

can press move to middle (Pr UB).

• There are, additionally, two collision scenarios. First,

press collides with arm1 if and when it is at top, arm1

is longer than 37, and rotary base is at 90◦. Second,

press collides with arm2 if and when it is not at bottom,

arm2 is longer than 0, and rotary base is at 40◦. The

specifications for avoiding these collisions are enforced

by A1P and A2P, respectively.
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Ro_CC Ro_S90

Ro_CRo

Ro_90

Ro_40

A1_F65

A1_S65A1_Off

A1_On A1_37

A1_65

A1_B52

A1_S52

A1_S37

A1_52

A1_B37

A1

A2_B57

A2_S0

A2_F80

A2_B0 A2_S57A2_0

A2_80 A2_On

A2_Off

A2_S80

A2_57

A2

Ro_S40

Fig. 8. Plant models of rotary base, arm1, and arm2

Ro_S40

A1_On A2_OnRo_S40

Ro_CC

Ro_S90

A1_OffRo_C

R3

Ro_S90

A2_OffRo_C

R4

Ro_S90

Ro_C

Ro_CC

R2

Ro_S40Ro_CC

R1

Fig. 9. Specification models of rotary base, arm1, and arm2

E. Rotary base, arm1, and arm2

Rotary base, arm1, and arm2 cooperatively transfer blanks

from table through press to deposit belt. As displayed in

Fig. 8, rotary base initially at 40◦ rotates CCW to 90◦

(Ro CC, Ro 90, Ro S90), and then CW back to 40◦ (Ro C,

Ro 40, Ro S40). Arm1, once loaded (A1 On), first retracts

to length 37 (A1 B37, A1 37, A1 S37) so as to avoid

collision, and then extends to length 65 (A1 F65, A1 65,

A1 S65) at which point it can unload a blank onto press

(A1 Off ); after unloading arm1 retracts to its initial length

52 (A1 B52, A1 52, A1 S52). Lastly, arm2 first extends its

length to 80 (A2 F80, A2 80, A2 S80) at which point it can

pick up a blank from press (A2 On); it then retracts to 57

(A2 B57, A2 57, A2 S57) and places a blank onto deposit

belt (A2 Off ); thereafter it retracts to 0, its initial length

(A2 B0, A2 0, A2 S0).

The collaboration among base and two arms must satisfy

the specifications in Fig. 9:

• R1 and R2: Arm1 and arm2 may be loaded only when

base is at 40◦ (Ro S40); only after both are loaded may

base turn CCW (Ro CC).

• R3 and R4: Arm1 and arm2 may unload only when base

is at 90◦ (Ro S90); only after both unloading actions

are completed may base turn CW (Ro C).

Notice that the marked states in R2 and R4 are so chosen

because arm2 has no blank to be loaded or to load during

the first work cycle of base. An analogous reason accounts

for the choice of marked state of Pr2 in Fig. 7: press has no

blank to load arm2 for the first iteration of its actions.

DB_s2On DB_s2Off

DB_O

DB_n

DB_F

DB_y
DB

Fig. 10. Plant model of deposit belt

Cr_On

DB_O

Cr_On

DB_O

A2_Off

DB1

DB_s2Off

DB2

A2_Off A2_Off

DB3

DB_n

Cr_On

DB_FDB_F

Fig. 11. Specification model of deposit belt

Cr_On Cr_66 Cr_SVf

Cr_DCr_95
Cr_SVf

Cr_2FB Cr_FB Cr_SHf

Cr_2DBCr_DB
Cr_SHf

Cr_V

Cr_H

Cr_U

Cr_Off

Cr_On

Cr_Off

Fig. 12. Plant model of crane

F. Deposit belt

As shown in Fig. 10, once loaded deposit belt for-

wards blanks (DB F ) towards the other end; there Sensor2

switches to ‘on’ (DB s2On) when it detects the arrival of

a blank, and ‘off’ (DB s2Off ) to show that the blank has

been checked by the test unit. If the blank passes the check

(DB y), then it will be output from the system (FB O);

otherwise (DB n) it waits to be picked up by crane.

Deposit belt interacts with arm2 and crane, subject to the

following three specifications (Fig. 11):

• DB1: Deposit belt forwards (DB F ) only when there

are blanks loaded; and it can hold at most two blanks.

• DB2: If there is already one blank on deposit belt, then

for safety reasons a new blank can be loaded only after

the first is checked by the test unit (DB s2Off ).

• DB3: If a blank fails the test (DB n), then it has to be

taken by crane back for another cycle (Cr On).

G. Crane

Deposit belt is located lower than feed belt. According

to Fig. 12, after picking up a faulty blank from deposit belt

(Cr On) crane moves up (Cr U , Cr 66, Cr SV f ) and hor-

izontally towards feed belt (Cr 2FB, Cr FB, Cr SHf ),

to which it delivers the blank (Cr Off ). Thereafter crane

moves down (Cr D, Cr 95, Cr SV f ) and horizontally back

towards deposit belt (Cr 2DB, Cr DB, Cr SHf ).

V. PRODUCTION CELL: DISTRIBUTED CONTROL

We are ready to apply DAP to the distributed control

design for Production Cell.

1) Plant Model Abstraction: By the abstraction procedure

in Section IV we effectively simplify the models of table,

press, arm1, arm2, and crane, as displayed in Fig. 13.
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Fig. 13. Model abstractions of plant components
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Fig. 14. Interconnection structure of production cell

2) Decentralized Supervisor Synthesis: For each specifi-

cation we group together its event-coupled components, and

synthesize for each group an optimal nonblocking decentral-

ized supervisor using TCT procedure supcon. The result is

presented in Fig. 14, with components in blocks, supervisors

in ovals, and solid lines denoting event-coupling.

3) Subsystem Decomposition and Coordination: We have

eighteen decentralized supervisors, thus eighteen modules.

Following [13] we decompose the overall system into two

subsystems, leaving five supervisors in between, as shown

with dotted lines in Fig. 14. It is further checked that while

Sub1 is nonblocking, Sub2 turns out to be blocking. We

thus design a coordinator, CO1, to resolve the conflict, and

denote the resulting nonblocking subsystem by NSub2.

4) Subsystem Model Abstraction: We must now verify the

nonconflicting property among Sub1, NSub2, and the five

intermediate supervisors 8. First, we determine their shared

event set, Σsub; by inspection we have

Σsub = {DB F, DB s2Off, DB n,DB O, Cr On, Ta U,

Ta STf, Ta D, Ta S50f, Ta C, Ro 90, A1 On, A2 Off}.

To ensure OCC we need to add events Ta CC and Ro CC
to Σsub, for these are the nearest upstream controllable

events from the uncontrollable ones Ta S50f and Ro 90,

8In this and the next steps, we take for the supervisors their (control-
equivalent) reduced generator models (i.e., the results of the supreduce

procedure in TCT [11]).
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Fig. 16. Local controllers for feed belt

respectively. Further, for the observer property, we find by

the MX algorithm that the additional events ST add, DB y,

Cr Off , and A2 F80 are needed in Σsub. Denote by Σ′

sub

the augmented alphabet; it defines an OCC observer P ′

sub

for both subsystems. So with P ′

sub we compute the model

abstractions, denoted by Sub1
′ and Sub2

′ respectively.

5) Abstracted Subsystem Decomposition and Coordina-

tion: We treat Sub1
′, Sub2

′, and the five intermediate

supervisors as a single group, and directly check the non-

blocking property. This group turns out to be blocking; a

coordinator, CO2, is then designed to resolve the conflict.

6) Higher-Level Abstraction: The modular supervisory

control design terminates with the previous Step 5. We have

obtained a hierarchy of eighteen decentralized supervisors

and two coordinators; their synchronized behavior is globally

optimal and nonblocking [13].

7) Decentralized Supervisors and Coordinators Local-

ization: We first determine the control-coupling relation

between supervisors/coordinators and components; we do

this by inspecting the corresponding condat tables in TCT

[11]. Then we apply the SL algorithm to localize each

supervisor/coordinator for its control-coupled component;

the resulting local controllers are displayed in Figs. 15 – 23

(for clarity extraneous selfloops are omitted), grouped with

respect to individual components. We observe that all con-

trollers decomposed from the supervisors have only two to

four states; thus their control logic can be easily understood

by referring to the corresponding specification descriptions

in Section IV. There are, additionally, two controllers, one

from each of the two coordinators: CO1 A2 in Fig. 21 forces

arm2 to stay put at its initial state during the first work cycle

of press; CO2 ST in Fig. 15 disables adding blanks into the

cell if and when there are seven there already. Finally, by

Theorem 1 these local controllers will collectively achieve

global optimality and nonblockingness.
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VI. CONCLUSION

We have studied distributed control design for large DES,

and presented the decomposition-aggregation procedure as a

corresponding solution. The procedure has been successfully

demonstrated with the benchmark Production Cell.

One direction of future work aims to adapt supervisor

localization to the state tree structure, a framework known to

be highly efficient in monolithic supervisor synthesis (even

for systems of state size 1024 or more) [14]. Equipped with

that computational power, we may tackle distributed control

design for much larger DES.
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