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Abstract— The paper presents a new method for determining
virtual holonomic constraints for a mechanical system. We focus
on systems with 3 DOF and 2 controls. The main result of the
paper shows that, if the distribution generated by the vector
fields representing the accelerations due to the inputs is not
involutive near a reference configuration, then it is possible
to find a closed virtual holonomic constraint defined in an
arbitrarily small neighborhood of the reference configuration,
which is controlled invariant and stabilizable. We present a
constructive proof that provides a method for the numerical
computation of the constraint. As an application example, we
present some families of virtual holonomic constraints for an
underactuated double pendulum on a cart.

I. INTRODUCTION

A virtual holonomic constraint (VHC) is a relation of the

form h(q) = 0 that can be made invariant via feedback

control. The early idea of VHCs appeared in the work of

Nakanishi et a. [1] where the authors enforced the angle

of a virtual pendulum on the configuration of a brachiating

robot in order to follow the target dynamics of a harmonic

oscillator and to imitate the pendulum-like motion of an

ape’s brachiation. In the past decade, VHCs have emerged

as a useful tool for motion control in biped robots (see,

e.g., [2], [3], [4], [5]), and as an approach to motion planning

for general robotic systems (e.g., [6], [7], [8], [9]). In the

context of motion control of biped robots, researchers en-

code a walking gait by imposing, through feedback control,

relations between the joint angles of the robot, and they show

that when the relations are satisfied, the reduced motion

arising is a stable limit cycle corresponding to a periodic

walking motion [2], [3]. In the context of motion planning,

researchers use VHCs to aid the selection of closed orbits

corresponding to desired repetitive behaviors, which can then

be stabilized in a variety of ways [6], [7].

Despite the considerable progress in the investigation of

virtual holonomic constraints, some problems remain un-

addressed. In particular, the derivation of stabilizable con-

straints is often obtained with methods tailored for a specific

system and a general procedure is still missing in literature.

In our paper [10], we presented a systematic procedure for

the determination of stabilizable virtual holonomic constraint

for systems with n degrees of freedom and n− 1 actuators.

The method allows to find constraints expressed as a function

of one cyclic configuration variable, in which the constraints
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for n− 2 variables are chosen arbitrary, while the remaining

constraint is obtained as the solution of a scalar differential

equation. With the aim of providing new results on the

problem of the synthesis of stabilizable virtual constraints,

this paper develops a different approach for determining a

family of virtual holonomic constraints that are contained

in an arbitrarily small neighborhood of a point of the

configuration space. In particular, we focus on Lagrangian

control systems with 3 DOF and 2 actuators. The dynamics

are modeled in the standard form

D(q)q̈ + C(q, q̇)q̇ +∇P (q) = B(q)τ ,

where τ is the control vector and the input matrix B(q) has

two columns. In the expression of q̈, the control vector τ
appears in term D−1(q)B(q)τ , we name g1(q), g2(q) the

columns of D−1(q)B(q) . The span of vector fields g1, g2
represent the possible accelerations that can be obtained with

the control inputs. The main result of this paper shows that, if

the distribution generated by span{g1, g2} is not involutive

in a neighborhood of a configuration q0, then it is possible

to find a closed virtual holonomic constraint defined in an

arbitrarily small neighborhood of q0, diffeomorphic to S
1,

which is controlled invariant and stabilizable. We present

a constructive proof that provides a method for the actual

computation of the constraint. The fact that non involutivity

guarantees the existence of a virtual constraint is not surpris-

ing. In fact, it is well known that involutivity properties plays

a fundamental role in motion planning for nonlinear systems

(see for instance [11], [12]). As an application example, we

present some families of virtual holonomic constraints for an

underactuated double pendulum on a cart.

Notation: Given a n-dimensional smooth manifold Q,

TQ denotes its tangent bundle TQ = {(q, vq) : p ∈
Q, vq ∈ TqQ} and ΛkQ is the k-th exterior power of the

cotangent bundle of Q. A differential k-form ω is a smooth

mapping Q → ΛkQ that associates to each point q ∈ Q
an alternating multilinear map ωq of order k. We denote

by ωq(x1, x2, . . . , xk) the scalar obtained by evaluating map

ωq on vectors x1, x2, . . . , xk. The exterior derivative of ω
is denoted by dω : Q → Λk+1Q. Given a vector field

v on Q, the differential 1-form v∗ is defined as v∗q (x) =
vq · x, the operation that associates v∗ to v is called the

canonical isomorphism. Given two vector fields v, w on Q,

[v, w] denotes the Lie bracket of v and w. Given a function

v : Rn → Q and vectors x,w ∈ R
n, Lwv(x) represents the

directional derivative of v along vector w, evaluated at x.

We let [x]2π : x modulo 2π, and [R]2π = {[x]2π : x ∈ R}.



II. INTRODUCTION ON VIRTUAL HOLONOMIC

CONSTRAINTS

This section presents some results on VHCs taken

from [13], to which we refer the reader for further details.

Consider a Lagrangian control system with n DOF and n−1
actuators modeled as

d

dt

∂L

∂q̇
−

∂L

∂q
= B(q)τ.

In the above, q = (q1, . . . , qn) ∈ Q is the configuration

vector. We assume that each component qi, i = 1, . . . , n, is

either a linear displacement in R, or an angular displacement

in [R]2π . With this assumption, the configuration manifold Q
is a generalized cylinder, and TQ is the Cartesian product

TQ = Q × R
n. Hence, the inner product of two vectors

v, w on the tangent space is given by the standard inner

product on R
n denoted by v ·w. The term B(q)τ represents

external forces produced by the control vector τ ∈ R
n−1. We

assume that B : Q → R
n×(n−1) is smooth and rankB(q) =

n − 1 for all q ∈ Q. Further, the function L : TQ → R is

assumed to be smooth and to have the special form L(q, q̇) =
1
2 q̇

TD(q)q̇−P (q), where D(q), the generalized mass matrix,

is symmetric and positive definite for all q ∈ Q. We will

assume that there exists a left annihilator of B on Q. That

is to say, there exists a smooth function B⊥ : Q → R
1×n

which does not vanish and is such that B⊥(q)B(q) = 0 on

Q. With the above mentioned assumptions, the Lagrangian

control system takes on the following standard form

D(q)q̈ + C(q, q̇)q̇ +∇P (q) = B(q)τ. (1)

Remark 1: Set S
1 is diffeomorphic to the set of real

numbers modulo 2π, via the diffeomorphism φ : [R]2π → S
1,

φ(t) =
(

cos t, sin t
)T

. The map π̄ : R → [R]2π , defined

as π̄(x) = [x]2π , is a covering map from R to [R]2π .

We define a covering map π : R
n → Q by π(x) =

[π1(x1), π2(x2), . . . , πn(xn)], where πi(xi) = xi, if qi ∈ R,

and πi(xi) = π̄(xi), if qi ∈ [R]2π .

Definition 1 ([13]): A virtual holonomic constraint

(VHC) of order n− 1 for system (1) is a relation h(q) = 0,

where h : Q → R
n−1 is a smooth function which has a

regular value at 0, i.e., rank(dhq) = n−1 for all q ∈ h−1(0),
and is such that the set

Γ = {(q, q̇) : h(q) = 0, dhq q̇ = 0} (2)

is controlled invariant. That is to say, there exists a smooth

feedback τ : Γ → R
n−1 such that Γ is positively invariant for

the closed-loop system. The set Γ is called the constraint

manifold associated with h(q) = 0. A VHC is said to be

stabilizable if there exists a smooth feedback τ(q, q̇) that

asymptotically stabilizes Γ. Such a stabilizing feedback is

said to enforce the VHC h(q) = 0.

By the preimage theorem [14], if h(q) = 0 is a VHC

of order n − 1, then the set h−1(0) is a one-dimensional

embedded submanifold of Q. In other words, h−1(0) is a

regular curve without self-intersections. As such, h−1(0) is

diffeomorphic to either the real line or the unit circle S
1.

Definition 2 ([13]): A relation h(q) = 0, where h : Q →
R

n−1 is a smooth function, is a regular VHC of order n−1

for (1) if system (1) with output function e = h(q) has well-

defined vector relative degree {2, . . . , 2} everywhere on the

constraint manifold given in (2).

A regular VHC is a VHC. Regular VHCs enjoy two im-

portant properties. First, under mild assumptions (see [13]),

regular VHCs are stabilizable by input-output feedback

linearizing feedback. Second, regular VHCs induce well-

defined reduced dynamics. Specifically, the dynamics on Γ
(i.e., the zero dynamics associated with the output e = h(q))
are given by a second-order unforced system. In order to

find the reduced dynamics, we follow a procedure presented

in [15]. We first pick a regular parametrization γ : Θ → Q
of the curve h−1(0), where Θ = R if h−1(0) ≃ R, while

Θ = [R]2π , if h−1(0) ≃ S
1. Next, multiplying (1) on the left

by B⊥(q) we obtain

B⊥Dq̈ +B⊥(Cq̇ +∇P ) = 0.

The dynamics on Γ are found by restricting the equation

above on Γ. To this end, we let q = γ(λ), q̇ = γ′(λ)λ̇, and

q̈ = γ′(λ)λ̈+ γ′′(λ)λ̇2. By so doing, we obtain

λ̈ = Ψ1(λ) + Ψ2(λ)λ̇
2, (3)

where

Ψ1(λ) = −
B⊥∇P

B⊥Dγ′

∣

∣

∣

∣

q=γ(λ)

,

Ψ2(λ) = −
B⊥Dγ′′ +

∑n
i=1 B

⊥
i γ′TQiγ

′

B⊥Dγ′

∣

∣

∣

∣

q=γ(λ)

,

and where B⊥
i is the ith component of B⊥ and (Qi)jk =

1/2(∂qkDij + ∂qjDik − ∂qiDkj).
The unforced autonomous system (3) represents the re-

duced dynamics of system (1) when the regular VHC of

order n− 1, h(q) = 0, is enforced.

The following condition for regularity is a direct conse-

quence of Proposition 3.2 of [13].

Proposition 1: The set γ([0, 2π]), where γ : [R]2π → Q
is a smooth function, is a regular VHC of order n−1 if and

only if Im (D−1B(γ(λ))) and Im (γ′(λ)) are independent

subspaces, ∀λ ∈ [0, 2π].

III. PROBLEM FORMULATION

In this paper, we consider a configuration manifold with

dimension n = 3 and VHCs of order 2 in which h−1(0)
is a closed curve, with the interpretation that the constraint

corresponds to a desired repetitive behavior. It is convenient

to adopt a parametric description of the VHC, in which the

3 configuration variables are expressed as smooth functions

γ(λ) : [R]2π → Q and the constraint manifold is defined as

h−1(0) = γ([0, 2π]).
In these hypotheses, Im (D−1(q)B(q)) has rank 2 and it

is possible to define vector fields g1, g2 on Q such that

Im (D−1(q)B(q)) = Im (g1(q), g2(q)) ,

we set G(q) = (g1(q), g2(q)).
We consider the problem of generating closed VHCs

defined in a neighborhood of an assigned configuration

q0 ∈ M. In this conference paper, we consider the case

in which span{g1(q), g2(q)} is not locally involutive in a

neighborhood of q0.



IV. METHOD FOR GENERATION OF VHCS

In this section, we report the method for the generation

of a VHC in the neighborhood of an assigned configuration

q0 ∈ Q and present the main result of the paper, that shows

that if the distribution span{g1, g2} is not locally involutive

at q0, there exists a VHC, diffeomorphic to S
1, contained

in an arbitrarily small neighborhood of q0. The method is

summarized in the following steps.

Procedure 1: To find a regular VHC in a neighborhood

of a configuration q0.

1) Set V = Im (g1(q0), g2(q0)) ⊂ R
3 = Tq0Q and

choose any Jordan curve γ : [R]2π → V that surrounds

the origin of V . Let η(q) be a unitary vector field normal to

span{g1(q), g2(q)}, (i.e. set η(q) = g1(q)×g2(q)
‖g1(q)×g2(q)‖

).

2) Choose a parameter ǫ > 0 and let x0 ∈ R
3 such that

π(x0) = q0. Define function γǫ : [R]2π × R → Q as

γǫ(λ, z) = π(x0 + ǫγ(λ) + ǫ2η(q0)z) . (4)

3) Find a constant δ 6= 0 such that the solution of the

following differential equation in R exists and is 2π-periodic
{

z′ǫ,δ(λ) = fǫ(λ, zǫ,δ, δ) =
−γ′(λ)·η(γǫ(λ,zǫ,δ))+ǫδ

ǫη(q0)·η(γǫ(λ,zǫ,δ))

zǫ,δ(0) = 0 ,
(5)

4) The regular VHC is given by

Γ = {γǫ(λ, zǫ,δ(λ)) : λ ∈ [0, 2π]} . (6)

Remark 2: As we will show in proposition 3, if the

distribution span{g1, g2} is not involutive in a neighborhood

of q0, it is always possible to find ǫ, sufficiently small, and

δ 6= 0 such that the solution of (5) is 2π-periodic. Hence, if

it is not possible to find δ 6= 0 for a given ǫ in the solution of

step 3), it is sufficient to repeat the procedure with a smaller

value of ǫ.
Figure 1 shows a graphical representation of the construc-

tion of the constraint γǫ.

ǫ2zǫ,δ(λ1)

ǫ2zǫ,δ(λ2) V

π(x0 + ǫγ)

γǫ

ǫ2zǫ,δ(0)
q0

Fig. 1: Method for finding of a VHC in a neighborhood of

a configuration q0.

The following proposition shows that the constraint ob-

tained with this procedure is a regular VHC.

Proposition 2: If the solution of (5), for nonzero constants

ǫ, δ, is well-defined and 2π-periodic, then the set Γ, defined

by (6), is a regular VHC.

Proof: If z = zǫ,δ is a solution of (5) for δ 6= 0, it

follows that

γ′
ǫ(λ, z) · η(γ(λ)) = ǫγ′(λ)·

η(γǫ(λ, z)) + ǫ2z′(λ)η(q0) · η(γǫ(λ, z)) = ǫ2δ 6= 0 .

Since η(q) is orthogonal to Im (D−1B(q)), this identity

implies that the hypothesis of proposition 1 is satisfied.

Hence, the closed curve γǫ([0, 2π]) is a regular VHC.

The following proposition, that will be proved in the next

section, guarantees that it possible to find a 2π-periodic

solution for zǫ,δ if ǫ is sufficiently small and if span{g1, g2}
is not involutive near q0.

Proposition 3: Assume that the distribution span{g1, g2}
is not involutive in a neighborhood of q0 ∈ Q. Then, there

exists a positive real constant ǭ such that, for any 0 < ǫ < ǭ,
there exists a value of δ 6= 0 such that the solution of (5) is

well-defined on R and 2π-periodic.

The following theorem is a direct consequence of propo-

sitions 2 and 3 and is the main result of this paper.

Theorem 1: Let q0 ∈ Q, assume that the distribution

span{g1, g2} is not involutive in a neighborhood of q0. Then,

there exists a regular VHC, contained in an arbitrarily small

neighborhood of q0, diffeomorphic to S1. This VHC can be

found using procedure 1.

Remark 3: The distribution span{g1, g2} is not involutive

in a neighborhood of q0 if and only if

det([g1, g2](q0), g1(q0), g2(q0)) 6= 0 . (7)

V. PROOF OF PROPOSITION 3

We first prove that the family of functions fǫ, defined in (5)

for ǫ 6= 0, can be extended with continuity to ǫ = 0. Note

that, ∀λ ∈ [0, 2π], ∀z ∈ R:

lim
ǫ→0

γǫ(λ, z) = π(x0) = q0

lim
ǫ→0

γ′(λ) · η(γǫ(λ, z)) = γ′(λ) · η(q0) = 0 ,

lim
ǫ→0

ǫ−1γ′(λ) · η(γǫ(λ, z))

= lim
ǫ→0

ǫ−1γ′(λ) · η(π(x0) + ǫγ(λ) + ǫ2zη(q0)))

= γ′(λ) · [Lγ(λ)(η ◦ π)](x0) ,

lim
ǫ→0

η(q0) · η(γǫ(λ, z)) = η(q0) · η(q0) = 1

which imply, ∀λ ∈ [0, 2π], ∀z ∈ R:

lim
ǫ→0

fǫ(λ, z, δ) = lim
ǫ→0

−ǫγ′(λ) · [Lγ(λ)(η ◦ π)](x0) + ǫδ

ǫη(q0) · η(γǫ(λ, zǫ,δ))

= −γ′(λ) · [Lγ(λ)(η ◦ π)](x0) + δ .

Hence, setting f̄(λ) = −γ′(λ) · Lγ(λ)(η ◦ π)(x0) and

defining

f0(λ, z, δ) = f̄(λ) + δ ,

the family of functions fǫ becomes continuous at ǫ = 0.

Consider the differential equation
{

ż0,δ(λ) = f0(λ, z, δ) = f̄(λ) + δ
z0,δ(0) = 0 ,



where the dot indicates differentiation with respect to λ. The

solution is well-defined for λ ∈ R, it is given by

z0,δ(λ) =

∫ λ

0

f̄(λ)dλ+ λδ , (8)

and it is 2π-periodic if δ = δ0 = −
∫

2π

0
f̄(λ)dλ

2π .
By the continuity of fǫ,δ with respect to ǫ and δ, there

exists a neighborhood of (ǫ, δ) = (0, δ0) on which the
solution zǫ,δ of (5) exists on the interval [0, 2π] and function
T (ǫ, δ) = zǫ,δ(2π) is well-defined. Note that T (0, δ0) = 0,
T (ǫ, δ) is differentiable at (0, δ0) and ∂δT (δ, ǫ)|(0,δ0) =
2π 6= 0 (obtained by differentiating (8) with respect to δ,
with λ = 2π). Then, by the Implicit Function Theorem,
there exists an interval [0, ǭ) and a function δ(ǫ) such that
T (ǫ, δ(ǫ)) = 0, ∀ǫ ∈ [0, ǭ] (which implies that zǫ,δ(ǫ) is 2π-
periodic) and δ(ǫ) 6= 0. It remains to prove that δ0 6= 0. To
this end, note that, setting ωq = (η(q0) + [Lq(η ◦ π)](x0))

∗,
the integral of the differential form ω on γ is given by −2πδ0.
Indeed, since γ′(λ) · η(q0) = 0, ∀λ ∈ [0, 2π],

−2πδ0 =

∫ 2π

0

f̄(λ)dλ =

∫ 2π

0

γ
′(λ) · [Lγ(λ)(η ◦ π)](x0)dλ

=

∫ 2π

0

γ
′(λ) · (η(q0) + [Lγ(λ)(η ◦ π)](x0))dλ =

∫

γ

ω .

The differential form ω is linear with respect to q and

therefore its exterior derivative dω is a constant 2-form by

property 1 (see the Appendix). By Stokes’ theorem and

Lemma 1 in the Appendix, calling Γ the interior of γ on

V and |Γ| its area,

−2πδ =

∫

Γ

dω = C d(ω)0(g1(q0), g2(q0))|Γ| ,

where C is a nonzero constant.

Set ω̄q = η(π(q + x0))
∗, then dω0 = dω̄0. Indeed,

dω0 − dω̄0 = d(ω − ω̄)0 = 0 ,

by property (9), since ω is the linearization of ω̄ at 0.

Set ḡ1(q) = g1(q+ q0), ḡ2(q) = g2(q+ q0). Since w(q0) ·
g1(q0) = w(q0) · g2(q0) = 0, ω̄0(g1(0)) = ω̄0(g1(0)) = 0, it

follows from property 2 (see the Appendix) that

dω0(ḡ1(0), ḡ2(0)) = dω̄0(ḡ1(0), ḡ2(0))

= −ω̄0(ḡ1(0), ḡ2(0)) = −η(q0) · ([g1, g2])(q0) ,

which is not null, since the distribution span{g1, g2} is not

involutive at q0.

VI. APPLICATION TO A “PENDUBOT ON A CART”

As an application example, we consider a double pendu-
lum on a cart, shown in figure 2. The generalized coordinates
are given by q = (x, q1, q2) ∈ Q = R × S1 × S1, in which
x is the position of the cart, q1 is the angle between that
the first pendulum and the vertical axis and q2 is the angle
between the second pendulum and the vertical axis. Variables
x and q1 are actuated, while q2 is not. Due to its actuator
configuration, the system can be considered a “pendubot on
a cart”. We assume that the length of the two links and the
mass of the cart are unitary. The mass of each link is unitary
and concentrated at its final point. Under these hypotheses,
the inertia matrix and potential energy are given by

D(q) =

(

3 −2 cos q1 − cos q2
−2 cos q1 2 cos(q1 − q2)
− cos q2 cos(q1 − q2) 1

)

,

q2

q1

x

Fig. 2: Double pendulum on a cart.

P (q) = g(2 cos(q1) + cos(q2)) .

The input matrix is given by B(q) =





1 0
0 1
0 0



 , and

D−1(q)B(q) =
1

1 + 2 sin(q1)2 + sin(q1 − q2)

·





2− cos(q1 − q2)2
3
2
cos q1 −

1
2
cos(q1 − 2q2)

3
2
cos q1 −

1
2
cos(q1 − 2q2) 3− cos(q2)2

cos q2 − cos(2q1 − q2) cos(q1 + q2)− 2 cos(q1 − q2)



 ,

To find a simple matrix function G(q), let D1(q) be

the 2 × 2 matrix composed of the first two rows of

D−1(q)B(q). Since D1(q) is invertible, Im D−1(q)B(q) =
Im D−1(q)B(q)D−1

1 (q) and we can set G(q) =
D−1(q)B(q)D−1

1 (q) = [g1(q), g2(q)], where g1(q) =
(

1, 0, cos q2
)T

, g2(q) =
(

0, 1,− cos(q1 − q2)
)T

. Since

[g1, g2](q) =
(

0, 0,− sin(q1)
)T

, the non involutivity

condition (7) is given by sin q1 6= 0. By theorem 1, this

implies that, if q1 is not a multiple of π, a closed VHC of

order 2 is defined in any sufficiently small neighborhood

of q. To apply the method presented in section IV, we

chose the curve γ(λ) = G(q0)
(

cos(λ), sin(λ)
)

, which,

in general, represents an ellipse on the plane Im (G(q0)).
Proposition 3 guarantees that there exists a sufficiently small

ǫ and a constant δ 6= 0 such that the solution zǫ,δ(λ) of (5)

is 2π-periodic and, γǫ(λ) = π(x0+ ǫγ(λ)+ ǫ2w(q0)zǫ,δ(λ))
is a feasible VHC. We have considered the following two

cases.

A. Example 1

We have set q0 = (0,−π
8 ,

π
8 ), configuration shown in

figure 3. We have numerically found a function δ(ǫ), for

ǫ ∈ [0.01, 0.8], for which the solution zǫ,δ of (5) is well-

defined on interval [0, 2π] and 2π-periodic. The function δ(ǫ)
is represented in the left-hand plot of figure 4. The black

curves in Figure 5 represent the regular constraints obtained

for different values of ǫ from 0.01 to 0.8, while the red curve

corresponds to ǫ = ǭ = 0.3. Note that theorem 1 guarantees

that the curves obtained for sufficiently small values of ǫ
are regular VHC, however, as this example shows, a 2π-

periodic solution of (5) may also exist for larger values

of ǫ. The right-hand plot in Figure 4 shows the periodic

solution of (5), obtained with ǭ and δ = δ̄ ≃ −0.1353.

Figure 6 shows the dynamics (3) on the constraint manifold

for ǭ and δ̄, the red curve is a particular solution that

converges to an asymptotically stable limit cycle. Figure 7

shows the configurations of the system corresponding to the

VHC obtained for ǭ and δ̄.



Fig. 3: Example 1: reference configuration q0.
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Fig. 4: Example 1: (left) function δ(ǫ), (right) Periodic

solution of equation (5) for ǭ, obtained with ǭ = 0.3, δ̄ ≃
−0.1353.

B. Example 2

We have considered the configuration q0 = (0, π
2 , 0),

depicted in figure 8. Figures 9, 10, 12 presents the obtained

results (see the captions). Figure 11 shows the dynamics

on the constraint manifold, for ǭ and δ̄, the red curve is

a particular solution that corresponds to a closed orbit.

VII. CONCLUSIONS

We have presented an approach for determining a family

of virtual holonomic constraints that are contained in an

arbitrarily small neighborhood of a point of the configuration

space. The provided results apply to mechanical systems

with 3 DOF and 2 controls under the hypotheses that the

distribution generated by the vector fields representing the

accelerations achievable with the inputs is not involutive.
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Fig. 5: Example 1: virtual holonomic constraints obtained

for different values of ǫ, from 0.01 (smallest curve) to 0.8
(largest one). The red curve corresponds to the chosen values

of ǭ = 0.3.
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Fig. 6: Example 1: phase portrait of the internal dynamics.

Fig. 7: Example 1: systems configurations corresponding to

the VHC.
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APPENDIX

The following are basic properties of 1-forms (see for

instance chapter 12 of [16]).

Property 1: Let v be a vector field defined on R
n, then

(dv∗)q =
∑

0<i<j≤n

(
∂fj
∂xi

−
∂fj
∂xi

)dxj ∧ dxi ,

where q = (x1, . . . , xn).
Property 2: The external derivative of a smooth 1-form

ω on a manifold Q, computed on smooth vector fields x, y
defined on Q, satisfies the property

dω(x, y) = xω(y)− yω(x)− ω([x, y]) . (9)

Lemma 1: Let V be a 2-dimensional subspace of R3, let

γ be a Jordan curve with values on V , positively oriented,

whose interior Γ contains the origin. Let ω be a constant

2-form and let {v1, v2} be an orthonormal basis of V . Then
∫

γ

ω = ω(v1, v2)|Γ| , (10)

where |Γ| denotes the area of set Γ. Moreover, if {g1, g2} is

a basis of V , then
∫

γ

ω = ω(g1, g2)|Γ|A , (11)

where A2 = det(gi · gj)
−1, i, j = 1, 2.

Proof: Let T : R2 → R
3 be the linear transformation

defined by T ((u1, u2)
T ) = u1v1 + u2v2, then (10) holds

since
∫

Γ

ω =

∫

T−1(Γ)

(T ∗ω)(e1, e2)du1du2

∫

T−1(Γ)

d(ω)(T (e1), T (e2))du1du2

= |T−1(Γ)|d(ω)(v1, v2) = |Γ|d(ω)(v1, v2),

where T ∗ is the pullback of the linear operator T , {e1, e2}
is the canonical basis of R

2 and |T−1Γ| = |Γ| since T is

an orthonormal transformation. To prove (11), setting g1 =

av1 + bv2, g2 = cv1 + dv2 and M =

(

a b
c d

)

ω(g1, g2)|Γ| = ω(av1 + bv2, cv1 + dv2)|Γ|

= (ad− bc)ω(v1, v2)|Γ| = detMω(v1, v2)

and, since M = (g1, g2)(v1, v2)
−1, detM2 = A2.


