University of Toronto Department of Electrical and Computer Engineering ECE1647 - Introduction to Nonlinear Control Systems Fall 2016

Information Sheet

Instructor	Email Address	Office	Phone No.
Lacra Pavel	pavel@control.utoronto.ca	GB343A	416-946-8662

Lectures (start Sept 14, 2016): Wednesday 10-1, Room: TBD

Course Outline:

- CHAPTER 1: Mathematical preliminaries
- CHAPTER 2: Introduction to Dynamics
 - Finite dimensional phase flows and vector fields
 - Existence and uniqueness of solutions of ODEs
 - Invariant sets and limit sets
 - The Poincare'-Bendixon theorem
 - Stability of periodic attractors
 - Centre, stable, and unstable manifolds; the stable manifold theorem
 - Elements of structural stability
- CHAPTER 3: Stability theory
 - Stability definitions
 - Direct Lyapunov theorems for autonomous systems
 - LaSalle's invariance principle for autonomous systems
 - Massera and Kurzweil's converse Lyapunov theorems
- CHAPTER 4: Introduction to nonlinear stabilization
 - Control Lyapunov functions
 - Artstein-Sontag Theorem
 - Brockett's necessary conditions
 - Passive systems and passivity-based stabilization

Course Notes:

You'll be able to download the course notes (developed by Prof. Manfredi Maggiore) from the Course Documents section in the University of Toronto web portal. The notes are self-contained and serve as a textbook for this course.

Reference Texts:

If the course notes are not sufficient, you may consider consulting these references:

- 1. V.I. Arnold, Ordinary Differential Equations, MIT Press, 1973.
- J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields, Springer-Verlag, 1983.
- 3. J.K. Hale, *Ordinary Differential Equations*, Robert E. Krieger Publishing Company, 1980.
- 4. P. Hartman, Ordinary Differential Equations, Second edition, SIAM, 2002.
- 5. M.W. Hirsch, S. Smale, *Differential Equations, Dynamical Systems, and Linear Algebra*, Academic Press, 1974.
- 6. Hassan Khalil, Nonlinear Systems, Third Edition, Prentice Hall, 2002.