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Abstract— We study the practical and asymptotic tracking problems
for nonlinear systems when only the output of the plant and tle reference
signal are available for feedback. We provide sufficient coditions and a
control topology yielding practical tracking. In the special case when
the reference signal is generated by an exosystem and thereists
an internal model satisfying suitable observability propeties tracking
becomes asymptotic.

I. INTRODUCTION
Consider the nonlinear system
z = f(z,u)
y = h(x)

wherez € R™ denotes the state of the systemme R™ is the control
input, andy € R™ is the measurable output. The vector figldand

1)

the functionh are assumed to be sufficiently smooth. In this pap

we address following problem.

Problem 1 (Output Feedback Practical Tracking): Given the
dynamical system (1), a sufficiently smooth reference drajg
r(t) = [ri(t),...,rm(t)]", and any real numbere, > 0, find, if
possible, an output feedback

Te = fc(fcmyar)

u = he(xe,y) 2)

with the property that for the closed-loop system (1)-(Br¢hexists
a positive real numbef” and a closed sel such that any integral
curve (z(t), z.(t)) leaving fromA is defined for allt > 0, bounded,
and ||y(t) — r(t)|| < eo forall t > T.

If Problem 1 can be solved witty = 0 andT = oo, we say that (2)
solves the output feedbaelsymptotidracking problem. Additionally,
if the projection{z € R" : (z,z.) € A} can be made arbitrarily
large by a suitable choice of the controller, we say that thation
to Problem 1 issemiglobal.

Problem 1 has been solved globally and asymptotically fetesys

in output feedback forn{[1], [2]). When the reference trajectory

is generated by an exosystem, Problem 1 is included inmbee

We use observers to estimate state and stable inverse oflahe p
and, in the spirit of the separation principle in [10], emplthe
resulting estimates to define an output feedback contrsidéring
Problem 1. The estimation above can be carried out when #ieray
is differentially flat or when the reference signal is getedaby an
exosystem and an internal model exists. In the latter casshoe
that asymptotic tracking can be achieved.

Interestingly, our approach may yield semiglobal solution to
Problem 1 even when the plantrist globally flat.More precisely, we
show that a loss of relative degree (or a singularity in therdimate
transformation) yields a restriction on the reference aigro be
tracked, but does not necessarily restrict the domain ofabipe of
our controller. On the contrary, a loss of relative degresriets the
domain of operation of input-output linearizing controde

Throughout this paper we use ¢elb) to indicate the vector
[@™,b7]". If v is an-dimensional vectory;, i = 1,...,n, are
its components. Given real numbetsb,c, diagla,b,c] denotes
the matrix witha, b, ¢ on the diagonal and zeros elsewhere. Given
matrices 4, B, C, we denote byblock-diag[A, B,C] the matrix
formed by placingA, B, C on the diagonal and zeros elsewhere.

&iven a functiong : R* — R” and a smooth vector field : R" —

R™, we denote byl.;g = %f(:c) the Lie derivative ofg along f. If
g=g(z,y) : R"xR™ — RP, then we denoté.;g = %)@(w).

Il. ASSUMPTIONS

In this section we state the assumptions we need througheut t
paper. The assumptions are grouped into three categosesiated
with three different aspects of our control topology.

A. Stable Inverse Estimation

Assumption Al (Stable Inverse): Givenr(t), there exists; € R™
and a sufficiently smooth and bounded functigf(-) : R — R™
such that, whenu(t) = u"(t), the integral curve of (1) leaving from
xp, " (t), is bounded, defined for all > 0, and such that(¢) =
h(z"(t)). In other words, for alk > 0,

&' (t) = f(a" (1), u"(2))
r(t) = h(z" (1))

z"(0) = zg.

®)

general class of output regulation problems [3], where exosystenthe following is the most restrictive assumption in this @ap

generated disturbances and parametric uncertaintiesllarecd to
affect the plant (our approach does not handle these). Itbbas
shown, for special classes of nonlinear systems, how toestile
output regulation problem globally [4] or semi-globally][96].
Other (non-output feedback) approaches to output trackinyde
differential flathess [7] and system inversion [8]. See dls more
recent work in [9].

In this paper we cast Problem 1 as a nonautonomous stataitizat (i) There exist(; € R andv"(-)

problem and assume that there exists a smooth feedbackzstapi
the system’s state to the state of the stable inverse of taet.pl
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IWe do not require to know the entire signdlt) in advance.

Assumption A2 (Compensator): One can find a compensator with
input v

(4)

where¢ € R, v € R™, anda,b are smooth, with the following
properties.

: RT — R™ such that, when
v(t) = v"(t) andz(t) = =" (t), the integral curve of (4) leaving
from (g, ¢"(t), is bounded, defined for atl> 0, and such that
u' (1) = b(C" (1), 27 (1))

(i) There exists a set of indicelgk1, . .., km }, With >~ k; = n+q1,
such that, fori = 1,...,m, the time derivativesygj), j =
0,...,k; — 1, calculated along the vector field of (1), (4), are
independent ob. Moreover, the map

Hx :X = Hx(X), X CR" x R"
(z,¢) — col(ys,...,yF Y

7y1 gt UCm*l)
has a smooth inversi 3! : Hx (X) — X.

7ym7“‘7y77l

)
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Letting X" = col(z",¢") and Assumption A5 (Dynamic Extension): For the system with output
o Rm,
Y" = col(ry,. .. ,1"5]“ 1)7 ey Ty e 77’5,1?”71))7 @€
. . . . . i i . — 70‘: T — ’I" b ’I" T

part (i) in A2 implies that, ifY” € Hx (&), X" = H3' (Y"). v f(@, Cet) g.gr f(xr £C Tx )

The conditonY” € Hx(X) restricts the class of reference §=Al+Bew (¢ =a((",z",0") @)
signalsr(t). The following assumption further requires thet (¢) alz,z", (") = a(z,z",b(¢",2"))
be contained in a convex compact set contained<ia(X’). This ) o (1) . ()
allows one to use the dynamic projection-based observetOhtp the time derivativesc, ..., a;™"", ..., dm,...,am™ calculated
estimate the stable inverse of the plant. along the vector field of (7), do not depend enandv".
Assumption A3 (Reference Trajectory): The reference trajectory Recalling thatX” = col(z”, ("), we rewrite the(z”, ¢”) dynamics
r(t) is such that, for alk > 0, in (7) as

Y7(t) € Gy C Hx (X), X" =F(X"v"), r=HX"),
for some convex compact sét whose boundaryC; is ann+q; —1  with obvious definition ofF and H. Sincea(z",z",u") = u", A5
dimensionalC* submanifold, i.e.pC1 = {Y" ¢ R"T9 : g;(Y") = implies that the time derivatives af" and
0}, whereg; : R**91 — R is aC" function for which0 is a regular ~
- r r "2 col(uf, ., (@)Y, () )

Value, I.e.,VY S 86’1, ag1/aY 7é 0. g ( 1 ’ 1 ’ y Umy ’ m )
We remark that A3 can be relaxed by requiring thdt(t) € C1 for  calculated along the vector fiel (i.e., fori = 1,...,m, (ug-)m —
aII_ t > T, for some positive real’, without affecting the results of 1.7 ¢, j = 0,...,n; — 1), are independent ob". The following
this paper. lemma shows that, under assumptions A4 and A5, there exists a

stabilizer for the augmented system (5), (6).
B. Nonlinear Stabilization

Consider the change of coordinates= z —z", rewrite (1) innew Lemma 1 Assume that A4 and A5 hold. Then there exist a smooth
coordinates as L function w(z, &, X™), a C* function V (,€) : D — R*, with € =
= f(t,z,u), (5) ¢—¢", and a real number* > 1 such that{(z,£) € R" x R% :
V(#,€) < ¢*} is a compact subset db, and the time derivative of

and notice that asymptotic stability of the origin of (5) ik
ymp y g () itien V' along the trajectories of

asymptotic tracking for (1).
Assumption A4 (Stabilizer): There exist a smooth function i=f(t,iu + CE)

a(z,2",u"), a C* function V'(#), V' : D' — R, and a real . ~

numberc’ > 1 such thati(z",z",v") = u", { e R" : V'(Z) < '} €= Al + Bew(, &, X") — col((u) ™, (up,) ")
is a compact subset db’, and the time derivative of’’ along the

‘ ) . . . < _ ~ g , ~ nt . .
trajectories of satisfiesV < —®(%,¢), where ®(z, ) is continuous onD and

positive definite on the st(#,£) € R™ x R : V(z,€) < ¢'}.

Moreover, if ¢’ in A4 can be chosen arbitrarily large andl’ is

satisfies radially unbounded, thee™ and V' have the same properties.
V' < —d'(3),

&= f(t,z,a(z,z",u"))

: - . - Proof: Omitted. ™
where ®'(z) is continuous onD’ and positive definite on the set

{zeR":V'(z) <}

This assumption, derived from Assumption ULP in [11], ineglihat
the smooth feedback(z, 2", «") uniformly asymptotically stabilizes  The next few definitions and assumptions are taken from [10].
the origin of (5) and any integral curve leaving from the §&tc  Consider system (1) and, given a set of indi¢és ..., L.}, with

C. State Estimation

R™ : V'(z) < ¢} approaches the origin. A4 can be relaxed byl = n, let y, := col(yr, ..., 4"V . ym, ...,y ™) (all
allowing V' to depend on time provided it satifies suitable boundingderivatives are calculated along and define

properties. Also, the results in Section 1lI-B remain unaed if the . (ny—1) (nm —1)

origin & = 0 is assumed to be practically stable by requiribgto Hao @ (01,00 e Umy e Um )= Ya

b’e positiye definite over the sét : ¢’ < V'(#) < ¢}, for some \yhere the indicesy;, j = 1,...,m indicate the number of time
ce (O,c_). Next, in pr(_aparatlo_n for the appllca,tlc_)n of the separatiofe ivatives ofu; that end up appearing i, (whenH, does not
principle in [10], following the idea of Tornambé in [12] veaigment depend onu;, we setn; = 0). By using the dynamic extension (6)
(1) with m chains of integratofs- one chain for every input channel , o havey, = Ha(z,&). For any positive real number < c*, let

u; - of orderns, ..., nn,, respectively (the indices; are defined in 5
A6), Qo ={(2,§) e R" x R™ : V(7,£) < c}.
§=Al+Bw, (€R® g2=) nj,weR" Note that the properties of in Lemma 1, the boundedness of
i (6) (z"(t),u"(¢t)), and the smoothness af"(¢) imply that Q. is a
u=Cck bounded set.

where the triple(A., B, C.) is in Brunovsky normal form. Next, Assumption A6 (Observability): System (1) is observable over an
using the stabilizefi in A4, we seek to design a stabilizer for the OPe€n e C R™ x R™* containing the origin, i.e., there exists a set
augmented system (5), (6). To this end, we need the follawing  Of indices{l1,... .} such that the mapping : O — Y (where
Y = F(0)) defined by
20One may replace the chain of integrators (6) by astable linear
system with vector relative degrde:1, . .. n., }. With appropriate notational (z,6) = Y = |:yac:| _ {Hw (z, 5)} ®)
changes, the results of this paper still hold. ) ’ £ £



has a smooth invers& ' : Y — O, - —— Gr =Lr Hx,
1 Y"=Hx(X"), Y =7F(,¢) :
.7:71(Y) _ ffl( é.) _ Hz (yat7§) (9) ] Gy = COI(LF2HI75) .
- W= 3 ‘ Nyr(¥7) = (_891_) T €7 = block-diag[€], ..., €]
8177 1 g kj
i R P 5] _dlag[plv'-'vpl }
Assumption A7 (Topology of O): There exists a positive scalar Ny, (V) = (392) T ) ] .
¢ < ¢* and a seC; such that ’ Oy &} = diaglps, ..., py]
L' = block-diag[Ly,...,L},]
FQe)cCCY (=F(0)), (10 L} Hurwitz (k; x 1) i = (SifH)~1(SigH~T
whereCs has the following properties L3 Humwitz (I x1) . .
(i) The boundary o, 9Cs, is ann — 1 dimensionalC'* subman- g = blocffdlag[gl’ e ’577_] SZ. = (P)/?
ifold of R™, i.e., there exists &' function g» : C2 — R such Sl =1/p," £}, & =1/p] £} P? satisfies:
that 9C> = {Y € C2 : g2(Y) = 0}, and (9g2/9Y)" # 0 on o
dCs. A' P+ PPA" = —l(nyg)x (n+a;)
(i) CS ={y, €R": (yz,¢) € C}} is convex foriallf € R, A= O(nta;—1)x1 Ltntg;—1)x(n+q;—1) | _ L1, 00 xntq, 1]
(i) 0 is a regular value of2(-, ) for each fixeds € R™, i.e., for 01 (n+4;) ‘
all y, € C5, %(ymé) #0.
i I3 - N stabilizer in integrator:
(iv) UgeRnu Cs is compact. Il e X 7 tﬁb' A Chains ofintegrators | . ’
See [10] for a detailed explanation of A6 and A7. B85 %) €= A&+ B
Condition (10) yields the following implications ! ‘jf
V(i’vé) =0« (jvé) = (07 0) = (1,7“757') € QE g (1,7“757') S C2~ : observer

IIl. PROPOSEDSOLUTION . . .
Fig. 1. Block diagram of the controller solving Problem 1.

We now provide a solution to Problem 1 using the separation
principle presented in [10]. In Section IlI-A we present tantrol
topology. In Section IlI-B we show that systems which ardedén- and©, respectively (see [10] for more details). Note that thenawn
tially flat (dynamic feedback linearizable) automaticadigtisfy A1, input v" is replaced by0 in (12). These estimates are usedn
A2 and thus naturally lend themselves to the estimation @fstable (see Lemma 1) to replacE” andz. The resulting control topology
inverse of the system. Finally, we focus our attention tocdse when s illustrated in Figure 1. The properties of the two estiongtare
the reference signai(¢) is generated by an exosystem. We show thaummarized in the following lemma.
if an internal model exists, it can be used as the compensatg.

Lemma 2 Consider (12) and (13) and suppose thét > 0,
A. Control Topology (z(t),£(t)) € Qe Assume that A1-A3, and A6-A7 hold. Then, the

estimatesX” and & enjoy the following properties

Consider the dynamic output feedback controller i n ] )
(i) The setsHy'(Cy) and F~'(C3) are positively invariant for

&= A+ Bew(z,6,X") 1) (12) and (13), respectively.
u= C., (i) For all 6 > 0, there existp; and T;(p;), i« = 1,2, such that
. . . X7 ()= X" ()] < & for all ¢ > Ti(py) and||i(t)—a(t)]| < 6
where X” = col(z",¢") and Z are the states of two estimators for all t > Tx(p2), with T;(p;) — 0 as p; — 0, wheneverp; €
- a7 (DT (0,p:), i = 1,2. Moreover, for sufficiently smalp., ||Z(t) —
Pﬂ)f] {LFle T Nﬁyf (3/ BLflgAl } z(t)|| — 0. If the vector fieldF" does not depend on", i.e.,
0X Ny (Y TN (YT) F(X",0") = F(X"), then | X" (t) — X" (t)]| — 0.
. if Lag,g1 > 0andY” € 0Cy
X" = Fl()Z’T,r) Proof: The properties oft are proven in [10], Theorem 1 and
A o OHx | etii11 . Lemma 1. A variation of the same proofs can be used to prove the
=F(X",0) + {B—Xﬂ (&)L (T—H(X )) properties ofX".
[

otherwise . . . .
(12) The following result is a direct consequence of the separati

principle in [10].

oz N,.(Y)TI2N,, (V)

if Layg2 >0andY € dCs

_ 2 9
[8711] 1{LF2H;E _ r Nyz (Y)chgQ

Theorem 1 Suppose A1-A7 hold. Then, for anye (0, ¢), there
exist positive real numbergy, p5 such that, for allp, € (0, p7),

&>
Il

F(2,¢,y) X p2 € (0, p3), the dynamic output feedback controller
N OH.1 Y oo . . X
£ (5,06 + [Pe] (€37 (y - h(@)) € = At + Bow(#,6,X7) a
otherwise u=C.t
(13

and the various parameters are defined in the next table ¢wher solves Problem 1 over the set

1,2). The estimators (12) and (13) incorporate high-gain patars 4 = {(L&XT@) e R¥ Tt (2 6) e Q., X" € H' (CL),
p1, p2 t0 guarantee convergence and a dynamic projection to avoid .
peaking and confin& ™ and(z, £) to within the observable regiorg (2,§) e F (02)}



A2 is implied by the regularity of (15), and part (ii) is sdiésl
] . ) ] with k; = m;, Hx(-,-) = T(-,-), and X = D. In the general
Sketch of the proo1_S|ncer(t) = h(z"(t)) andh is continuous, gge wheny(-, -, -) depends onu we just add integrators:; = v,
for all eg >TO therE existss™ > 0 Tsuch that for _allx € R"™ such j = 1,...,m, w = z Letting ¢ = col(n,2), a(¢,z,v) =
that ||z — 2"|] < €%, ||h(z) — h(z")|| < eo. Using an argument col(p(n, z, 2),v), b(C,z) = y(n,x,2), andk; = m; + 1, we have
similar to that of the proof of Lemma 2 in [10] one finds that forthata(-, .,-) andb(-, -) satisfy A2 onX = D x R™. The previous
any ¥ € (0,c), there exist positive real numbepg, p5 such that if - csnsiderations are summarized in the following.
pi € (0,p7), 1 = 1,2, every integral curvéz(t),£(t)) leaving from
Q. cannot exit the se: and converges in finite time to the residua

setQy. Clearly 9 can be chosen so that ‘:act 1 A sufficient condition for A2 to hold is that (1) is differezily

flat (dynamic feedback linearizable) with respectjto

(2,8) € Qy = ||z —2"|| < €7,

However, differential flatness is not a necessary conditimrA2 to
hold, as it is shown in the next section.

When (1) is differentially flat, so that in output coordinatthe
system is in Brunovsky normal form, one can design an inpina
linearizing controller which employs the derivatives of tlutput
Corollary 1 Under the assumptions of Theorem 1, if A4 holds fofnq the reference signal to yield tracking. Such derivativan be
arbitrarily large ¢’ and a radially unbounded/’, and A6 holds estimated by means of high-gain observers and thus Probleam 1
globally (i.e., O = R™ x R*) with 7(O) a convex set, then the pe solved, in the spirit of Teel and Praly [14] or Khalil and- co
solution to Problem 1 is semiglobal. workers [15], [16], by replacing the derivatives by theitiestes
and saturating the control input. On the other hand, evemwhgis
differentially flat, the control topology presented in SewtllI-A does
not rely on input-output linearizatioand the linearizing compensator
is used only for the estimation of the stable inverse of thentpl
Wouldn't it be better to use input-output linearizationhat than the
technique presented in this papef® use an example to answer this
question.

thus proving the practical tracking property. From thiscdission
and the positive invariance of('(C1) and F~'(C2) we get that
Problem 1 is solved over the sgt |

Proof: From Lemma 1, if¢’ can be chosen arbitrarily large
and V' is radially unbounded¢* and V' have the same properties.
SinceO = R" x R?? and F(0O) is a convex set, we have that A7 is
satisfied for an arbitrarily large and a sufficiently large set, (see
Remark 5 in [10]). Thus, the s€): can be made arbitrarily large.

Notice that, in order to solve Problem 1 semiglobally, we @b n
require X in A2 to be all of R""%:. The advantages of this feature
are illustrated in the next section. Example 1 The nonlinear system

Summarizing the results presented in this section, we hawedf
that if there exists a compensator (4) satisfying A2 and ifakle
observability/stabilizability properties are satisfictthere exists a
dynamic output feedback controller solving ProblemVihen can i3 =24 —u1 — 7, (16)
the compensator (4) be found® partial answer to this question is T4 = —X3 — T4 + Tauso
provided in the next two sections.

:'El = T2,

. 2
To = x] + U1,

Yy = CO|(:E17 .'E:;),

is differentially flat (dynamic feedback linearizable). &eéarizing

. . . . compensator is
Assume now that (1) is differentially flat (dynamic feedback

B. Differentially Flat Systems

linearizable) with respect to the flat outpufsee [7]), i.e., there exists G=C+G, G=v, =1, u= col(¢1, ¢2).
a regular compensatbwith input w (referred to as théinearizing The d i ix of th d .
compensatgr e decoupling matrix of the augmented system is
i=o(mz,w), u=y(nzw), ncR’, weR™ (15) LC 1 ) 11} ,
4 — _

and a setD C R™ x RP such that the plant augmented with such .
compensator yields (up to a feedback transformation) thaaltr and hence the vector relative degree of the augmented sypie8},

system in output coordinate@,fm” — wi, Smi = n +q, and is well-defined on the se{(z,{) : z4+ # 0}. Given a smooth

the mappingT'(z, n) : D — T(D) defined as reference signat(t) such thatiy + 72 > 0 (so thatz; > 0), an
T input-output linearizing controller for the augmentedteys is given

T(x,n) =col(hy,... Ly " tha, .. by o LE™ hay), by
(@) 1[ -1 1
where L T
]2 e
f(:Cﬂ?, w) = Col(f(:cgy(n,m,w)),g@(n,m,w)), h(l’,n) = h(fc)a
wheree = col(e,.. 476§3)7€2, e e§2>), withe =y —r, and K

are the vector field and output function of the augmented sys- . ) ]
tem (1), (15), is a diffeomorphism of. Assume for the mo- a suitable2 x 7 matrix. This controller solves Problem 1 over a set

H H H 0o ~0 0
ment that the output function of (15) is independent wof i.e., A which does not contain any poifit”, (") such thatr; <0, and
~v(n,z,w) = +(n,). It is then clear that A1 holds in that let- hence does not yield semiglobal output feedback tracking.
ting7 5}* _ col(r, p(m1=1) . D) we have On the other hand, we now show that semiglobal output feédbac
(2" (1) nr(_t)) _ %’;{(‘i’,f(t)) ar;c.i.ﬂ”"(g;:y(;;(t) 2 (1)), It is _tracki_ng can be achieved using the control topology in l%i_ghr It
also clear that (15) satisfies A2. As a matter of fact, partiri) IS qwt_e clnear that Al holds for any smooth reference sigria)
satisfying i1 + 72 # 0 and that A2 holds withk; = 4, k2 = 3,

3For each fixedr the mapy(n, z,w) : (1, w) — u is a submersion, in and X’ = {(z,¢) : z4 # 0}. Consequently, since the sgtz, () :
other words(n, w) can be uniquely determined frofe, v), see [13]. x4 > 0} is already convex, the sé€ satisfying A3 can be taken to



be any convex inner approximation with smooth boundarytihgt
T =z — z", the stabilizer
ul 4+ (21)? — 2 + Mz

w(z, ", u") = »

, M=[-1-100],

satisfies A4 globally (i.e.¢’ = oo) with

29 9 7T
~ 1_ 9 27 -1 2] .
1 _ - T
Vi) = hi - 21 g aof®
7 2 2 4

Letting y. = col(y1,91,y2,92) we havey, = Haz(z,u1)
col(z1, z2, 3, x4 — 23 — u1). Since the mappingF : (z,u1) —
(y=,u1) is a global diffeomorphism, A6 is satisfied with= 2, [, =
2,n1 = 1,ne = 0, and® = R* xR. It follows that A7 is satisfied by
an arbitrarily largec* and a sufficiently large se&fs. Sincen; =1,
n2 = 0, we need the following dynamic extension

u1:§7§:w17 U2 = wWa.

It is easy to see thai; is independent ofv andv”, and hence A5
holds. From Corollary 1 we conclude that the controller (¥1p),
(13) yields semiglobal output feedback tracking.

A

Returning to the question posed earlier, this example shibat

semiglobal output tracking may be achieved even when thet pl

is not globally differentially flat. In other words, in oura@mework
global differential flatness is not a necessary conditianstmiglobal

for all w € R".
(i) There exists a set of indiceS1, . ..
such that the map

(k1—1)

(z,¢) — col(yr,...,y; -
is a diffeomorphism ont¥ C R™ x R

7km}: with Zkz =n-+q,

(’Wn*l))

7y7n7"‘7ym

The solvability of the regulator equations in A8 implies the-
istence of a stable inverse, which is given ky"(¢),u"(t)) =
(m(w(t)), c(w(t))). Moreover, the internal model can be used as the
compensator (4) in A2 witv = 0. To see why this is true, notice
that (i) in A2 is satisfied witi(; = 7(w(0)), while (ii) in A2 directly
follows from property (i) in A8 and the fact that the intefmaodel is
an autonomous system. The previous considerations are atinech
in the following.

Fact 2 A sufficient condition for A2 to hold is that there exists an
internal model satisfying A8.

As remarked earlier, this fact shows that differential #sthis not a
necessary condition for A2 to hold. We now turn our attentiothe
asymptotictracking problem.

Corollary 2 Suppose A3-A8 hold. Then, for anye (0,¢), there
exist positive real numbeys;, p3 such that, for allp: € (0, p7), p2 €

a((), 05), the dynamic output feedback controller (11)-(13) sohres t

output feedback asymptotic tracking problem over the4etefined
in Theorem 1.

output feedback trackingVhen the system is not globally flat because

either the relative degree of the augmented system (1), i€16pt
everywhere well-defined or the change of coordindtés -) is not
a global diffeomorphism, we restrict the class of referesigmals
to be tracked (in the example we imposéd+ 2 > 0). However,
since the linearizing compensator is only employed fornestion,
one may well find a global (or semiglobal) stabilizer yielglia
semiglobal solution to Problem 1. On the other hand, thetiopitput
linearization approach employs the linearizing compensats a
dynamic controller. In this framework the domain of opevatdf the
closed-loop system is unnecessarily restricted and hermaderm 1
cannot be solved semiglobally.

A further advantage of the technique proposed here is that |

naturally lends itself to the estimation of input disturbas. This
topic has been investigated in [17].

C. Tracking With an Exosystem

Assume that the reference signal is generated hgudrally stable
exosystem (see [3[ = s(w), r g(w), wherew € R", and

Proof: From A8 and Fact 2 we have that A1, A2 are satisfied and
the vector fieldF’ does not depend o', i.e., F(X",v") = F(z").
Thus, from Lemma 2X" (t) — X" (t) — 0 ast — oo, S0 that, in the
proof of Theorem 1§ = 0 and the origin(z, §~) is attractive. Thus,
in particular, by the continuity ok(-) we haveh(x(t))—h(z"(t)) —
0 ast — oo.

CONCLUDING REMARKS

We presented an approach, based on a separation princiglaye
the output feedback practical tracking problem for systemmich
not affected by uncertainties or disturbances. Wheneleeence
signal is generated by an exosystem and an internal modsfysag
suitable assumptions exists, this approach yields a saolut the
output feedbackasymptotictracking problem. Since this approach
relies on the on-line estimation of the stable inverse ofplat, it
is susceptible to degradation in performance when uncgiai or
disturbances are present.

s(+),q(-) are smooth. We now show that if there exists an internal

model with suitable observability properties, then A1 an? &re
satisfied and the controller (11), (12), (13) yields asyriptacking.

The notion of internal model we use in the next assumptionuis d [1]

to Isidori (see Section 8.4 in [3]).
Assumption A8 (Internal Model): (i) There exist mappings =
m(w), u = c(w), with w(0) = 0, ¢(0) = 0, satisfying theregulator
equations

or

EaC) h(m(w)) — q(w)

and such that the autonomous system= s(w), v = c(w) Is
immersed into a system (tHaternal mode) ¢ = a(¢), u = b(Q),
with ¢ € R, i.e., there exists a smooth mapping: R" — R
such that

or

50 (W) = a(r(w)), c(w) = b(r(w))
c(wi) # c(wz) = b(7(w1)) # b(7(w2))
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