OSNR Optimization in Optical Networks: Modeling and Distributed Algorithms via A Central Cost Approach

Lacra Pavel
Department of Electrical and Computer Engineering
University of Toronto, Toronto, ON, Canada, M5S 3G4

ABSTRACT This paper addresses the problem of optical signal-to-noise ratio (OSNR) optimization in optical networks. An analytical OSNR network model is developed for a general multi-link configuration, that includes the contribution of amplified spontaneous emission and crosstalk accumulation. The network OSNR optimization problem is formulated such that all channels maintain a desired individual OSNR level, while input optical power is minimized. Conditions for existence and uniqueness of the optimal solution are given. An iterative, distributed algorithm for channel power control is proposed, which is shown to converge geometrically to the optimal solution. The algorithm is valid for general network configurations, and uses only local measurements or decentralized feedback. Convergence is proved for both synchronous and asynchronous operation, which is particularly important for adaptation in a dynamic environment.

Keywords: optical networks, optical signal-to-noise ratio, optimization, iterative control algorithms.

I. INTRODUCTION

Optical wavelength-division multiplexed (WDM) communication networks are evolving beyond the statically designed, point-to-point links. The goal is to realize reconfigurable networks, with arbitrary topologies, while at the same time maintaining network stability, optimal channel transmission performance and quality of service (QoS), [1]-[4].

At the physical transmission level, one parameter that directly determines channel performance and QoS is the bit-error rate (BER). BER in turn, depends on optical signal-to-noise ratio (OSNR), dispersion and nonlinear effects, [5]. There exists a complex inter-depedence between penalties coming from equalization and from nonlinear effects. As the most general case is analytically intractable, assumptions are typically made to treat these effects separately in different regimes. In the quasi-linear regime, in link optimization OSNR is considered as the dominant performance parameter, with a bound on dispersion and nonlinearity effects, [6]-[8]. This corresponds to systems for which the launched total power is below the threshold for nonlinear effects, i.e., not very long fiber spans and not very high counts of channels, [5]. For these systems OSNR optimization can be directly translated to QoS optimization. The dominant
impairment in OSNR optimization is given by noise accumulation in chains of optical amplifiers and its effect on OSNR, [9]. A typical approach for OSNR optimization uses a static budget of device and fiber impairments along a link, with significant tolerance margins added such that at least a desired OSNR value is achieved. In [10], a heuristic algorithm was proposed for on-line OSNR equalization in single point-to-point links, but its convergence was not considered. In [9], OSNR equalization in a point-to-point link was formulated as a static optimization problem. The optimal channel optical power vector at the transmitter is found by solving an eigenvalue problem for the system transmission matrix, composed of link gains of all channels. The algorithm which is developed only for a single point-to-point link, is static and requires centralized, global link information.

The current OSNR optimization approaches, that are developed for single links, are not appropriate for reconfigurable optical networks, where the length of the links and the number of devices in a link are changing. Moreover, in these networks arbitrary topologies can be formed, different channels can travel via different optical paths, and also different channels can have different levels of QoS (OSNR) requirements. Therefore, it is desirable to adjust network parameters (optical power, gains) in an optimal way, based on on-line network feedback (from receiver to transmitter and various nodes). This dynamic optimization will result in increased network flexibility and capacity, so that the needed quality of service (QoS) is assured whenever a new channel is added/dropped. These observations justify the need for on-line OSNR optimization algorithms, that have provable convergence properties for general network configurations. Moreover, particularly useful are decentralized algorithms, such that channel power at the transmitter (Tx), can be adjusted based on feedback from the corresponding receiver (Rx) only, plus other channel specific measurements.

This problem is similar to power control in wireless communication systems, a topic which has been explored extensively, via either centralized approaches, [11], [12], or decentralized, noncooperative game approaches, [18], [20]. There are several differences that make this dynamic network optimization problem more challenging in optical networks. In wireless networks, channels are characterized by static loss/gain only, with single Tx to Rx links, or multiple links with no gains (ATM networks). Optical networks bring a new combination of challenges: amplified spans, multiple links, accumulation and self-generation of optical (ASE) noise, as well as crosstalk generated at the routing elements. This is the problem we address in this paper: OSNR optimization in optical networks and development of iterative power control algorithms. This paper represents the first work in this direction, for which a short version appeared in [21].

We note that recently developed gain equalization filters can used to compensate channel optical powers, [22]-[24]. Even when these devices are present, there still the need for analyzing
system OSNR penalties, [25], as equalization filters do not have yet the resolution to achieve
perfect adjustment on a per channel basis, [28], and as they cannot be used at each amplifier
site. The incorporation of dynamic gain filters when developing iterative algorithms for network
OSNR optimization is the subject of current and future work, for which some preliminary results
can be found in [26].

The paper is organized as follows. In Section II we develop the analytical model for OSNR in
a generic multi-link configuration, both as recursive relations and end-to-end relations, with both
ASE and cross-talk included. In Section III we formulate the static OSNR optimization problem
for a large-scale network, and characterize the optimal solution. In Section IV we develop an
iterative algorithm for adjusting power levels and we give conditions for its convergence to the
optimal solution. The proposed algorithm is valid for general network configurations, and uses
only local measurements or decentralized feedback. In Section V we prove that the algorithm
is convergent also in the asynchronous case, which is particularly important for adaptation in a
dynamic environment. A numerical example is given in Section VI followed by conclusions.

II. NETWORK OSNR MODEL

Consider a generic optical network configuration (Figure 1), with a set of optical links \(\mathcal{L} = \{1, \ldots, L\} \) connecting the optical nodes (for channel add/drop (OADM) or cross-connect (OXC)).
A link \(l \) is composed of \(N_l \) equal length, cascaded optically amplified spans. A total set of
channels, \(\mathcal{M} = \{1, \ldots, m\} \), corresponding to a set of wavelengths, are transmitted across the
network. This is realized by intensity modulation of the wavelengths, and then by multiplexing
the wavelengths to be transmitted across the same link. We denote by \(\mathcal{M}_l \) the set of channels
transmitted over link \(l, l \in \mathcal{L} \). For a channel \(i \in \mathcal{M} \), corresponding to wavelength \(\lambda_i \), we denote
by \(\mathcal{R}_i \) its optical path, or collection of links, from source (Tx) to destination (Rx). For the \(i^{th} \)
channel, we denote by \(u_i, s_i, \) and \(n_i \) the optical power of the input signal (at Tx), output signal
(at Rx) and output noise (at Rx), respectively, in the \(i^{th} \) channel bandwidth. We also denote by
\(\mathbf{u} = [u_1, \ldots, u_m]^T \) the vector of input powers for all channels.

In this section we develop a network OSNR model for a generic multi-link configuration,
following the approach in [9]. As in [9], [7], dispersion and nonlinearity effects are considered
to be limited, and the dominant impairment is amplified spontaneous emission (ASE) noise in
amplifiers. Optical amplifiers are used to amplify the optical power of all channels in a link
simultaneously, but they also introduce and amplify ASE noise. Because of their wavelength-
dependent gain, ASE noise is also wavelength-dependent, and hence different channels will have
different OSNR levels. Moreover, in a network different channels travel via different optical paths,
and hence experience different noise accumulation.
In this paper we consider optically amplified links, and we treat separately two cases depending on the amplifier operation mode: gain control mode and power control mode. The case of gain control mode leads to a simpler mathematical model, such that OSNR on a particular channel does not depend on the power of the rest of the channels (Lemma 1). The case of automatic power control mode is more representative, as this is the mode in which optical amplifiers typically operate in optical links. In this mode, the amplifiers maintain a constant total output power, and hence the same total power is launched into each span of a link. Thus total optical power is uniformly distributed across a link, which will reduce the effect of fiber nonlinearities, [7], [5]. However this power control mode case leads to a more complex mathematical model (Lemma 2); the inherent scaling on the total power from span to span translates into coupling between all channels’ powers, and OSNR on a particular channel does depend on all other channels’ powers.

The following relations will be used. An optically amplified span is composed of optical fiber and an optical amplifier. For the \(k^{th} \) span, of the \(l^{th} \) link, the optical span transmission, \(h_{l,k,i} \), for channel \(i \) is given by

\[
h_{l,k,i} = G_{l,k,i} L_{l,k} \quad \forall k = 1, \ldots, N_l
\]

(1)

where \(G_{l,k,i} \) is the amplifier gain (typically wavelength/ channel dependent), and \(L_{l,k} \) is optical fiber loss (typically channel independent). ASE noise power generated in the \(k^{th} \) amplifier on the \(l^{th} \) link, for the \(i^{th} \) channel, is given as [5]

\[
ASE_{l,k,i} = 2n_{sp} [G_{l,k,i} - 1] h \nu_i B_o
\]

(2)

where \(n_{sp} > 1 \) is the amplifier excess noise factor, \(h \) is the Planck constant, \(B_o \) is the optical bandwidth, and \(\nu_i \) is the optical frequency corresponding to wavelength \(\lambda_i \). We consider systems with large signal-to-noise ratio, for which the following assumption is justified.

\((A.i.1) \): ASE noise power does not participate in amplifier gain saturation.
We consider only forward propagation of signal and noise in steady-state, \cite{9}, i.e., we do not consider amplifier gain dynamics, \cite{27}, \cite{28}. This is justified for an OSNR optimization problem where power adjustments need to be made at steady-state, after updating network topology.

For channel i, we denote by $p_{l,k,i}$ and $v_{l,k,i}$, the signal and the noise power, respectively, at the output of the k^{th} span on the l^{th} link. Using (1) it follows that

$$
p_{l,k,i} = h_{l,k,i} \cdot p_{l,k-1,i}
$$

$$
v_{l,k,i} = h_{l,k,i} \cdot v_{l,k-1,i} + ASE_{l,k,i} + \sum_{j \in M_l} p_{l,k,j} = P_{0,l} \quad \forall l \in R_i \quad \forall k = 1, \ldots, N_l
$$

with $ASE_{l,k,i}$, as in (2).

The optical signal-to-noise ratio (OSNR) for the i^{th} channel, $i \in M$, is defined as

$$OSNR_i = \frac{s_i}{n_i}
$$

where s_i and n_i are the channel’s signal, and noise power at the output (at Rx), respectively.

For the gain control mode, based on the foregoing propagation relations, the following decoupled network OSNR model is obtained, generalizing the single link result in \cite{9} to an arbitrary multi-link network.

Lemma 1: Let u_{i}, and $n_{0,i}$ be the i^{th} channel’s signal, and noise power at Tx, respectively. Under (A.i.1), the i^{th} channel OSNR, along a path R_i, is given as

$$OSNR_i = \frac{u_i}{n_{0,i}} + \sum_{l \in R_i} \sum_{k=1}^{N_l} \frac{1}{\prod_{q=1}^{k-1} T_{q,i}} \frac{ASE_{l,k,i}}{H_{l,k,i}}
$$

where $H_{l,k,i} = \prod_{q=1}^{k} h_{l,q,i}$, and $T_{l,i} = H_{l,N_l,i}$, are the intermediary and, respectively, the full transmission for l^{th} link.

Proof: The proof follows by developing end-to-end (Tx to Rx) propagation relations for signal and noise, i.e., s_i and n_i, and is presented in Appendix I.

As seen in Lemma 1, for the gain control mode the OSNR on a particular channel does not depend on the power of the rest of the channels.

We now consider the second case when optical amplifiers are operated in automatic power control mode. This is the typical operation mode for optical amplifiers when the network is in steady-state, \cite{5}, such that the a constant total power is maintained at its output. Keeping a constant total power, or a constant total launching power after each span, compensates variations in fiber-span loss across a link, \cite{9}. Then at the output of each span

$$\sum_{j \in M_l} p_{l,k,j} = P_{0,l} \quad \forall l \in R_i \quad \forall k = 1, \ldots, N_l$$

The following assumption is used in the power control mode.

(A.i.2) All the amplifiers in a link have the same spectral shape, with the same total power target.

The first part of (A.i.2), regarding identical amplifier spectral shape, is a weak assumption for the considered case of equal spans in a link, and it is made for simplicity. The second part of (A.i.2), regarding identical total power target, is in fact justified for links with equal spans. This choice leads to the total optical power being uniformly distributed across a link, which will reduce the effect of fiber nonlinearities, [7], [5].

Mathematically, from (6), (3), the power control mode can be seen as requiring a scaling of the gain such that the same total power is maintained. This scaling realized by using a variable optical attenuator and adjusting its loss to achieve constant total output power, [9]. This scaling introduces coupling between all channel powers, (6), which will lead to a modification of channel OSNR model in Lemma 1. In effect for the power control mode, the channel OSNR is no longer independent of other channels’ powers. This complete OSNR network model for the power control mode is presented in Lemma 2.

Lemma 2: Under (A.i.1)-(A.i.2) for amplifiers in power control mode, the OSNR for the \(i^{th}\) channel is written as

\[
OSNR_i = \frac{u_i}{n_{0,i} + \sum_{j,M} \Gamma_{i,j} u_j} \quad \forall i \in M
\]

where the full \(m \times m\) system matrix \(\Gamma\) is defined as \(\Gamma = [\Gamma_{i,j}]\)

\[
\Gamma_{i,j} = \begin{cases}
\sum_{l \in R_i} \sum_{k=1}^{N_i} \frac{G^k_{l,j}}{G^k_{l,i}} \left(\prod_{q=1}^{l-1} \frac{T_{q,j}}{T_{q,i}} \right) \frac{ASE_{l,k,i}}{P_{0,l}} & \text{if } j \in M_l \\
0 & \text{if } j \notin M_l
\end{cases}
\]

and all other notations are as in Lemma 1.

Proof: The proof is based on the same propagation relations to which the coupling relation (6) is added (see Appendix I).

In the following the OSNR model in Lemma 2 is extended to include crosstalk terms due to WDM components at the optical nodes (OADM or OXC), such as optical filters, demultiplexers, add/drop modules, routers or switches, [5]. We consider only the heterowavelength (out-of-band) crosstalk due to incomplete filtering. A similar approach could be used to include the homowavelength crosstalk (in-band) in the space switches following a model as in [2].

Let the \(l^{th}\) optical node, associated with the \(l^{th}\) link, be characterized by an insertion loss \(L_{sw,l}\) (typically channel independent), and a crosstalk ratio, \(X_{he}\). The crosstalk ratio \(X_{he}\) is a measure of the out-of-band crosstalk and represents the fraction of total power leaked into a specific channel from all the other channels, [5]. We assume also that an optical amplifier is present at the \(l^{th}\) optical node, characterized by a gain \(G_{X,l,i}\) and an ASE noise power denoted by \(ASE_{X,l,i}\). The following assumption will be used.
Cascaded in-line amplifiers have a significantly higher contribution to the ASE accumulation than a single OXC stage.

Neglecting the ASE contribution due to an OXCs as in (A.i.3) is justified since an OXC stage follows after \(N_i \) (typically up to 10) in-line amplifiers with high accumulated ASE noise. Intuitively (A.i.3) means that the effect that OXCs have on the OSNR degradation is mostly due to cross-talk accumulation, and less due to their own ASE noise accumulation. This assumption allows in turn for a simpler mathematical form of the full OSNR model, with the ASE noise component (due to amplifiers) separated from the cross-talk component (due to OXC) as seen in the following result.

Lemma 3: Under (A.i.1)-(A.i.3), for amplifiers in power control mode the OSNR for the \(i^{th} \) channel, including both ASE accumulation and cross-talk accumulation effects, is given as

\[
OSNR_i = \frac{u_i}{n_{0,i} + \sum_{j \in \mathcal{M}} \tilde{\Gamma}_{i,j} u_j} \quad \forall \ i \in \mathcal{M}
\]

where the system matrix \(\tilde{\Gamma} \) is given as \(\tilde{\Gamma} = [\tilde{\Gamma}_{i,j}] \)

\[
\tilde{\Gamma}_{i,j} = \begin{cases}
\Gamma_{i,i} & \text{if } j = i \\
\sum_{l \in \mathcal{R}_i} \sum_{k=1}^{N_i} \frac{c_{l,i}^{k}}{G_{l,i}} \left(\prod_{q=1}^{l-1} \frac{\tilde{T}_{q,i}}{T_{q,i}} \right) + \sum_{l \in \mathcal{R}_i} \left(\prod_{q=1}^{l} \frac{\tilde{T}_{q,i}}{T_{q,i}} \right) X_{he} & \text{if } j \neq i, j \in \mathcal{M}_i \\
0 & \text{if } j \neq i, j \not\in \mathcal{M}_i
\end{cases}
\]

and where \(\tilde{T}_{l,i} = T_{l,i} G_{X,l,i} L_{sw,l} \).

Proof: The proof is similar to Lemma 2 is presented in Appendix I.

Remark 1: The new matrix \(\tilde{\Gamma} = [\tilde{\Gamma}_{i,j}] \) (Lemma 3), is similar to \(\Gamma = [\Gamma_{i,j}] \), (Lemma 2, with the last extra term being the specific contribution of crosstalk accumulation. Therefore, in the following we will use the general notation \(\Gamma = [\Gamma_{i,j}] \) for the system matrix, with \(\Gamma \) being as in either Lemma 2, or Lemma 3.

Note that mathematically the OSNR model bears a striking similarity to the wireless SIR model, [11]. The difference is that the system matrix \(\tilde{\Gamma} \) has non-zero diagonal elements, and all elements are dependent on specific optical network parameters such as link and span gains. Also as another specific feature in optical networks, note that cross-coupling terms in OSNR appear not only due to cross-talk as in the wireless case. Even when no OXCs are present (no cross-talk), cross-coupling terms appear in ASE accumulation and OSNR due to the specific mode of amplifier operation that requires total power scaling.

III. Network OSNR Optimization: Central Cost Formulation

In this section we use the general network OSNR model in Lemma 2 (or Lemma 3) to formulate the static OSNR optimization problem for a large-scale network.
A special OSNR optimization problem, of maximizing the minimum OSNR, was considered in [9] for a single link case. This is similar to the problem of maximizing the minimum signal-to-interference ratio (SIR) in wireless networks, [11], [15], [16]. The problem can be translated into an OSNR (SIR) equalization problem and formulated as an eigenvalue problem for the system matrix. The solution can be based on the Perron-Frobenius theorem for the maximum eigenvalue of a matrix with nonnegative elements, [29]. Solving this eigenvalue problem can give the optimal transmitter power vector as the eigenvector corresponding to the maximum modulus eigenvalue. However, thermal or external noise is neglected, and more importantly, the method is not appropriate for developing on-line algorithms.

In the following, we consider a different OSNR optimization problem, similar to the SIR optimization problem considered in [14], [13] for wireless networks. We will exploit the parallel between the mathematical form of the OSNR equations and the signal-to-interference equations in the wireless case. The resulting algorithms for optical networks are mathematically the same as in the wireless context, as well as their convergence properties.

Specifically we formulate the performance objective to be that of ensuring that the OSNR set of all channels is above a predefined set of targets, as determined by QoS constraints. This approach allows full flexibility in setting individual per channel targets and also recognizes the presence of external (input) noise. Moreover, if a feasible solution exists, then there exists a unique solution which minimizes transmitter power, obtained by solving a system of linear equations. A specific feature of this approach is the fact that it leads to iterative (on-line) algorithms with geometric convergence as we will show in the following sections.

We consider the problem of finding an input (transmitter) power vector so that the OSNR of all channels satisfy

$$\text{OSNR}_i \geq \hat{\gamma}_i \quad \forall i \in \mathcal{M}$$

(9)

where the set of targets, $\hat{\gamma}_i$, can be predefined as needed by QoS requirements for each channel. Moreover, the minimum power satisfying this constraint is sought. Therefore, using (7) or (8), the optimization problem can be formulated as the minimization of the central cost function

$$\min \sum_{i \in \mathcal{M}} u_i$$

(10)

such that

$$\frac{u_i}{\sum_{j \in \mathcal{M}} \Gamma_{i,j} u_j + n_{0,i}} \geq \hat{\gamma}_i \quad \forall i \in \mathcal{M}$$

This requirement is translated into

$$u_i \geq \sum_{j \in \mathcal{M}} \hat{\gamma}_i \Gamma_{i,j} u_j + \hat{\gamma}_i n_{0,i}, \quad \forall i \in \mathcal{M}$$
Recall that n_0 stands as the input noise power at the Tx, and also can be considered to include also some other external noise such as thermal noise. Equivalently, in matrix-vector form, from the above we need to have

$$u \geq \hat{\Gamma} u + \hat{n}_0$$
and
$$u \geq 0 \quad \forall i \in \mathcal{M}$$
(11)

where

$$\hat{\Gamma} = \begin{bmatrix} \hat{\gamma}_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \hat{\gamma}_m \end{bmatrix} \cdot \Gamma, \quad u = \begin{bmatrix} u_1 \\ \vdots \\ u_m \end{bmatrix}, \quad \hat{n}_0 = \begin{bmatrix} \hat{\gamma}_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \hat{\gamma}_m \end{bmatrix} \cdot n_0$$

We call the set of OSNR targets $\hat{\gamma}_i, i = 1, \ldots, m$ a feasible set, if there is a nonnegative finite vector u that satisfies (11). In the foregoing $\hat{\Gamma}$ is the network transmission matrix, normalized (weighted) by $\hat{\gamma}_i$, while u, and \hat{n}_0 are the vectors of input signal and weighted noise power, respectively.

The existence of a nonnegative solution for (11) is specified by the following standard result, based on Perron’s Theorem, [29], [32], which can be proved by using the Jordan canonical form of $\hat{\Gamma}$.

Theorem 1: [29] Let $\rho(\hat{\Gamma})$ be the spectral radius of the nonnegative matrix $\hat{\Gamma}$, defined as the magnitude of the largest eigenvalue of $\hat{\Gamma}$. Then, the following statements are equivalent:

1. There exists a vector $u > 0$ such that $\left(I - \hat{\Gamma} \right) u \geq \hat{n}_0$
2. $\rho(\hat{\Gamma}) < 1$
3. $\left(I - \hat{\Gamma} \right)^{-1} = \sum_{k=0}^{\infty} \hat{\Gamma}^k$ exists and is positive component-wise.

Remark 2: As an intuitive justification of the feasibility theorem, note that if λ is any eigenvalue of $\hat{\Gamma}$ such that $|\lambda| < 1$, that corresponds to a positive eigenvector v,

$$\hat{\Gamma}v = \lambda v$$

then for any positive scalar $\alpha > 0$ we have

$$(I - \hat{\Gamma}) \alpha v = \alpha (1 - \lambda) v$$

Therefore α can be chosen arbitrarily large to ensure that the right-hand side of the foregoing is larger than or equal to the noise vector \hat{n}_0, and hence the feasibility condition (11) holds.

Moreover, if the targets are feasible, i.e., if $\rho(\hat{\Gamma}) < 1$ (by Theorem 1), it can be shown that the vector that satisfies (11) with equality minimizes the sum of the power transmitted, [12]. Therefore, if $\rho(\hat{\Gamma}) < 1$, the optimal power vector u^* is the solution of

$$u = \hat{\Gamma} u + \hat{n}_0$$
(12)
or \(u^* = \left(I - \hat{\Gamma} \right)^{-1} \hat{n}_0 \).

\textit{Remark 3:} An alternative sufficient condition for existence of the optimal solution is that

\[\sum_j |\hat{\Gamma}_{i,j}| < 1, \quad \forall i \in M \]

Using this inequality and Gershgorin’s Theorem, [30], it can be shown that all eigenvalues of \(\hat{\Gamma} \) are inside the unit disk, so that \(\rho(\hat{\Gamma}) < 1 \), and hence the optimal solution \(u^* \) exists.

Note that setting \(u^* \) as in (12) is a static and centralized approach. In the next section we show how this formulation can be used to develop iterative and distributed algorithms.

\textbf{IV. NETWORK OSNR OPTIMIZATION: ITERATIVE ALGORITHM - SYNCHRONOUS CASE}

In the following we use the static optimization problem formulated in the previous section, to develop an iterative network algorithm for adjusting power levels. The proposed algorithm is distributed and autonomous, i.e., uses decentralized feedback and only local measurements. We show that, for the synchronous updating of all channels’ power levels, this distributed algorithm converges with a geometric rate to the optimal solution \(u^* \).

Recall (12) and consider the following update equation

\[u(n+1) = \hat{\Gamma} u(n) + \hat{n} \quad n = 1, 2, 3, \ldots \tag{13} \]

where

\[u(n) = \begin{bmatrix} u_1(n) \\ \vdots \\ u_m(n) \end{bmatrix} \]

with \(u_i(n) \) being the input optical power for the \(i^{th} \) channel at time index \(n \).

This is a centralized algorithm that requires, at each iteration \(n \), knowledge of the full gain matrix of the optical network \(\hat{\Gamma} \), together with measurement of the current power allocation \(u(n) \) for all channels.

In the following, a distributed algorithm is defined, that uses only individual, local, measurements for each channel \(i^{th} \).

Note that a standard assumption in adaptive control is that system parameters are stationary between any updates, [31]. Similarly here, system parameters change at network reconfiguration, and updates have to be performed after all network topology changes have been propagated. Therefore, we assume that

\((A.ii.1) \) Channel gains and the "interference" terms due to other channel’s power variation are stationary between power updates.
Now note that from (13), the updates for the ith channel can be written component-wise as

$$u_i(n+1) = \hat{\gamma}_i \left(\sum_{j \in \mathcal{M}} \Gamma_{i,j} u_j(n) + n_{0,i} \right)$$

However from (7), (A.ii.1) we have that

$$\sum_{j \in \mathcal{M}} \Gamma_{i,j} u_j(n) + n_{0,i} = \frac{u_i(n)}{OSNR_i(n)}$$

(14)

Based on the foregoing consider then the following distributed algorithm.

Algorithm:

$$u_i(n+1) = (1 - \mu) u_i(n) + \mu \hat{\gamma}_i \frac{u_i(n)}{OSNR_i(n)}$$

(15)

where $\mu > 0$ is an update (adjustment) parameter.

Remark 4: Note that this algorithm is distributed and autonomous as it relies only on locally available information. By this updating rule, the current transmitter power should be adjusted to be proportional to the previous power, plus by a factor equal to the ratio between the target OSNR, $\hat{\gamma}_i$, and the measured OSNR at the receiver. The adjustment factor μ acts as a weighting factor between the previous channel update and the current measurement. It offers the flexibility to be adjusted for a better transient response. A larger μ leads to faster convergence, while a smaller μ can induce smoother variation of the channel powers during the iterative process, with the trade-off of slower convergence.

The following theorem establishes convergence conditions for algorithm (15).

Theorem 2: Assume that an optimal solution exists, i.e., $\rho(\hat{\Gamma}) < 1$. Then algorithm (15) is globally stable and converges to the optimal solution, u^*, if

$$0 < \mu < \frac{2}{1 + \rho(\hat{\Gamma})}$$

(16)

Moreover, the rate of convergence of the algorithm is geometrical.

Proof: The proof is based on the error between the updated channel powers and the optimal powers (12), which satisfies a linear equation. We show that this error globally converges to 0 under the conditions stated in the theorem. The detailed proof is presented in Appendix II, after reviewing some linear algebra results.

Remark 5: Note that for $\mu = 1$, (15) reduces to

$$u_i(n+1) = \hat{\gamma}_i \frac{u_i(n)}{OSNR_i(n)}$$

(17)

which is similar to the wireless case, [14], [16], and, for the case of equal OSNR targets, to the algorithm proposed heuristically in [10].
V. NETWORK OSNR OPTIMIZATION: ITERATIVE ALGORITHM - ASYNCHRONOUS CASE

In this section we prove that the algorithm (15) converges to the optimal solution in the asynchronous case also. This is particularly important for adaptation in dynamic, large-scale networks, whereby channels update their powers asynchronously.

We follow an approach as in [13], based on the worst case delay. We assume that asynchronous operation can occur in two cases. Firstly, all channels can have the same update rate, but not all channels are synchronously updated at the same instance. Secondly, different channels can have different update rates. Both cases fit within the formulation described below.

Formally, assume for example, that channel \(j \) makes an update followed by an update on channel \(i \) at a later time. Suppose that this later time is earlier than the time at which the effect of \(j \) channel update is propagated to the \(i \) channel. Therefore, effectively channel \(i \) is performing an update that depends on an outdated value of the \(j \) channel power. Thus, for the asynchronous case we have that the OSNR at instant \(n \), \(OSNR_i(n) \), is a function of the delayed powers of the other channels, i.e.,

\[
\frac{u_i(n)}{OSNR_i(n)} = \sum_{j \in M} \Gamma_{i,j} u_j(n - \tau_{i,j}(n)) + n_{0,i}
\]

We will use this to study convergence in the asynchronous case. Let \(A(n) \) denote the collection of indices of channels making concurrent updates, i.e., a subset of \(1, 2, \ldots, m \). Thus, using the foregoing relation, for the asynchronous operation, instead of (15), we have

\[
u(n + 1) = \begin{cases} (1 - \mu)u_i(n) + \mu \hat{\gamma}_i \left(\sum_{j \in M} \Gamma_{i,j} u_j(n - \tau_{i,j}(n)) + n_{0,i}\right) & \text{if } i \in A(n) \\ u_i(n) & \text{if } i \notin A(n) \end{cases}
\]

The delay terms \(\tau_{i,j}(n) \) are nonnegative, bounded integers, which can be appropriately defined to cover all the asynchronously cases discussed above. The following assumptions will be used.

(A.iii.1) The delay terms are uniformly bounded, i.e., there exists \(\tau_0 \) such that

\[
\tau_{i,j}(n) \leq \tau_0 < \infty \quad \forall \ n \geq 0, \ i, j \in M
\]

(A.iii.2) There exists finite \(\pi \) such that every channel has an update at least once every \(\pi \).

The following result gives convergence conditions for the asynchronous algorithm, (18).

Theorem 3: Assume that \(\rho(\hat{\Gamma}) < 1 \) holds in addition to (Aiii.1) and (Aiii.2). Then if

\[
0 < \mu < \frac{2}{1 + \rho(\hat{\Gamma})}
\]

then the asynchronous algorithm (18) converges to \(u^* \), with a geometrical rate, i.e.,

\[
\| e_\tau(n) \|_{\tau,v,\infty} \leq \alpha^n \| e_\tau(0) \|_{\tau,v,\infty}
\]
where
\[\alpha = |1 - \mu| + \mu \rho(\tilde{\Gamma}), \quad \text{and} \quad q = \left\lfloor \frac{n}{\tau_0 + \pi} \right\rfloor \]

Proof: Appendix III.

VI. NUMERICAL EXAMPLE

In this section we describe a MATLAB simulation used to exemplify the iterative algorithm. We considered a basic network configuration (Fig. 2 (a)), with three links and ten amplified spans per link, with a span loss of 20 dB. For simplicity we ignore the crosstalk. We assume that \(m = 8 \) channels can be transmitted, distributed from 1554 nm to 1561 nm, with channel separation of 1 nm. Each optical amplifier has a parabolic spectral gain profile as in Fig. 2 (b), a noise figure of 5 dB and operates with total output power of 8 dBm. In Fig.2 (b) channel index from 1 to 8 indicate channel location within the wavelength range from 1554 nm to 1561 nm. Within the set of 8 channels there are two levels of desired OSNR, a 21 dB level desired on the first 4 channels, and a 23 dB OSNR level on the other 4 channels. We consider initially that only the first 6 channels were present and we set the optimal power vector (static) so that the desired levels are satisfied, with channel powers distributed around the -1dBm per channel value (see Fig. 3 (a)). At step \(t = 50 \) the network is reconfigured such that two new channels, 7 and 8, are added that pass only through link \(l_2 \). With existent transmitter powers maintained at the same level as before the add event, the OSNR for the existing channels has a sudden drop at \(t = 50 \) (see Fig. 3 (b)), due to the extra channels that share the link. Using the iterative algorithm with \(\mu = 0.5 \) and synchronous updating to adjust all channel powers, the channel OSNR levels converge back to the desired values of 21dB and 23dB, respectively. Fig. 3 (a) and (b) show the evolution in time of channel powers and OSNR, respectively.
VII. CONCLUSIONS

In this paper we considered OSNR optimization in optical networks and development of iterative algorithms for optimally re-adjusting network parameters, such that all channel/routes maintain a desired QoS (OSNR). We developed an analytical model for OSNR in a generic multi-link configuration, both as recursive relations and end-to-end relations. We formulated a static OSNR optimization problem for a generic large-scale network, and characterized the optimal solution. We developed an iterative distributed algorithm for adjusting channel power levels, that was shown to converge geometrically to the optimal solution. The algorithm is valid for general network configurations, and uses only local measurements or decentralized feedback. We proved that the algorithm is convergent also in the asynchronous case, which is particularly important for adaptation in a dynamic environment. An interesting future direction is extension of this approach to include the total power limit as a parameter to be optimized, as well as investigation of non-cooperative game theory approaches.

APPENDIX I

PROOF OF LEMMAS 1, 2 AND 3

Proof of Lemma 1:

Recall that \(p_{l,k,i} \) and \(v_{l,k,i} \), denote the \(i^{th} \) channel’s signal and noise power, respectively, at the output of the \(k^{th} \) span on the \(l^{th} \) link. Using (3) recursively after \(k \) we can write

\[
\begin{align*}
 p_{l,k,i} &= p_{l,0,i} \prod_{q=1}^{k} h_{l,q,i} \\
 v_{l,k,i} &= v_{l,0,i} \prod_{q=1}^{k} h_{l,q,i} + \sum_{r=1}^{N_l} ASE_{l,r,i} \prod_{q=r+1}^{k} h_{l,q,i}
\end{align*}
\]

(20)

We will use the following notations and conventions. The signal power at the output of the \(l^{th} \) link, denoted by \(s_{l,j} \), is taken by convention to be the same as the signal power at the output of
the N_lth span, i.e., $p_{l,N_l,i}$. A similar convention holds for noise, so that
\[s_{l,i} = p_{l,N_l,i} \quad \text{and} \quad n_{l,i} = v_{l,N_l,i} \quad \text{(21)} \]

Also, the signal power at the output of the $(l - 1)$th link, $s_{l-1,i}$, is identical to the signal power at the input of the lth link, which, by convention, is taken as the output of the 0th span on the lth link, i.e., $p_{l,0,i}$. Therefore,
\[s_{l-1,i} = p_{l,0,i} \quad \text{and} \quad n_{l-1,i} = v_{l,0,i} \quad \text{(22)} \]

where the $(l - 1)$th link is the preceding link on the R_i route of the ith channel.

Therefore, for the signal and noise power at the output of the lth link output, $s_{l,i}$ and $n_{l,i}$, we can write from (21, 20) and (22),
\[s_{l,i} = T_{l,i} s_{l-1,i} \quad \text{and} \quad n_{l,i} = T_{l,i} n_{l-1,i} + \sum_{r=1}^{N_l} \frac{T_{l,i}}{H_{l,r,i}} \text{ASE}_{l,r,i} \quad \text{(23)} \]

where the notations in the lemma were used. Recall that $u_i = s_{0,i}$ is the input signal power and $n_{0,i}$ is the input noise power. Then, by using (23) recursively after l, we obtain for s_i and n_i at the end of the path R_i,
\[s_i = \prod_{l \in R_i} T_{l,i} u_i \]
\[n_i = \prod_{l \in R_i} T_{l,i} n_{0,i} + \sum_{l \in R_i} \left(\prod_{q=l}^{l-1} h_{l,r,i} \right) \sum_{k=1}^{N_l} \frac{1}{H_{l,k,i}} \text{ASE}_{l,k,i} \]

Substituting these two relations into the definition of $OSNR_i$, (4), yields (5).

\section*{Proof of Lemma 2:}

Note that from (20, 22) and (23) (proof of Lemma 1) used recursively, we can write for $p_{l,k,i}$,
\[p_{l,k,i} = \left(\prod_{l-1 \in R_i} T_{l-1,i} \right) \prod_{r=1}^{k} h_{l,r,i} \quad \text{(25)} \]

Then, using the foregoing and the notations in the lemma, we see that the power coupling condition (6) becomes
\[\sum_{j \in M_l} \left(\prod_{q=j}^{j-1} T_{q,j} \right) H_{l,k,j} u_j = P_{0,l} \quad \forall l \in R_i \quad \text{(24)} \]

Now since all amplifiers in a link have the same shape by (A.1.2), $G_{l,k,i}$ can be decomposed as
\[G_{l,k,i} = \alpha_{l,k} \quad \text{(25)} \]
where $\alpha_{l,k}$ is the loss of the variable optical attenuator, adjusted to achieve constant total output power $P_{0,l}$, [9]. Then, using (1, 25) and the notations in the lemma we can write

$$H_{l,k,i} = G_{i,i}^k \prod_{q=1}^{k} \tilde{\alpha}_{l,q}, \quad \tilde{\alpha}_{l,q} = \alpha_{l,q} L_{l,q}$$

Substituting (26) for $H_{l,k,i}$ into (24) we can find the wavelength independent part as

$$\prod_{q=1}^{k} \tilde{\alpha}_{l,q} \sum_{j \in M} \frac{u_j}{\sum_{r \in R_i} \sum_{i=1}^{N_l} \frac{1}{T_{q,i}} A_{SE_{L,1,i}} + \frac{1}{T_{q,j}} A_{SE_{X,L,i}} + \frac{1}{T_{q,j}} A_{SE_{X,L,i}} + \frac{1}{T_{q,j}} A_{SE_{X,L,i}}}$$

for all $l \in R_i, k = 1, \ldots, N_l$. Then, using (26, 27) into (5) yields

$$OSNR_i = \frac{u_i}{n_{0,i} + \sum_{j \in M} \Gamma_{i,j} u_j \forall i \in M}$$

with Γ defined as in (7).

Proof of Lemma 3: Let x_i be the crosstalk power, that falls within the bandwidth of the i^{th} channel, at the output (at Rx). With the crosstalk included the OSNR, (4), is written as

$$OSNR_i = \frac{s_i}{n_i + x_i}$$

Recall that in Lemma 2 any link-to-link connection was taken to be ideal. In order to include the crosstalk generated at OXC nodes, this has to be changed so that the recursive link relations for signal and noise power, (23), are modified as

$$s_{l,i} = \tilde{T}_{l,i} s_{l-1,i}, \quad n_{l,i} = \tilde{T}_{l,i} n_{l-1,i} + \sum_{r=1}^{N_l} \tilde{T}_{l,i} A_{SE_{L,1,i}} + A_{SE_{X,L,i}}$$

where $\tilde{T}_{l,i} = T_{l,i} G_{X,1,i} L_{sw,l}$ and where $A_{SE_{X,L,i}}$ is the ASE generated at the l^{th} OXC.

Similarly, the crosstalk power term $x_{l,i}$ added at the l^{th} OADM/OXC on the i^{th} channel is given as

$$x_{l,i} = \tilde{T}_{l,i} x_{l-1,i} + \sum_{j \neq i, j \in M_l} X_{h_e} \tilde{T}_{l,j} s_{l-1,j}$$

In the foregoing relation the first term is due to the crosstalk component propagated from the previous OADM/OXC node, while the second one represents the contribution due to the out-of-band crosstalk (incomplete filtering). With the foregoing relations, notice that the total optical power in the i^{th} channel’s bandwidth, at the output of the l^{th} link is given as

$$y_{l,i} = s_{l,i} + n_{l,i} + x_{l,i}$$
where all contributions are included, i.e., signal, ASE noise and crosstalk.

Recall that $s_{0,i} = u_i$ and without loss of generality take $x_{0,i} = 0$. Using (29, 30) recursively after l, after some manipulations, we can write for signal, noise and crosstalk terms, i.e., s_i, n_i and x_i, at the end of the path R_i,

$$s_i = \prod_{l \in R_i} \tilde{T}_{l,i} u_i$$

$$n_i = \prod_{l \in R_i} \tilde{T}_{l,i} n_{0,i} + \sum_{l \in R_i} \left(\prod_{q=l \in R_i} \tilde{T}_{q,i} \right) \frac{1}{H_{l,k,i}} \sum_{k=1}^{N_l} ASE_{l,k,i}$$

$$\quad + \sum_{l \in R_i} \prod_{q=l+1 \in R_i} \tilde{T}_{q,i} ASE_{l,l,i}$$

$$x_i = \sum_{j \neq i} \sum_{l \in R_i} \left(\prod_{q=l+1 \in R_i} \tilde{T}_{q,i} \right) X_{he} \left(\prod_{q=1 \in l} \tilde{T}_{q,j} \right) u_j$$

By (A.i.3), we can neglect the third term in n_i, i.e., the ASE component due to the OXC. Now using the foregoing relations into (28) it can be immediately shown that we can write

$$OSNR_i = \frac{u_i}{n_{0,i} + \sum_{l \in R_i} \sum_{k=1}^{N_l} \frac{1}{\prod_{q=1}^{l} \tilde{T}_{q,i}} \sum_{j \neq i} \sum_{l \in R_i} \left(\prod_{q=l+1 \in R_i} \tilde{T}_{q,i} \right) X_{he} \left(\prod_{q=1 \in l} \tilde{T}_{q,j} \right) u_j}$$

which is similar to Lemma 1, with the extra third term at the denominator. Then, following the same approach as in the proof of Lemma 2, to replace for $H_{l,k,i}$ in the above, we can rewrite $OSNR_i$ as

$$OSNR_i = \frac{u_i}{n_{0,i} + \sum_{j \in M} \tilde{\Gamma}_{i,j} u_j} \quad \forall \ i \in M$$

where the new matrix $\tilde{\Gamma}$ is defined as in (8) and the claim is proved.

\[\blacksquare\]

APPENDIX II

PROOF OF THEOREM 2

In this appendix we review firstly some useful linear algebra results that we need for the convergence proof of Theorem 2.

We review firstly the standard l_∞ vector and matrix norm, [30]. For any m-dimensional vector x with components x_i, we denote by $\| x \|_\infty$ the standard l_∞ vector norm, defined as

$$\| x \|_\infty = \max_{1 \leq i \leq m} | x_i |$$

(31)

For a matrix A, we denote by $\| A \|_\infty$ the corresponding induced matrix norm,

$$\| A \|_\infty = \max_{x \neq 0} \frac{\| Ax \|_\infty}{\| x \|_\infty}$$

(32)
which can be shown \cite{30} to be equivalent to

$$\| A \|_{\infty} = \max_i (\sum_j |A_{i,j}|)$$

(33)

Next, for component-wise nonnegative matrices as the ones we have here, we review the corresponding weighted l_∞ norm, defined in relation with one of its eigenvectors. Let A be an $(m \times m)$ matrix that is component-wise nonnegative and non-identically zero. Denote by λ_i, $i = 1, \ldots, m$ its eigenvalues and by $\rho(A)$ its spectral radius, \cite{30}, defined as

$$\rho(A) = \max_i |\lambda_i(A)|$$

(34)

Since A is nonnegative, by Perron-Frobenius Theorem, \cite{29}, it has a strictly positive eigenvalue λ_+, with the corresponding eigenvector v, $v^T = [v_1 \ldots v_m]$, having positive entries, $v_i > 0$, for all i. Moreover λ_+ is a simple eigenvalue (with multiplicity one) and it is the largest eigenvalue in absolute value, i.e., $\rho(A) = \lambda_+$. Therefore, we can write that

$$A v = \rho(A) v$$

We define D_v as the following diagonal scaling matrix associated with v

$$D_v = \begin{bmatrix} \frac{1}{v_1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \frac{1}{v_m} \end{bmatrix}$$

Then, for an m-dimensional vector x we denote by $\| x \|_{v,\infty}$ the weighted l_∞ norm, defined as

$$\| x \|_{v,\infty} = \| D_v x \|_\infty$$

(35)

i.e., as the standard l_∞ vector norm of x weighted by D_v. Equivalently using (31) we can write

$$\| x \|_{v,\infty} = \max_{1 \leq i \leq m} \frac{|x_i|}{v_i}$$

For matrix A, we denote by $\| A \|_{v,\infty}$ the corresponding induced weighted matrix norm

$$\| A \|_{v,\infty} = \max_{x \neq 0} \frac{\| A x \|_{v,\infty}}{\| x \|_{v,\infty}}$$

(36)

The following result can be proved for the weighted matrix norm.

Lemma 4: Let A be a component-wise non-negative matrix and D_v its corresponding scaling matrix. Then the following relations hold

(i) \quad $\| A \|_{v,\infty} = \| D_v A D_v^{-1} \|_\infty$

(ii) \quad $\rho(A) = \| D_v A D_v^{-1} \|_\infty$

(iii) \quad $\| A x \|_{v,\infty} \leq \rho(A) \| x \|_{v,\infty} \quad \forall x$
Proof: (i) From (36, 35) we can write
\[
\| A \|_{v,\infty} = \max_{x \neq 0} \frac{\| D_v A x \|_\infty}{\| D_v x \|_\infty} = \max_{x \neq 0} \frac{\| D_v A D_v^{-1} \tilde{x} \|_\infty}{\| \tilde{x} \|_\infty}
\]
where \(\tilde{x} \) is the weighted vector defined as \(\tilde{x} = D_v x \). Therefore using (32) we see that
\[
\| A \|_{v,\infty} = \| D_v A D_v^{-1} \|_\infty
\]

(ii) Let \(M = D_v A D_v^{-1} \) and compute \(\| M \|_\infty \) using (33), i.e.,
\[
\| M \|_\infty = \max_i (\sum_j |M_{i,j}|)
\]
Using the definition of \(D_v \) it follows that
\[
\sum_j |M_{i,j}| = \frac{1}{v_i} \sum_j A_{i,j} v_j \quad \forall i
\]
since all terms on the right-hand side are non-negative. Now, recall that \(\rho(A) \) is the spectral radius of \(A \), and \(v \) is the corresponding eigenvector, so that component-wise we have
\[
\sum_j A_{i,j} v_j = \rho(A) v_i \quad \forall i
\]
From the two foregoing relations it follows that
\[
\sum_j |M_{i,j}| = \rho(A) \quad \forall i
\]
and hence,
\[
\rho(A) = \| M \|_\infty = \| D_v A D_v^{-1} \|_\infty
\]

(iii) From (36) it follows that
\[
\| A x \|_{v,\infty} \leq \| A \|_{v,\infty} \| x \|_{v,\infty} \quad \forall x
\]
which together with (i) and (ii) gives (iii) as required.

Next we prove Theorem 2 using these preliminary results.

Proof of Theorem 2: Using (14) we see that (15) is equivalent to
\[
u_i(n+1) = (1 - \mu) u_i(n) + \mu \hat{\gamma}_i \left(\sum_{j \in M} \Gamma_{i,j} u_j(n) + n_0, i \right)
\]
or, in matrix-vector form,
\[
u(n+1) = (1 - \mu) \nu(n) + \mu \left(\tilde{\Gamma} \nu(n) + \tilde{n}_0 \right)
\]
with \(\tilde{\Gamma} \) defined as in (11). Recall that \(u^* \) satisfies (12), and define
\[
e(n) = u(n) - u^*
\]
We will prove that the vector \(e(n) \) converges to 0, for all initial conditions.

Using the foregoing relation and (12) into (37) yields, after some manipulation,

\[
e(n + 1) = B e(n) \quad \text{with} \quad B = I - \mu \left(I - \hat{\Gamma} \right)
\]

(38)

Now (38) is a linear difference equation, with the solution

\[e(n) = B^n e(0) \]

A necessary and sufficient condition such that \(e(n) \to 0 \), for all initial conditions \(e(0) \), is that all eigenvalues of \(B \) are inside the unit circle, [30]. To show this, we will relate the eigenvalues of \(B \), (38), to those of \(\hat{\Gamma} \), (11). Specifically we show there is a one-to-one correspondence between the eigenvalue/eigenvector pairs of \(B \) and \(\hat{\Gamma} \).

Let \(\lambda_{i,B} \) denote any eigenvalue of \(B \), solution of

\[
\det(\lambda_{i,B} I - B) = 0
\]

Using the definition of \(B \) in (38) we see that this is equivalent to

\[
\det\left(\frac{1}{\mu} (\lambda_{i,B} - 1 + \mu) I - \hat{\Gamma} \right) = 0
\]

Since solutions of

\[
\det(\lambda_{i,\Gamma} I - \hat{\Gamma}) = 0
\]

are the eigenvalues of \(\hat{\Gamma} \), from the foregoing two relations it follows that

\[
\lambda_{i,\Gamma} = \frac{1}{\mu} (\lambda_{i,B} - 1 + \mu)
\]

Therefore the eigenvalues of \(B \) and \(\hat{\Gamma} \) are related by a one-to-one correspondence as

\[
\lambda_i(B) = 1 - \mu (1 - \lambda_i(\hat{\Gamma}))
\]

(39)

and moreover, it can be shown that they have the same eigenvectors,

Now, from (39), we can write

\[
|\lambda_i(B)| \leq |1 - \mu| + \mu \rho(\hat{\Gamma})
\]

(40)

where the triangle inequality and (34) were used. Therefore \(|\lambda_i(B)| < 1 \), if the right hand side of (40) is less than 1, or equivalently, if

\[
\mu \rho(\hat{\Gamma}) < \mu \quad \text{and} \quad \mu + \mu \rho(\hat{\Gamma}) < 2
\]

Since \(\rho(\hat{\Gamma}) < 1 \) and \(\mu + \mu \rho(\hat{\Gamma}) < 2 \), by the conditions in the theorem, the foregoing are satisfied. Therefore \(|\lambda_i(B)| < 1 \), and hence \(e(n) \to 0 \) as \(n \to \infty \) for all initial conditions, proving convergence of the algorithm.
In the following we show that the rate of convergence is geometrical. Note that using Lemma 4, (iii), (Appendix II), applied to \(\hat{\Gamma} \) we can write
\[
\| \hat{\Gamma} e(n) \|_{v,\infty} \leq \rho(\hat{\Gamma}) \| e(n) \|_{v,\infty}
\] (41)

Recall now (38), i.e.,
\[
e(n+1) = (1 - \mu) e(n) + \mu \hat{\Gamma} e(n)
\]
and take \(\| \cdot \|_{v,\infty} \), as in (35), on both sides. Then using the triangle inequality it follows that
\[
\| e(n+1) \|_{v,\infty} \leq |1 - \mu| \| e(n) \|_{v,\infty} + \mu \| \hat{\Gamma} e(n) \|_{v,\infty}
\]

Using (41) in the foregoing inequality yields
\[
\| e(n+1) \|_{v,\infty} \leq \alpha \| e(n) \|_{v,\infty} \quad \text{for} \quad \alpha = |1 - \mu| + \mu \rho(\hat{\Gamma})
\]
and, hence
\[
\| e(n) \|_{v,\infty} \leq \alpha^n \| e(0) \|_{v,\infty}, \quad \forall n \geq 0
\]

Since from (40) we have \(\alpha < 1 \), this shows that the rate of convergence is geometrical.

\[\Box\]

APPENDIX III

PROOF OF THEOREM 3

In this appendix we first extend some of the linear algebra concepts in Appendix II to delayed vectors, and then we give a proof for Theorem 3.

Consider the weighted norm, (35), and let us extend it to a delayed vector. Let \(x(n) \) and \(x_\tau(n) \) denote an \(m \)-dimensional vector and its delayed version, respectively,
\[
x(n) = \begin{bmatrix} x_1(n) \\ \vdots \\ x_m(n) \end{bmatrix} \quad x_\tau(n) = \begin{bmatrix} x_1(n - \tau_1) \\ \vdots \\ x_m(n - \tau_m) \end{bmatrix}
\]
where \(n \) is the time index and \(\tau_i \), are channel delays, assumed bounded, i.e., \(\tau_i \leq \tau_0 \), for all \(i \). We denote by \(\| \cdot \|_{\tau,v,\infty} \), the following norm,
\[
\| x_\tau(n) \|_{\tau,v,\infty} = \max_{\tau} \| x_\tau(n) \|_{v,\infty}
\] (42)
or, equivalently,
\[
\| x_\tau(n) \|_{\tau,v,\infty} = \max_{0 \leq \tau \leq \tau_0} \max_{1 \leq i \leq m} \frac{|x_i(n - \tau_i)|}{v_i}
\]
Note that component-wise from the foregoing we have that
\[|x_i(n - \tau_i)| \leq v_i \| x_\tau(n) \|_{\tau,v,\infty} \]
(43)
for any \(\tau_i \leq \tau_0 \) and all \(i \).

The following result extends Lemma 4, (iii) in Appendix II.

Lemma 5: The following relation holds
\[\| Ax_\tau \|_{\tau,v,\infty} \leq \rho(A) \| x_\tau \|_{v,\infty} \]

Proof: Using the definition (42) it follows that
\[\| Ax_\tau \|_{\tau,v,\infty} = \max_\tau \| Ax_\tau \|_{v,\infty} \]
For any fixed delays \(\tau_i, i = 1, \ldots, m \), from Lemma 4, (iii), we have
\[\| Ax_\tau \|_{v,\infty} \leq \rho(A) \| x_\tau \|_{v,\infty} \]
From the foregoing two relations it can be seen immediately that
\[\| Ax_\tau \|_{\tau,v,\infty} \leq \max_\tau \{ \rho(A) \| x_\tau \|_{v,\infty} \} = \rho(A) \max_\tau \| x_\tau \|_{v,\infty} \]
and the result follows by using again (42) on the right hand side.

Next using these preliminary results we give a proof for Theorem 3, based on the worst case delay \(\tau_0 \).

Proof of Theorem 3: Firstly, notice that if the update is made synchronously for all channels but with old or outdated information (delayed), than algorithm (18) is given similarly with \(A(n) = 1, \ldots, m \). Therefore, using the definition of \(\tilde{\Gamma} \), from (18) we can write in matrix form
\[
\begin{align*}
 u(n + 1) &= (1 - \mu) u(n) + \mu \left(\tilde{\Gamma} u_\tau(n) + \tilde{n}_0 \right)
\end{align*}
\]
where \(u_\tau(n) \) is the delayed power vector
\[
u_\tau(n) = \begin{bmatrix} u_1(n - \tau_1(n)) \\
\vdots \\
u_m(n - \tau_m(n)) \end{bmatrix}
\]
with \(\tau_j = \max_i \tau_{ij} \), and by (A.iii.1), \(\tau_j \leq \tau_0 \), for all \(j \).

Define as before \(e(n) = u(n) - u^* \), with \(u^* \) as in (12). From the foregoing relations it can be shown that
\[
e(n + 1) = (1 - \mu) e(n) + \mu \tilde{\Gamma} e_\tau(n)
\]
Using the triangle inequality and Lemma 5 it follows that
\[\| e(n+1) \|_{\tau,v,\infty} \leq |1 - \mu| \| e(n) \|_{\tau,v,\infty} + \mu \| \hat{\Gamma} e_\tau(n) \|_{\tau,v,\infty} \]
\[\leq |1 - \mu| \| e(n) \|_{\tau,v,\infty} + \mu \rho(\hat{\Gamma}) \| e_\tau(n) \|_{v,\infty} \]
and the proof can follow along the same lines as for the synchronous case (see proof of Theorem 2).

In the following we give the proof for the totally asynchronous case, i.e., component-wise. Let
\[e_i(n) = u_i(n) - u_i^* \]
so that using (18, 12) we can write
\[e_i(n+1) = \begin{cases} (1 - \mu) e_i(n) + \mu \sum_{j \in M} \hat{\Gamma}_{i,j} e_j(n - \tau_{i,j}(n)) & \text{if } i \in \mathcal{A}(n) \\ e_i(n) & \text{if } i \notin \mathcal{A}(n) \end{cases} \]

Then if \(i \in \mathcal{A}(n) \), using the triangle inequality, we have
\[|e_i(n+1)| \leq |1 - \mu| |e_i(n)| + \mu \sum_{j \in M} \hat{\Gamma}_{i,j} |e_j(n - \tau_{i,j}(n))| \leq |1 - \mu| \| e_\tau(n) \|_{\tau,v,\infty} v_i + \mu \| e_\tau(n) \|_{\tau,v,\infty} \sum_{j \in M} \hat{\Gamma}_{i,j} v_j \]
where (43) (by (A.iii.1)) was used for both terms on the right-hand side.

Using the fact that \((\rho(\hat{\Gamma}), v)\) is an eigenvalue-eigenvector pair, from the foregoing it follows that
\[|e_i(n+1)| \leq |1 - \mu| \| e_\tau(n) \|_{\tau,v,\infty} v_i + \mu \rho(\hat{\Gamma}) \| e_\tau(n) \|_{\tau,v,\infty} \cdot v_i \]
Equivalently, if \(i \in \mathcal{A}(n) \),
\[|e_i(n+1)|/v_i \leq \alpha \| e_\tau(n) \|_{\tau,v,\infty}, \quad \text{for} \quad \alpha = |1 - \mu| + \mu \rho(\hat{\Gamma}) \quad (44) \]
where, \(\alpha < 1 \), by the conditions in the theorem.

Note also that if \(i \notin \mathcal{A}(n) \)
\[|e_i(n+1)|/v_i = |e_i(n)|/v_i \leq \| e_\tau(n) \|_{\tau,v,\infty} \]
\[\text{if } i \notin \mathcal{A}(n) \quad (45) \]
or, using (43),
\[\| e_\tau(n+1) \|_{\tau,v,\infty} \leq \| e_\tau(n) \|_{\tau,v,\infty} \]

From (44,45) we see that, for any \(i \), \(\| e_\tau(n) \|_{\tau,v,\infty} \) is a non-increasing function of \(n \), that is also bounded from below by 0. Therefore \(\| e_\tau(n) \|_{\tau,v,\infty} \) converges to 0.

In the following we show that the rate of convergence is geometrical. Let \(k \) be the index for the last update of channel \(i \) between \(n \) and \((n + \pi) \), (at least one exists by (Aiii.2)).
Then, for any $n' \geq n + (\tau_0 + \pi)$, we have to use the last updated value which is at the $(k+1)$ index (with τ_0 the maximum delay). Therefore we have

$$\left|e_i(n')\right|/v_i = \left|e_i(k+1)\right|/v_i \leq \alpha \left\|e_\tau(k)\right\|_{\tau,v,\infty} \quad \forall n' \geq n + (\tau_0 + \pi)$$

where the last inequality followed from (44), taken at the two consecutive updates, k and $(k+1)$. Since k is the first update after index n, we have as in (45)

$$\left\|e_\tau(k)\right\|_{\tau,v,\infty} \leq \left\|e_\tau(n)\right\|_{\tau,v,\infty}$$

From the foregoing two relations we see that

$$\left|e_i(n')\right|/v_i \leq \alpha \left\|e_\tau(n)\right\|_{\tau,v,\infty} \quad \forall n' \geq n + (\tau_0 + \pi)$$

so that

$$\left\|e_\tau(n')\right\|_{\tau,v,\infty} \leq \alpha \left\|e_\tau(n)\right\|_{\tau,v,\infty} \quad \forall n' \geq n + (\tau_0 + \pi)$$

Using recursively the above relation it follows

$$\left\|e(n')\right\|_{\tau,v,\infty} \leq \alpha^q \left\|e(0)\right\|_{\tau,v,\infty}, \quad \text{with} \quad q = \left\lfloor \frac{n'}{\tau_0 + \pi} \right\rfloor$$

which, since $\alpha < 1$, shows that the algorithm converges at a geometrical rate.

References

