On the Swing-Up of the Pendubot Using Virtual Holonomic Consrains
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Abstract— We investigate the problem of stabilizing energy
level sets for Euler-Lagrange systems subject to virtual holo-
nomic constraints. We present an energy level set stabiliza-
tion technique with a guaranteed domain of attraction which
preserves the invariance of the constraint manifold. As an
illustration of the theory, we present a controller which swings
up the Pendubot system while guaranteeing that the unactuated
link does not fall over during transient.

I. INTRODUCTION

Recent work by Jessy Grizzle and collaborators on biped Fig. 1.
locomotion (see, e.g., [1], [2], [3], [4]) has transforméub t
classical view of the motion control problem, in which one

first solves a motion planning problem to generate refegqngirained system. In this paper, we present an alteenativ
ence signals, and subsequently one designs a controlleryanique solving problem (5) above which has the advantage
asymptotically track these reference S|.gnals. erlzzlervslub' of yielding exponential stability of a target energy level
that the correct way to enforce a desired gait in a walkinge”of the constrained motion with a guaranteed domain of
robot is to enforce by feedback desired relations betweefy action, or even global asymptotic stability. The teghe

the joint angles of the robot. Such relations are callege nresent is currently only applicable to systems with two
virtual holonomic constraints (VHCd)ecause they depend degrees-of-freedom.

on the generalized coordinates ,Of the robot, and not on Thig paper is organized as follows. The virtual holonomic
its generalized velocities. Grizzle’s work triggered M  ongiraint theory of [10] is reviewed in Section II. In Sec-
of various researchers on virtual holonomic constraints ggp, i we present a novel approach to stabilize a level et o
a paradigm for motion control. In particular, we refer thpe energy for the reduced system describing the motion on

reader to the work of Shiriaev and collaborators in [5], [6l¢he virtual constrained manifold. In Section IV this apprba
[7], [8], [9]. Inspired by Grizzle’'s work, in [10] we initi@d g applied to the pendubot system.

a systematic investigation of virtual holonomic consttsin

for underactuated Euler-Lagrange systems. Our work in [10] Il. VIRTUAL HOLONOMIC CONSTRAINTS

provides answers to four questions: In this section we review the theory of [10].

1) When is a virtual holonomic constraint (VHC) feasible? Consider an Euler-Lagrange system

2) How to enforce a VHC via feedback? ) N

3) How to systematically select VHCs that are feasible? D(q)i+ C(q,4)q + VP(q) = Br, 1)
4) When are the constrained dynamics Euler-Lagrange? it ;, degrees-of-freedom and — 1 controls. The matrix
In [11] we developed a technique to address a fifth probleny s assumed to have full rank — 1. Consider avirtual

5) How to stabilize a desired level set of the energy oholonomic constraint (VHC) of the form

the constrained system while simultaneously enforcing a
VHC? COI(Q17 s aQn—l) = COI(QZ)l(Qn)v s a¢n—1(Qn)) = ¢(Qn)7

Then, we applied our theory to the pendubot system, depicteghere ¢, < S' is an angular configuration variable
in Figure 1, which is a double-pendulum with actuator orparametrizing the constraint. More generally, one could
the shoulder [12]. For this system, we enforced a VH(efine a VHC to be an implicit relatiork(q) = 0 but
specifying what should be the angle of the second link age explicit description above is sufficient and convenient
a function of the angle of the first link. Simultaneouslyfor our purposes. Throughout this paper, we d%qn) =

we stabilized the energy level set of the constrained motiail(¢(q,,),¢,), so that we can conveniently express the
containing the unstable high-high equilibrium. The restds  gnstraint ag; = q;(qn)_

intriguing: our feedback not only swings up the pendubot pefinition 2.1: A VHC ¢ = d(qy) is feasibleif the set

from the high-low to the high-high equilibrium, but it does

so while guaranteeing that during transient the unactuated I'={(g,q) :col(q, ..., qn-1) = (qn),

link does not fall over. The analysis in [11] guarantees lloca col(qny -y Gn-1) = ¢'(qn)dn},

asymptotic stability of the target energy level set of the ) ) ) . ) )
ymp y ¢ 9y is controlled invariant, i.e., if it can be made invariant &y
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to the cylinderS' x R. The controlled invariance of the let §(q,) = eu(gy). Then, there exists a unique# 0 such

constraint manifold expresses the fact that whenever thieat the solution of (3) i§ -periodic.

configuration variablez(0) is initialized on the constraint, The proof of sufficiency is found in Lemma 3.1 of [10],

and its initial velocity ¢(0) is tangent to the constraint, a while that of necessity is obvious and is omitted.

suitable feedback makes the resulting solutigh) satisfy Once a regular VHC has been found, the motion on

the constraint for alt. . the virtual constraint manifold is found by left-multiphg
Proposition 2.2 ([10]): A VHC ¢ = ¢(q,) is feasible if ~ both sides of (1) byB~, letting ¢ = é(qn), ¢ =

&' (¢n)dn, G = ()i + ¢"(4n)d2, and using the fact that

1 n i _
(Ygn € 57) Im(D(¢(gn))¢'(an)) 1 Im(B) = {0} BTD(6(qn))¢'(gn) = 6(gn) # 0. Doing so, one obtains
or, equivalently, if BL(¢?(
- qn)) N -2 .
2 ) Gn=———"—"~—|D¢ ()i +Cq+VP| _;4

B-D((4.))d (a) # 0. @ o(an) o 3= S loin
where B is a nonzero row vector such th@"-B = 0. Using the structure of the matri&, the above can be put in
Moreover, the output functioa = col(q1,...,¢n-1)—®(¢n) the form
yields a vector relative degrde, - - - ,2} onT’, and therefore Gn = V1(qn) + Va(gn)d2. (4)
the constraint manifold™ is locally exponentially stabiliz- ) _ _ ]
able. As pointed out earlierl" is parametrized byq,, ¢,), and
A feedback which exponentially stabiliz&sis so the system above describes the dynamics of the system

. on the virtual constraint manifold. Note that system (4) is
7(q,4) = {In-1 — &' (@)D" (q)B(q)} ~ [~kre — kaé unforced. This is because the original system (1) has degree
. - , 1 . of underactuation one, and all control directions are used t
+¢"(@n)dn + [In—1 — ¢'(a2)]D™(9)(C(g,4)g + VP(‘J))}’ makeT invariant. As shown in [13], the constrained dynam-
where ki ks > 0 are desian parameters and — ics (4) are not, in general, Euler-Lagrange or Hamiltonian.
12 . gn - parar ) . However, under the following conditions they are in fact
col(gr, -, gn—1) =(gn), € = col(dr; - ., Gn—1) =¥ (4n)dn-  Eyler-Lagrange:
A VHC ¢q = ¢(q,) satisfying (2) will be calledregular.
Hence, regular VHC's are feasible. The mechanical inte '
pretation of the regularity property is this. The generdiz __ functions.

- . . . C2 ¢a(qn), - - -, Pn—1(g,) are chosen to be odd functions.
momentum of a solutior{¢(t), ¢(t)) satisfying the virtual ) i L
. ; o 4 . ... C3 In Proposition 2.3, the initial condition is chosen to be
constraint at all time isD(¢(g,))¢’ (¢n)dn- The regularity 61(0) = 0, andu(g,,) to be an even function.

condition implies that, ofl", it is always possible to choose

7 such that the generalized momentum is compatible withhroughout the next section we will assume that conditions
motion onT. C1-C3 above hold. Under these conditions, the Lagrangian

. . . 1 .
There is a systematic way generateregular holonomic  fUnction is £(gn, gn) = 3M(gn)d5 — V(qn), where

€1 D(q), P(q), andB(q) in the original system (1) are even

constraints as solutions of a scalar ordinary differergttpla- an
tion. The idea is to seleet—2 of then— 1 required functions M (q,) = exp {—2/ ‘Ifz(T)dT}
in ¢(gy), for instanceps (qy), . . . , én—1(gn), and find a func- o Y (5)
tion ¢1(gn) satisfying the equatiorBD(¢(g.))¢'(¢n) = Vign) = — / Uy () M (p)dps.
§(qn), Whered(g,) is a nonzero functiors! — R\{0} to 0
be assigned. The latter equation can be rewritten as The total energy of the system evolving on the constraint
dér manifold is
fl((blv(Jn)T + f2(¢17Qn) = 5((]71) (3) 1
In E(Qna Ljn) = iM(Qn)Qi + V(Qn)~ (6)

The above is ar-periodic ordinary differential equation
for ¢, where T is the period of the angular variable 1. ENERGY LEVEL STABILIZATION ON CONSTRAINT
qn. If, for a given 6(q,) : S* — R\{0}, (3) has aT- MANIFOLD X
periodic solutiony, (¢, ), then this function together with the ~ Suppose we have found a regular VHE, = ¢(g,),
functions ¢2(¢y), - - ., ¢n—1(g,) forms a regular holonomic chosen according to the procedure reviewed in the previous

constraint. For this reason, we call (3vatual constraint  section, and such that the motion on the constraint manifold
generator (VCG). The issue then becomes whether, for an equation (4) is Euler-Lagrange with ener@(q,, ¢.) =
given initial condition, it is possible to choose# 0 such  (1/2)M(g,)¢> + V(gn). The objective now is, for a given
that the solution of (3) isI-periodic. The answer to this constantE, € R, to stabilize the sei\ C I' given by
question for the case when the ODE (3) has no singularities = {(q,¢) € T : E(¢n,dn) = Eo}. A is the union of a finite
is contained in the next number of phase curves of (4). Let ¥ min,, cs1 V(gy)
Proposition 2.3 ([10]): Consider equation (3) and sup-andV = max,, cs: V(gn). Then, for allE, > V, A is the
pose thatf; # 0. Fix an initial condition¢,(¢gn0) = ¢o. union of two closed curves parametrizeddpywith opposite
There exists &' functiond(q,,) : S* — R\{0} such that the orientations:g, = +/(2/M)(Ey — V). Such motions cor-
solution¢ (¢, ) is T-periodic if and only if the solution when respond to complete revolutions of the angular variagle
§ = 0 is notT-periodic, and in this cas#g,) can be chosen and therefore we call themotations. For all E, € [V, V],
as follows. Choose &' function u(g,) : St — R\{0} and if V’(q,) # 0 for all ¢, € V~(Ep), then A is the union



of a finite number of closed phase curves homeomorphinput = and outpute has relative degre2, and the feedback
to the circleq? + ¢2 = 1. These solutions correspond tov can be designed so that the $Btis positively invariant.
motions whereg,, oscillates without performing complete

revolutions, and therefore we call thewscillations. Finally,
if V'(gn) = 0 for somegq,, € V~1(Ey), thenA is the union

The dynamics onI' are found, once again, by left-
multiplying (1) by B+ and by letting

of a finite number of closed phase curves, some of whicl1 = ?(qn) + afalgn) + 0fo(gn),

contain equilibria.

q1 = [¢/(Qn) + af(;(Qn) + bfl;(Qn)]Qna

Henceforth, we focus on the stabilization of a connecteqj1 = [¢/(qn) + af.(an) + bfL(an)in + [¢"(an) + af! (an)

component ofA and we replace\ by the connected com-

.2 .
ponent of interest. Since the reduced dynamics in (4) aré" bfy (40l + [fo(an) fa(an) = fa(an) fo(an)]dnv.

unforced, it is impossible to stabilizé& while, at the same
time, preserving the invariance of In [11], we presented

an approach to stabilizd which preserves the invariance

From (8) and (9) we obtain the dynamics on the virtual
constraint manifold™

of the constraint manifold, but dynamically changes its a = f,(g,)v

geometry in order to introduce in equation (4) a new control
parameter. The stability analysis in [11] was local. In this 9 )
paper, we present a different method which has the advantagedn = ¥1(an, a,) + ¥a(gn, a,b)q; + ¥3(qn, a, b)gnv,
of affording a simple stability analysis, and it allows one

to draw conclusions about the domain of attractionAof
Throughout this section we assume that system (1) has
degrees-of-freedom, i.en, = 2.

Suppose that through the ideas summarized in Section

we have found a regular VHG; = q@(qn), which is odd

so that the reduced dynamics on the constraint manifold are

Euler-Lagrange. Seleat functions f,(q,), f»(¢,) defined
on S' that are odd (i.e.fo(—¢s) = — fa(gn) and fy(—gn) =
—f»(gn)), and modify the VHC as follows

q= é(qn) + afa(‘]n) + bfb(‘]n) )

wherea, b are scalars to be determined later ghdq.,)

col(fa(qn),0), folgn) = col(f5(gn),0). This constraint is
obviously odd for allz andb. Recall thatn = 2 and consider

the output functiore = ¢1 — [¢(qn) + afal(gn) + bfs(qn)]-
We have

€= (11 - [qs/(qn)+af¢/1(qn)+bfl;(Qn)]Cjn_afa(qn)+6fb(Qn)~
By setting

O

a= fb(Qn)U; i): _fa(Qn)U s (8)

wherev is a new control input, we obtain thatdoes not
depend orv,

e=q — [QZ)/(QH) + afclz(QH) + bfé(QH)]Qn
Next, on the sefe = ¢ = 0} we have

€= f(Qna‘jnvaabv U) Jr{[l - (¢/+af(lz +bflg)]DilB}717—v

where f is a smooth function. Since, by constructifig,,)
was chosen so thdfl —¢’| D=1 B} # 0, it follows that there
exista, b > 0 such that{[1 — (¢’ +af, +bf})]D"1B} #0
for all |a] < @, |b] < b. Thus, for small enoughu,b
and for anywv, system (1) with inputr the outpute has
relative degree. Define the virtual constraint manifold for

b= —fa(gn)v

(10)
whereV;, i = 1,2,3 ar suitableC' functions and¥,, ¥,

e odd with respect to their first argument. We denote: by
the state of system (10), i.e.= (¢n, Gn,a,b). Similarly to
t"efore, set

. 1 .
E(qna dn, Qa, b) = §M(qna a, b)qi + V(qn7 a, b)a

where now
dn
M(gn,a,b) = exp {—2/ Uy (T, a, b)dT}
0

an
V(gn,a,b) = 7/ Uy (p,a,b)M(u,a,b)du.
0

The fact that¥; and ¥, are odd with respect to their
first argument implies that thé/ and V' are well-defined
functions onS' x R xR in that they are periodic with respect
to their first argumenty,,.

One can readily verify that

E(z) = vh(z) ,

Whereh(x) = M\IIBQEL + aaE(x)fb(Qn) - 8bE(x)fa(Qn)'
Note that system (4) is obtained from (10) by setting =

v = 0. The control objective for system (10) is to stabilize
the setA c I" given by

11)

A ={(g,4,a,b) €T : E(qn,Gn,a,b) = Ey, a =0, b=0}.

We also require the stabilizer to rendérinvariant for the
closed-loop system. In light of Siebert-Florio’s reduatio
principle for asymptotic stability of compact sets (see][14
[15]), the two conditions below are necessary and sufficient
to stabilize the sef while guaranteeing closed-loop invari-
ance ofT":

® f is asymptotically stable for the closed-loop system,

system (1) augmented with the compensator (8) as follows(ll) A is asymptotically stable relative ©, i.e., the set

f :{(Qv q.7aa b) q1 = (;b(Qn) + a.fa(Qn) + bfb(q”)a
¢ = [¢'(qn) + afy(gn) + b5 (qn)ldn, (a,b) € W},

where W is a neighborhood ofa,b) = (0,0) contained
in {(a,b) : |a| < @,|b] < b}. This manifold is controlled

Y= {(anqn;avb) : E(Qn7anavb) =Ep,a=b= 0}

is asymptotically stable for (10).

Condition (i) is already met by the input output linearizing
feedbackr(q, ¢, a, b). We only have to design(¢y, g, a, b)

invariant because we have shown that, on it, the system wiemforcing (ii).



Let £, be a desired value for energy and define the
following Lyapunov function [ is a positive real constant)

V(G G, a,b) = %((E(;L‘) — Eg)?+ L Y(a®+ %)) . (12)

Remark that, when = 0, the derivative ofl” with respect
to (10) is zero, since, b and E are constant.
Taking (11) into account, we obtain
V =v((E — Eo)h(z) + L™ afy(qn)
— L' fa(qn)) = vg(2) ,

whereg is given by the following scalar product

E - E, h(z)
g9(x) = ( a S R 2 (1079 B DI € )
(57 ()
Setting the control law fop
v(z) = —Ag(x) , (14)
where )\ > 0 is a gain constant, it follows that
V(z) = —Ag?(x) . (15)
Condition ii) above is satisfied if
lim V(x(t)) =0, (16)

t—+oo

since this implies thak’ converges td7, anda, b converge
to 0.

Remark that the last two componentsbj of x, are con-
stants and thaE(q,(t), ¢, (t)) is constant. Hence

T.
/ G(z,)dt
0
( ) an

o

wherel = vV L~1 and M is the Gramian given by

E - E,
la
b

E - E,
la
b

T h(z-(t)) h(z.(t)) !
M) = [ ihlaa) Uslan(®) | dt.
0 _lfa<Qn(t)) _lfa(qn(t))

Form (17) is positive definite ifd/(z) is nonsingular, or,
equivalently, if functionsh(z(t)), fo(gn.(t)), fa(gn(t)) are
linearly independent. Sinc® is compact, if these three
functions are linearly independent for evety € D one
can satisfy hypothesis (20) setting= min,cp{u(M(z))},
(wherep(M (z)) denotes the minimum eigenvalue if(z)).

It remains to show that/(z) is nonsingular for every
D. By hypothesis, these functions are independentafer
b = 0. By continuity, there exist, b such that they are still
independent for any € [—a, a], b € [~b,b]. If L is chosen
again sufficiently small such that~—'(a* + b%) > V(x),
then|a| < a, |b| < b, V(qn, ¢n,a,b) € D. This implies that
functionsh(z,(t)), fo(qn(t)), fa(gn(t)) are independent for
every value thatt, a, b assume in seD. &

A. Lemma used in proposition 3.1

Lemma 3.2:Let D € R™ be compact and positively
invariant for the family of dynamic systems dependent on

The following proposition presents a condition that guary ¢ R

antees that there exists parameterén (12)) and\ in (14)

for which a required energy level, is asymptotically sta-
bilized. We need the following notation. Functiang (¢) =

(gn,e(t), 4n,£(t),0,0) is the solution of (10) withv = 0,

initial state zx(0) = (0, ¢,(0),0,0), where ¢,(0) is such
that E(zg(t)) = E, ¥Vt > 0. In other words,wg(t) is a

periodic trajectory of constant enerdy.

with f: D — R™.
For anyz € R™ let z, be the solution of
jfz = fO(xz)
z.(0) =z,

Proposition 3.1:Let zo = (¢n,0, dn,0,0,0) be an assigned and assume that. is periodic of periodl’, > 0. Let V, G :

initial conditions for system (10) and lef, be a desired
value for total energy.

If for each value ofE € {E € R||E — Ey| < |E(xo) —
Ey|} functions fo(gn.e(t)), fo(gne(t)) and h(wg(t)) are
periodic and linearly independent then, for every initialts
of (10), there exist sufficiently small valuds, L such that
system (10) with control law (14) satisfies

tiigrnoo V(z(t))=0.

Sketch of the proofThe proof is based on the application

of lemma 3.2. Consider the potential functidn defined
in (12). Let L be sufficienty low such thak—!(a? + b%) >
V (z0), this guarantees that(t)| < a, |b(t)| < b, ¥t > 0 and
that the setD = {z|V(z) < V(x0)} is positively invariant
for any choice of\ > 0.

Equation (15) is in the form (19) witl(z) = g(z)?,
where g(x) is given in (13). Using the notations o
lemma 3.2, for any: € D, setx.(t) = (qn(t), ¢n(t), a,b).

D — R be differentiable functions such thét ¢ D
V(z) = —\G(x) . (19)

Assume finally that there existgs > 0 such thatvz € D

T.
/0 Gla()dt > \V(2) .

Then, there exista, sufficiently small, such thatz € D,
the solution of
= fa(zz)

z(0) =z,

(20)

satisfies
tlim V(z(t))=0.
Proof: Let z € D and letx, . be the solution of (18)

fwith initial condition z. By (19) it follows that

V(@ :(T2)) = V(2x2(0)) = —ADA(2)



where - of the low-high equilibrium such that for each initial
_ [ condition inV, the solution enter#’ in finite time.
Di(z) = /0 Glar:(B)dt - 2) Boundedness:For any initial condition inV/, the solu-
tion has the property tha (¢) € (—x,7) for all ¢ > 0.

Function D is continuous on\, uniformly with respect to .
y P In other words, the unactuated link does not fall over.

z € D (sinceD is compact), moreover, by (20yz € D,

Dyo(z) > xV(2). Therefore there exist, sufficiently small The pendubot system satisfies condipion Clin Se_ction Il.
such that We look for a constrain, = ¢(6;) with the following
Dy (2) > Xy(2), V2eD. properties:
S 2 « #(0) = ¢() = 0, so that the second link is high when
This implies thatVz € D the first link is either low or high.
X « The image¢(S!) C (—m,7), so that the second link
V(5 o(T2)) = V(e5.:(0) < _/\gv(z) : doesn't fall over as the first link revolves.

A consequence of this is thatVz € D,
limy o0 V(a5 (1) — V(w5,.(0) = 0. m

IV. APPLICATION TO THEPENDUBOT SWING-UP
PROBLEM

Consider the Pendubot in Figure 1. The configuration % N
variables areq = (61,62). Assuming, for simplicity of
exposition, that the masses and lengths of the two links o /A
are equal and unitary, and neglecting friction, the pentlubo
model reads a®(q)G + C(q, ¢)¢ + VP(q) = Br, where

D 2 cos(01 — 02) Fig. 3. Configurations of the double pendulum with the virtcenstraint
(@) = {cos(@l —0,) 1 } obtained by setting:(61) = 1.

Clq,q) = [ 0 - sin(6y — 02)02} For the pendubot we havB = [0 1] and the VCG is

—sin(61 — )6, 0 given by 92 = — cos(61 — (6))+3(61). The solution with

P(q) =2 0 + 0. B — 1 zero initial ‘condition and withy = 0 is not 2m-periodic, so

1 g cosbL T geosby, 0] we can apply Proposition 2.3. We should sele2trgperiodic

. 1T . function p(61) # 0, setd(61) = eu(61), and find the unique
The energy of the pendubot#(q,¢) = 3¢ D(q)¢+P(4).  value of e guaranteeing that the solution with zero initial
When 7 = 0, the pendubot has four equilibria, depicted ingongition is27-periodic. In order to meet condition C3, we
Figure 2. The equilibria lie on different level sets of they st selecyu(6;) to be even. If we set = 1, then we find
energy. For the solution to this problem, we point out, in _; _ V2 and the virtual constraint

@ 0y = $(01) = 6, + 2arctan[tan(—60;/2)(1 +v2)] (21)

depicted on Figure 3. This constraint has the required prop-
erties. As predicted by the theory of [10], the motion of the
pendubot on the constraint manifold is Euler-Lagrange. The
phase portrait of the dynamics on the constraint manifold is
depicted in Figure 4. The level sets &f inside the shaded
region of Figure 4 are oscillations, while the ones outside
the shaded region correspond to rotations.

Swinging up the pendulum to the high-high equilibrium
low-lowlow-high high-lowhigh-high corresponds to stabilizing the level set of the energy beund
Fig. 2. Equilibrium configurations. ing the shaded region, for which, = 0. This level set is

particular, the work in [16], where an energy-based colgrol . -
is introduced with a complete stability analysis. Recenily \\ﬂ/ X
used virtual holonomic constraints to determine periodic .

orbits of the pendubot in which the elbow oscillates without B /\*/\

performing complete revolutions. Then, using a technique o it @
transverse linearization, they stabilized the periodhutsrin \/,\/
guestion.

Here, we focus on the following control problem:

Low-high to high-high swing-up problem. Design a LCI T o
feedback law yielding the following two properties: 1

1) Swing-up: For any neighborhood/ of the high-high Fig. 4. Energy level sets for double pendulum on the VBIC= 6; +
equilibrium, there exists a punctured neighborhddd 2arctantan(—61/2)(1 + v2)].




neither an oscillation nor a rotation and the corresponding
trajectory is not a periodic orbit. For this reason we Bgt
slightly smaller than zero.

We return to the VCG withu(6;) = 1, j—gﬁl = —cos(f; —
¢(01)) + . We apply the method presented in section Il
We choose the functions appearing in (7) Ag61)
sin(5601), fp(01) sin(761). In this case one can set
a = 0.01, b = 0.01. To stabilize the VHCl, = ¢(0) +
af.(01) + bfy(61), the physical input- of the pendubot is
designed to input-output linearize the system with output
e =0s—¢(01)—af.(01)—bfp(61) (Which has relative degree
2). The parameters, b are varied with inputy accordingly
to (8).

The inputv of the dynamic compensator affects the shape
of the virtual constraint manifold. We use the feedback
defined in (14) to stabilize the energyy, = —0.1, with
A = 1075, In potential function (12) we set = 1,/60000.
Numerically, we checked that the hypotheses of Proposi
tion 3.1 are satisfied for every periodic orbit with energy
E < 0, with the only exception of the one that correspondsi2]
to the low-high equilibrium of the pendubot.

The swing-up controller switches to a linear stabilizing [3]
controller when||(6;, 61,02, 62)|| < 0.3.

[1]

Figure 5 shows the value of total ener@)(¢) during the  [4]
swing-up phase and figure 7 shows the argjl¢) during
swing-up (dashed line) and equilibrium stabilization {ddt 5

line). Figure 6 shows the value of Lyapunov functidh
and figure 8 shows the corresponding phase portait in plane

(01,01).

(6]
[71
B(t Vf\\ (8]
i e [9]
T tmé s time [s]
: Fig. 6. Value of potential func- [10]
Fig. 5. Total energyE(t) for the _. :
pendubot example. tion V (z(t))for the pendubot ex
ample.
[11]
[12]
1 T T T T
08 H E [13]
0.6 H q
04 R [14]
0.2 q
02 (¢ e
2(t)o [15]
02 |
-0.4 1 [16]
-0.6 U q
-0.8 U q
o 5 10 15 20 2 3 35

time [s]

Fig. 7. Angled2(t) for the pendubot example.

0 /2 37/2 o

g

Fig. 8. Phase portrait oft, 91) for the pendubot example.
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